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1. Introduction

Let P be the class of functions p of the form

p(z) = 1 +
∞∑

n=1

pnz
n, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. If p in P satisfies

Re
{
p(z)

}
> 0 (z ∈ U), (1.2)

then we say that p is the Catathéodory function.
LetA denote the class of all functions f analytic in the open unit disk U = {z : |z| < 1}

with the usual normalization f(0) = f ′(0)− 1 = 0. If f and g are analytic in U, we say that f is
subordinate to g, written f ≺ g or f(z) ≺ g(z), if g is univalent, f(0) = g(0) and f(U) ⊂ g(U).

For 0 < α ≤ 1, let STC(α) and STS(α) denote the classes of functions f ∈ A which are
strongly convex and starlike of order α; that is, which satisfy

1 +
zf ′′(z)
f ′(z)

≺
(
1 + z

1 − z

)α

(z ∈ U), (1.3)

zf ′(z)
f(z)

≺
(
1 + z

1 − z

)α

(z ∈ U), (1.4)
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respectively. We note that (1.3) and (1.4) can be expressed, equivalently, by the argument
functions. The classes STC(α) and STS(α)were introduced by Brannan and Kirwan [1] and
studied by Mocanu [2] and Nunokawa [3, 4]. Also, we note that if α = 1, then STS(α)
coincides with S∗, the well-known class of starlike(univalent) functions with respect to
origin, and if 0 < α < 1, then STS(α) consists only of bounded starlike functions [1], and
hence the inclusion relation STS(α) ⊂ S∗ is proper. Furthermore, Nunokawa and Thomas
[4] (see also [5]) found the value β(α) such that STC(β(α)) ⊂ STS(α).

In the present paper, we consider general forms which cover the results by Mocanu
[6] and Nunokawa and Thomas [4]. An application of a certain integral operator is also
considered. Moreover, we give some sufficient conditions for univalent (close-to-convex) and
(strongly) starlike functions (of order β) as special cases of main results.

2. Main Results

To prove our results, we need the following lemma due to Nunokawa [3].

Lemma 2.1. Let p be analytic in U, p(0) = 1 and p(z)/= 0 in U. Suppose that there exists a point
z0 ∈ U such that

∣∣arg p(z)
∣∣ <

π

2
α for |z| < |z0|,

∣∣arg p(z0)
∣∣ =

π

2
α (0 < α ≤ 1).

(2.1)

Then we have

z0p
′(z0)

p(z0)
= iαk, (2.2)

where

k ≥ 1
2

(
x +

1
x

)
when arg p(z0) =

π

2
α,

k ≤ −1
2

(
x +

1
x

)
when arg p(z0) = −π

2
α,

{
p(z0)

}1/α = ±ix (x > 0).

(2.3)

With the help of Lemma 2.1, we now derive the following theorem.

Theorem 2.2. Let p be nonzero analytic in U with p(0) = 1 and let p satisfy the differential equation

ηzp′(z) + B(z)p(z) = a + ibA(z), (2.4)

where η > 0, a ∈ R
+, 0 ≤ b ≤ a tan(π/2)α, 0 < α < 1, A(z) = sign(Im p(z)) and B(z) is analytic

in U with B(0) = a. If

∣∣argB(z)
∣∣ <

π

2
β
(
η, α, a, b

)
(z ∈ U), (2.5)
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where

β
(
η, α, a, b

)
=

2
π
tan−1

{
S(α)T(α)(a sin(π/2)α − b cos(π/2)α) + ηα

S(α)T(α)(a cos(π/2)α + b sin(π/2)α)

}
, (2.6)

S(α) = (1 + α)(1+α)/2, T(α) = (1 − α)(1−α)/2, (2.7)

then

∣∣arg p(z)
∣∣ <

π

2
α (z ∈ U). (2.8)

Proof. If there exists a point z0 ∈ U such that the conditions (2.1) are satisfied, then (by
Lemma 2.1) we obtain (2.2) under the restrictions (2.3). Then we obtain

A(z0) =

⎧
⎨

⎩
1, if p(z0) = (ix)α,

−1, if p(z0) = (−ix)α,

B(z0) =
a + ibA(z0)

p(z0)
− η

z0p
′(z0)

p(z0)

= (a + ibA(z0))(±ix)−α − iηαk

=
(

a

xα
cos

π

2
α +

b

xα
A(z0) sin

(
±π
2
α
))

+ i

(
b

xα
A(z0) cos

π

2
α − a

xα
sin

(
±π
2
α
)
− ηαk

)
.

(2.9)

Now we suppose that

{
p(z0)

}1/α = ix (x > 0). (2.10)

Then we have

argB(z0) = −tan−1
{
a sin(π/2)α − b cos(π/2)α + ηαxαk

a cos(π/2)α + b sin(π/2)α

}
, (2.11)

where

kxα ≥ 1
2

(
xα+1 + xα−1

)
≡ g(x) (x > 0). (2.12)
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Then, by a simple calculation, we see that the function g(x) takes the minimum value at
x =

√
(1 − α)/(1 + α). Hence, we have

argB(z0) ≤ −tan−1
{
(1 + α)(1+α)/2(1 − α)(1−α)/2(a sin(π/2)α − b cos(π/2)α) + ηα

(1 + α)(1+α)/2(1 − α)(1−α)/2(a cos(π/2)α + b sin(π/2)α)

}

= −π
2
β
(
η, α, a, b

)
,

(2.13)

where β(η, α, a, b) is given by (2.6). This evidently contradicts the assumption of Theorem 2.2.
Next, we suppose that

{
p(z0)

}1/α = −ix (x > 0). (2.14)

Applying the same method as the above, we have

argB(z0) ≥ tan−1
{
(1 + α)(1+α)/2(1 − α)(1−α)/2(a sin(π/2)α − b cos(π/2)α) + ηα

(1 + α)(1+α)/2(1 − α)(1−α)/2(a cos(π/2)α + b sin(π/2)α)

}

=
π

2
β
(
η, α, a, b

)
,

(2.15)

where β(η, α, a, b) is given by (2.6), which is a contradiction to the assumption of Theorem 2.2.
Therefore, we complete the proof of Theorem 2.2.

Corollary 2.3. Let f ∈ A and η > 0, 0 < α < 1. If

∣∣∣∣arg
{(

1 − η
)zf ′(z)
f(z)

+ η

(
1 +

zf ′′(z)
f ′(z)

)}∣∣∣∣ <
π

2
β
(
η, α

)
(z ∈ U), (2.16)

where β(η, α) is given by (2.6) with a = 1 and b = 0, then f ∈ STS(α).

Proof. Taking

p(z) =
f(z)
zf ′(z)

, B(z) =
(
1 − η

)zf ′(z)
f(z)

+ η

(
1 +

zf ′′(z)
f ′(z)

)
(2.17)

in Theorem 2.2, we can see that (2.4) is satisfied. Therefore, the result follows from
Theorem 2.2.

Corollary 2.4. Let f ∈ A and 0 < α < 1. Then STC(β(α)) ⊂ STS(α), where β(α) is given by (2.6)
with η = a = 1 and b = 0.
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By a similar method of the proof in Theorem 2.2, we have the following theorem.

Theorem 2.5. Let p be nonzero analytic in U with p(0) = 1 and let p satisfy the differential equation

zp′(z)
p(z)

+ B(z) = a + ibA(z), (2.18)

where a ∈ R
+, b ∈ R

− ∪ {0}, A(z) = sign(Im p(z)), and B(z) is analytic in U with B(0) = a. If

∣∣argB(z)
∣∣ <

π

2
α(δ, a, b) (z ∈ U), (2.19)

where

α(δ) := α(δ, a, b) =
2
π
tan−1 δ − b

a
(δ > 0), (2.20)

then

∣∣arg p(z)
∣∣ <

π

2
δ (z ∈ U). (2.21)

Corollary 2.6. Let f ∈ STS(α(δ)), where α(δ) is given by (2.20) with a = 1 and b = 0. Then

∣∣∣∣arg
f(z)
z

∣∣∣∣ <
π

2
δ (z ∈ U). (2.22)

Proof. Letting

p(z) =
z

f(z)
, B(z) =

zf ′(z)
f(z)

(2.23)

in Theorem 2.5, we have Corollary 2.6 immediately.

If we combine Corollaries 2.4 and 2.6, then we obtain the following result obtained by
Nunokawa and Thomas [4].

Corollary 2.7. Let f ∈ STC(β(δ)), where

β(δ) =
2
π
tan−1

{
tan

π

2
α(δ) +

α(δ)

(1 + α(δ))(1+α(δ))/2(1 − α(δ))(1−α(δ))/2 cos(π/2)α(δ)

}
(2.24)

and α(δ) is given by (2.20). Then

∣∣∣∣arg
f(z)
z

∣∣∣∣ <
π

2
δ (z ∈ U). (2.25)
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Corollary 2.8. Let f ∈ A, 0 < α < 1 and β, γ be real numbers with β /= 0 and β + γ > 0. If

∣∣∣∣arg
(
β
zf ′(z)
f(z)

+ γ

)∣∣∣∣ <
π

2
δ
(
α, β, γ

)
(z ∈ U), (2.26)

where

δ
(
α, β, γ

)
=

2
π
tan−1

{
tan

π

2
α +

α
(
β + γ

)
(1 + α)(1+α)/2(1 − α)(1−α)/2 cos(π/2)α

}
, (2.27)

then

∣∣∣∣arg
(
β
zF ′(z)
F(z)

+ γ

)∣∣∣∣ <
π

2
α (z ∈ U), (2.28)

where F is the integral operator defined by

F(z) =
(
β + γ

zγ

∫z

0
fβ(t)tγ−1dt

)1/β

(z ∈ U). (2.29)

Proof. Let

B(z) =
1

β + γ

(
β
zf ′(z)
f(z)

+ γ

)
, (2.30)

p(z) =
β + γ

zγfβ(z)

∫z

0
fβ(t)tγ−1dt. (2.31)

Then B(z) and p(z) are analytic in Uwith B(0) = p(0) = 1. By a simple calculation, we have

1
β + γ

zp′(z) + B(z)p(z) = 1. (2.32)

Using a similar method of the proof in Theorem 2.2, we can obtain that

∣∣arg p(z)
∣∣ <

π

2
α (z ∈ U). (2.33)

From (2.29) and (2.31), we easily see that

F(z) = f(z)
{
p(z)

}1/β
. (2.34)
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Since

β
zF ′(z)
F(z)

+ γ =
β + γ

p(z)
, (2.35)

the conclusion of Corollary 2.8 immediately follows.

Remark 2.9. Letting α → 1 in Corollary 2.8, we have the result obtained byMiller andMocanu
[7].

The proof of the following theorem below is much akin to that of Theorem 2.2 and so
we omit for details involved.

Theorem 2.10. Let p be nonzero analytic inU with p(0) = 1 and let p satisfy the differential equation

zp′(z)
p(z)

+ B(z)p(z) = a + ibA(z), (2.36)

where a ∈ R
+, b ∈ R

− ∪ {0}, A(z) = sign(Im p(z)) and B(z) is analytic in U with B(0) = a. If

∣∣argB(z)
∣∣ <

π

2
β(α, a, b) (z ∈ U), (2.37)

where

β(α, a, b) = α +
2
π
tan−1α − b

a
(0 < α ≤ 1), (2.38)

then

∣∣arg p(z)
∣∣ <

π

2
α (z ∈ U). (2.39)

Corollary 2.11. Let f ∈ A with f ′(z)/= 0 in U and 0 < α ≤ 1. If

∣∣arg
(
f ′(z) + zf ′′(z)

)∣∣ <
π

2
β(α) (z ∈ U), (2.40)

where β(α) is given by (2.38) with a = 1 and b = 0, then

∣∣arg f ′(z)
∣∣ <

π

2
α (z ∈ U), (2.41)

that is, f is univalent (close-to-convex) in U.
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Proof. Let

p(z) =
1

f ′(z)
, B(z) = f ′(z) + zf ′′(z) (2.42)

in Theorem 2.10. Then (2.36) is satisfied and so the result follows.

By applying Theorem 2.10, we have the following result obtained by Mocanu [6].

Corollary 2.12. Let f ∈ A with f(z)/z/= 0 and α0 be the solution of the equation given by

2α +
2
π
tan−1α = 1 (0 < α < 1). (2.43)

If

∣∣arg f ′(z)
∣∣ <

π

2
(1 − α0) (z ∈ U), (2.44)

then f ∈ S∗.

Proof. Let

p(z) =
z

f(z)
, B(z) = f ′(z). (2.45)

Then, by Theorem 2.10, condition (2.44) implies that

∣∣∣∣arg
z

f(z)

∣∣∣∣ <
π

2
α0. (2.46)

Therefore, we have

∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ ≤
∣∣arg f ′(z)

∣∣ +
∣∣∣∣arg

z

f(z)

∣∣∣∣ <
π

2
, (2.47)

which completes the proof of Corollary 2.12.

Corollary 2.13. Let f ∈ A with f(z)f ′(z)/z/= 0 in U and 0 < α ≤ 1. If

∣∣∣∣arg
zf ′(z)
f(z)

(
2 +

zf ′′(z)
f ′(z)

−
zf ′(z)
f(z)

)∣∣∣∣ <
π

2
β(α) (z ∈ U), (2.48)

where β(α) is given by (2.38), then f ∈ STS(α).
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Finally, we have the following result.

Theorem 2.14. Let p be nonzero analytic in U with p(0) = 1. If

∣∣arg
(
(1 − λ)p(z) + λzp′(z)

)∣∣ <
π

2
β(λ, α), (2.49)

β(λ, α) = α +
2
π
tan−1 λα

1 − λ
(0 ≤ λ < 1; 0 < α < 1), (2.50)

then

∣∣arg p(z)
∣∣ <

π

2
α (z ∈ U). (2.51)

Proof. If there exists a point z0 ∈ U satisfying the conditions of Lemma 2.1, then we have

(1 − λ)p(z0) + λz0p
′(z0) = (±ix)α(1 − λ + iλαk). (2.52)

Now we suppose that

{
p(z0)

}1/α = ix (x > 0). (2.53)

Then we have

arg
(
(1 − λ)p(z0) + λz0p

′(z0)
)
=

π

2
α + tan−1 λαk

1 − λ

≥ π

2

(
α +

2
π
tan−1 λα

1 − λ

)

=
π

2
β(λ, α),

(2.54)

where β(λ, α) is given by (2.50). Also, for the case

{
p(z0)

}1/α = −ix (x > 0), (2.55)

we obtain

arg
(
(1 − λ)p(z0) + λz0p

′(z0)
)
≤ −π

2

(
α +

2
π
tan−1 λα

1 − λ

)

= −π
2
β(λ, α),

(2.56)

where β(λ, α) is given by (2.50). These contradict the assumption of Theorem 2.14 and so we
complete the proof of Theorem 2.14.
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Corollary 2.15. Let f ∈ A with f(z)f ′(z)/z/= 0 in U and 0 < α < 1. If

∣∣∣∣arg
{
zf ′(z)
f(z)

(
1 +

zf ′′(z)
f ′(z)

−
zf ′(z)
f(z)

)}∣∣∣∣ <
π

2
(α + 1) (z ∈ U), (2.57)

then f ∈ STS(α).
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