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1. Introduction

Let p be a fixed prime number. Throughout this paper, the symbols Z, Zp, Qp, and Cp

denote the ring of rational integers, the ring of p-adic integers, the field of p-adic rational
numbers, and the completion of algebraic closure of Qp, respectively. Let N be the set of
natural numbers, and Z+ = N ∪ {0}. Let νp be the normalized exponential valuation of Cp

with |p|p = p−νp(p) = p−1 (see [1–24]). Let UD(Zp) be the space of uniformly differentiable
function on Zp. Let d be a fixed positive integer. For n ∈ N, let

X = Xd = lim
←
N

Z

dpNZ
, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.1)
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where a ∈ Z lies in 0 ≤ a < dpN . For f ∈ UD(X), the p-adic invariant integral on X is defined
as

I
(
f
)
=
∫

X

f(x)dx = lim
N→∞

1
dpN

dpN−1∑

x=0

f(x) (1.2)

(see [11–19]). From (1.2), we note that

I
(
f1
)
= I

(
f
)
+ f ′(0), (1.3)

where f ′(0) = (df(x)/dx)|x=0 and f1(x) = f(x+ 1). Let fn(x) = f(x+n) (n ∈ N). Then we can
derive the following equation from (1.3):

I
(
fn
)
= I

(
f
)
+

n−1∑

i=0

f ′(i) (1.4)

(see [1–11]). Let χ be the Dirichlet’s character with conductor d ∈ N. Then the generalized
Bernoulli polynomials attached to χ are defined as

d−1∑

a=0

χ(a)eatt
edt − 1

ext =
∞∑

n=0

Bn,χ(x)
tn

n!
, (1.5)

and the generalized Bernoulli numbers attached to χ, Bn,χ, are defined as Bn,χ = Bn,χ(0)
(see [1–20, 25]). The purpose of this paper is to derive some identities of symmetry for the
generalized Bernoulli polynomials attached to χ of higher order.

2. Symmetric Properties for the Generalized Bernoulli
Polynomials of Higher Order

Let χ be the Dirichlet’s character with conductor d ∈ N. Then we note that

∫

X

χ(x)extdx =
t
∑d−1

i=0 χ(i)eit

edt − 1
=

∞∑

n=0

Bn,χ
tn

n!
, (2.1)

where Bn,χ are the nth generalized Bernoulli numbers attached to χ (see [7, 9, 15, 25]). Now
we also see that the generalized Bernoulli polynomials attached to χ are given by

∫

X

χ
(
y
)
e(x+y)tdy =

t
∑d−1

i=0 χ(i)eit

edt − 1
ext =

∞∑

n=0

Bn,χ(x)
tn

n!
. (2.2)

By (2.1) and (2.2), we have

∫

X

χ(x)xndx = Bn,χ (2.3)
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(see [15, 25]), and

∫

X

χ
(
y
)(
x + y

)n
dy = Bn,χ(x) (2.4)

(see [1–19, 25]). For n ∈ N, we obtain that

∫

X

f(x + n)dx =
∫

X

f(x)dx +
n−1∑

i=0

f ′(i), (2.5)

where f ′(i) = (df(x)/dx)|x=i. Thus, we have

1
t

(∫

X

χ(x)e(nd+x)tdx −
∫

X

χ(x)extdx
)

=
nd

∫
Xχ(x)e

xtdx
∫
Xe

ndxtdx
=

endt − 1
edt − 1

(
d−1∑

i=0

χ(i)eit
)
. (2.6)

Then

1
t

(∫

X

χ(x)e(nd+x)tdx −
∫

X

χ(x)extdx
)

=
nd−1∑

l=0

χ(l)elt =
∞∑

k=0

(
nd−1∑

l=0

χ(l)lk
)

tk

k!
. (2.7)

Let us define the p-adic function Tk(χ, n) as follows:

Tk
(
χ, n

)
=

n∑

l=0

χ(l)lk (2.8)

(see [25]). By (2.7) and (2.8), we see that

1
t

(∫

X

χ(x)e(nd+x)tdx −
∫

X

χ(x)extdx
)

=
∞∑

k=0

Tk
(
χ, nd − 1

) tk

k!
(2.9)

(see [25]). Thus, we have

∫

X

χ(x)(nd + x)kdx −
∫

X

χ(x)xkdx = kTk−1
(
χ, nd − 1

)
, k, n, d ∈ N. (2.10)

This means that

Bk,χ(nd) − Bk,χ = kTk−1
(
χ, nd − 1

)
, k, n, d ∈ N (2.11)

(see [25]).
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The generalized Bernoulli polynomials attached to χ of order k, which is denoted by
B
(k)
n,χ(x), are defined as

(
t
∑d−1

i=0 χ(i)eit

edt − 1

)k

ext =
∞∑

n=0

B
(k)
n,χ(x)

tn

n!
. (2.12)

Then the values of B(k)
n,χ(x) at x = 0 are called the generalized Bernoulli numbers attached to

χ of order k. When k = 1, the polynomials of numbers are called the generalized Bernoulli
polynomials or numbers attached to χ. Let w1, w2 ∈ N. Then we set

K
(
m,χ;w1, w2

)

=
d
(∫

Xm

∏m
i=1χ(xi)e(

∑m
i=1 xi+w2x)w1t

∏m
i=1dxi

)(∫
Xm

∏m
i=1χ(xi)e(

∑m
i=1 xi+w1y)w2t

∏m
i=1dxi

)

∫
Xe

dw1w2xtdx
,

(2.13)

where

∫

Xm

f(x1, . . . , xm)dx1 · · ·dxm =
∫

X

· · ·
∫

X

f(x1, . . . , xm)dx1 · · ·dxm. (2.14)

In (2.13), we note that K(m,χ;w1, w2) is symmetric in w1, w2. From (2.13), we derive

K
(
m,χ;w1, w2

)

=

(∫

Xm

m∏

i=1

χ(xi)e(
∑m

i=1 xi)w1tdx1 · · ·dxm

)
ew1w2xt

(
d
∫
Xχ(xm)ew2xmtdxm∫

Xe
dw1w2xtdx

)

×
(∫

Xm−1

m−1∏

i=1

χ(xi)e(
∑m−1

i=1 xi)w2tdx1 · · ·dxm−1

)
ew1w2yt.

(2.15)

It is easy to see that

w1d
∫
Xχ(x)e

xtdx
∫
Xe

dw1xtdx

=
∞∑

k=0

(
w1d−1∑

i=0

χ(i)ik
)

tk

k!
=

∞∑

k=0

Tk
(
χ,w1d − 1

) tk

k!
,

ew1w2xt

∫

Xm

m∏

i=1

χ(xi)e(
∑m

i=1 xi)w1tdx1 · · ·dxm

= ew1w2xt

(
w1t

edw1t − 1

d−1∑

a=0

χ(a)ew1at

)m

=
∞∑

n=0

B
(m)
n,χ (w2x)w1

n t
n

n!
.

(2.16)
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From (2.16), we note that

K
(
m,χ;w1, w2

)

=

( ∞∑

l=0

B
(m)
l,χ (w2x)

w1
ltl

l!

)( ∞∑

k=0

Tk
(
χ,w1d − 1

)w2
ktk

k!

)( ∞∑

i=0

B
(m−1)
i,χ

(
w1y

)w2
iti

i!

)(
1
w1

)

=
∞∑

n=0

⎡

⎣
n∑

j=0

(
n

j

)
w

j

2w
n−j−1
1 B

(m)
n−j,χ(w2x)

j∑

k=0

Tk
(
χ,w1d − 1

)
(
j

k

)
B
(m−1)
j−k,χ

(
w1y

)
⎤

⎦ tn

n!
.

(2.17)

By the symmetry of K(m,χ;w1, w2) in w1 and w2, we see that

K
(
m,χ;w1, w2

)

=
∞∑

n=0

⎡

⎣
n∑

j=0

(
n

j

)
w

j

1w
n−j−1
2 B

(m)
n−j,χ(w1x)

j∑

k=0

Tk
(
χ,w2d − 1

)
(
j

k

)
B
(m−1)
j−k,χ

(
w2y

)
⎤

⎦ tn

n!
.

(2.18)

By comparing the coefficients on the both sides of (2.17) and (2.18), we see the following
theorem.

Theorem 2.1. For d,w1, w2 ∈ N, n ≥ 0, m ≥ 1, one has

n∑

j=0

(
n

j

)
w

j

2w
n−j−1
1 B

(m)
n−j,χ(w2x)

j∑

k=0

Tk
(
χ,w1d − 1

)
(
j

k

)
B
(m−1)
j−k,χ

(
w1y

)

=
n∑

j=0

(
n

j

)
w

j

1w
n−j−1
2 B

(m)
n−j,χ(w1x)

j∑

k=0

Tk
(
χ,w2d − 1

)
(
j

k

)
B
(m−1)
j−k,χ

(
w2y

)
.

(2.19)

Remark 2.2. Let y = 0 andm = 1 in (1.4). Then we have

n∑

j=0

(
n

j

)
w

j

2w
n−j−1
1 Bn−j,χ(w2x)Tj

(
χ,w1d − 1

)

=
n∑

j=0

(
n

j

)
w

j

1w
n−j−1
2 Bn−j,χ(w1x)Tj

(
χ,w2d − 1

)
(2.20)

(see [25]).



6 Journal of Inequalities and Applications

We also calculate that

K
(
m,χ;w1, w2

)

=
∞∑

n=0

[
n∑

k=0

(
n

k

)
wk−1

1 wn−k
2 B

(m−1)
n−k,χ

(
w1y

) dw1−1∑

i=0

B
(m)
k,χ

(
w2x +

w2

w1
i

)]
tn

n!
.

(2.21)

From the symmetric property of K(m,χ;w1, w2) in w1 and w2, we derive

K
(
m,χ;w1, w2

)

=
∞∑

n=0

[
n∑

k=0

(
n

k

)
wk−1

2 wn−k
1 B

(m−1)
n−k,χ

(
w2y

) dw2−1∑

i=0

B
(m)
k,χ

(
w1x +

w1

w2
i

)]
tn

n!
.

(2.22)

By comparing the coefficients on the both sides of (2.21) and (2.22), we obtain the following
theorem.

Theorem 2.3. For w1, w2 ∈ N, n ∈ Z, m ∈ N, one has

n∑

k=0

(
n

k

)
wk−1

1 wn−k
2 B

(m−1)
n−k,χ

(
w1y

) dw1−1∑

i=0

B
(m)
k,χ

(
w2x +

w2

w1
i

)

=
n∑

k=0

(
n

k

)
wk−1

2 wn−k
1 B

(m−1)
n−k,χ

(
w2y

) dw2−1∑

i=0

B
(m)
k,χ

(
w1x +

w1

w2
i

)
.

(2.23)

Remark 2.4. Let y = 0 andm = 1 in (2.23). We have

wn−1
1

dw1−1∑

i=0

Bn,χ

(
w2x +

w2

w1
i

)
= wn−1

2

dw2−1∑

i=0

Bn,χ

(
w1x +

w1

w2
i

)
(2.24)

(see [25]).
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