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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] in 1940,
concerning the stability of group homomorphisms. Let (G1, ·) be a group and let (G2, ∗, d) be
a metric group with the metric d(·, ·). Given ε > 0, does there exist a δ > 0, such that if a
mapping h : G1 → G2 satisfies the inequality d(h(x · y), h(x) ∗ h(y)) < δ for all x, y ∈ G1,
then there exists a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1? In
other words, under what condition does there exist a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the equation. In 1941,
Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces. Let
f : E → E′ be a mapping between Banach spaces such that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ δ (1.1)

for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping T : E → E′

such that

∥
∥f(x) − T(x)

∥
∥ ≤ δ (1.2)
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for all x ∈ E. Moreover if f(tx) is continuous in t ∈ R for each fixed x ∈ E, then T is linear.
In 1978, Rassias [3] provided a generalization of Hyers’ Theorem which allows the Cauchy
difference to be unbounded. In 1991, Gajda [4] answered the question for the case p > 1,
which was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of
functional equations (see [5–12]).

Jun and Kim [13] introduced the following cubic functional equation:

f
(

2x + y
)

+ f
(

2x − y
)

= 2f
(

x + y
)

+ 2f
(

x − y
)

+ 12f(x) (1.3)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability
for the functional equation (1.3). The function f(x) = x3 satisfies the functional equation
(1.3), which is thus called a cubic functional equation. Every solution of the cubic functional
equation is said to be a cubic function. Jun and Kim proved that a function f between real
vector spaces X and Y is a solution of (1.3) if and only if there exits a unique function C :
X × X × X → Y such that f(x) = C(x, x, x) for all x ∈ X, and C is symmetric for each fixed
one variable and is additive for fixed two variables.

Park and Bea [14] introduced the following quartic functional equation:

f
(

x + 2y
)

+ f
(

x − 2y
)

= 4
[

f
(

x + y
)

+ f
(

x − y
)]

+ 24f
(

y
) − 6f(x). (1.4)

In fact they proved that a function f between real vector spaces X and Y is a solution of (1.4)
if and only if there exists a unique symmetric multiadditive function Q : X ×X ×X ×X → Y
such that f(x) = Q(x, x, x, x) for all x (see also [15–18]). It is easy to show that the function
f(x) = x4 satisfies the functional equation (1.4), which is called a quartic functional equation
and every solution of the quartic functional equation is said to be a quartic function.

In the sequel we adopt the usual terminology, notations, and conventions of the
theory of random normed spaces, as in [19–21]. Throughout this paper, Δ+ is the space of
distribution functions that is, the space of all mappings F : R ∪ {−∞,∞} → [0, 1], such that
F is leftcontinuous and nondecreasing on R, F(0) = 0 and F(+∞) = 1. D+ is a subset of Δ+

consisting of all functions F ∈ Δ+ for which l−F(+∞) = 1, where l−f(x) denotes the left limit
of the function f at the point x, that is, l−f(x) = limt→x−f(t). The spaceΔ+ is partially ordered
by the usual pointwise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t
in R. The maximal element for Δ+ in this order is the distribution function ε0 given by

ε0(t) =

{

0, if t ≤ 0,
1, if t > 0.

(1.5)

Definition 1.1 (see [20]). A mapping T : [0, 1]×[0, 1] → [0, 1] is a continuous triangular norm
(briefly, a continuous t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].
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Typical examples of continuous t-norms are TP (a, b) = ab, TM(a, b) = min(a, b) and
TL(a, b) = max(a+ b− 1, 0) (the Lukasiewicz t-norm). Recall (see [22, 23]) that if T is a t-norm
and {xn} is a given sequence of numbers in [0, 1], Tn

i=1xi is defined recurrently by T1
i=1xi = x1

and Tn
i=1xi = T(Tn−1

i=1 xi, xn) for n ≥ 2. T∞
i=nxi is defined as T∞

i=1xn+i. It is known [23] that for the
Lukasiewicz t-norm the following implication holds:

lim
n→∞

(TL)∞i=1xn+i = 1 ⇐⇒
∞∑

n=1

(1 − xn) < ∞. (1.6)

Definition 1.2 (see [21]). A random normed space (briefly, RN-space) is a triple (X, μ, T),
where X is a vector space, T is a continuous t-norm, and μ is a mapping from X into D+

such that, the following conditions hold:

(RN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) μαx(t) = μx(t/|α|) for all x ∈ X, α/= 0;

(RN3) μx+y(t + s) ≥ T(μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

Every normed spaces (X, ‖ · ‖) defines a random normed space (X, μ, TM),where

μx(t) =
t

t + ‖x‖ , (1.7)

for all t > 0, and TM is the minimum t-norm. This space is called the induced random normed
space.

Definition 1.3. Let (X, μ, T) be a RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0,
there exists positive integer N such that μxn−x(ε) > 1 − λwhenever n ≥ N.

(2) A sequence {xn} in X is called Cauchy sequence if, for every ε > 0 and λ > 0, there
exists positive integer N such that μxn−xm(ε) > 1 − λ whenever n ≥ m ≥ N.

(3) A RN-space (X, μ, T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point in X.

Theorem 1.4 (see [20]). If (X, μ, T) is an RN-space and {xn} is a sequence such that xn → x, then
limn→∞μxn(t) = μx(t) almost everywhere.

The generalized Hyers-Ulam-Rassias stability of different functional equations in
random normed spaces has been recently studied in [24–29]. Recently, Eshaghi Gordji et al.
[30] established the stability of mixed type cubic and quartic functional equations (see also
[31]). In this paper we deal with the following functional equation:

f
(

x + 2y
)

+ f
(

x − 2y
)

= 4
(

f
(

x + y
)

+ f
(

x − y
)) − 24f

(

y
) − 6f(x) + 3f

(

2y
)

(1.8)

on random normed spaces. It is easy to see that the function f(x) = ax4+bx3+c is a solution of
the functional equation (1.8). In the present paper we establish the stability of the functional
equation (1.8) in random normed spaces.
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2. Main Results

From now on, we suppose that X is a real linear space, (Y, μ, T) is a complete RN-space, and
f : X → Y is a function with f(0) = 0 for which there is ρ : X ×X → D+ ( ρ(x, y) denoted by
ρx,y) with the property

μf(x+2y)+f(x−2y)−4[f(x+y)+f(x−y)]+24f(y)+6f(x)−3f(2y)(t) ≥ ρx,y(t) (2.1)

for all x, y ∈ X and all t > 0.

Theorem 2.1. Let f be odd and let

lim
n→∞

T∞
i=1

(

ρ0,2n+i−1x
(

23n+2it
))

= 1 = lim
n→∞

ρ2nx,2ny
(

23nt
)

(2.2)

for all x, y ∈ X and all t > 0, then there exists a unique cubic mapping C : X → Y such that

μC(x)−f(x)(t) ≥ T∞
i=1

(

ρ0,2i−1x
(

22it
))

, (2.3)

for all x ∈ X and all t > 0.

Proof. Setting x = 0 in (2.1), we get

μ3f(2y)−24f(y)(t) ≥ ρ0,y(t) (2.4)

for all y ∈ X. If we replace y in (2.4) by x and divide both sides of (2.4) by 3, we get

μf(2x)−8f(x)(t) ≥ ρ0,x(3t) ≥ ρ0,x(t) (2.5)

for all x ∈ X and all t > 0. Thus we have

μf(2x)/23−f(x)(t) ≥ ρ0,x
(

23t
)

(2.6)

for all x ∈ X and all t > 0. Therefore,

μf(2k+1x)/23(k+1)−f(2kx)/23k(t) ≥ ρ0,2kx
(

23(k+1)t
)

(2.7)

for all x ∈ X and all k ∈ N. Therefore we have

μf(2k+1x)/23(k+1)−f(2kx)/23k
(

t

2k+1

)

≥ ρ0,2kx
(

22(k+1)t
)

(2.8)
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for all x ∈ X, t > 0 and all k ∈ N. As 1 > 1/2 + 1/22 + · · · + 1/2n, by the triangle inequality it
follows

μf(2nx)/23n−f(x)(t) ≥ Tn−1
k=0

(

μf(2k+1x)/23(k+1)−f(2kx)/23k
(

t

2k+1

))

≥ Tn−1
k=0

(

ρ0,2kx
(

22(k+1)t
))

= Tn
i=1

(

ρ0,2i−1x
(

22it
)) (2.9)

for all x ∈ X and t > 0. In order to prove the convergence of the sequence {f(2nx)/23n}, we
replace x with 2mx in (2.9) to find that

μf(2n+mx)/23(n+m)−f(2mx)/23m(t) ≥ Tn
i=1

(

ρ0,2i+m−1x

(

22i+3mt
))

. (2.10)

Since the right-hand side of the inequality tends to 1 asm and n tend to infinity, the sequence
{f(2nx)/23n} is a Cauchy sequence. Therefore, we may define C(x) = limn→∞(f(2nx)/23n)
for all x ∈ X. Now, we show that C is a cubic map. Replacing x, y with 2nx and 2ny
respectively in (2.1), it follows that

μf(2nx+2n+1y)
23n

+ f(2nx−2n+1y)
23n

−4
[
f(2nx+2ny)

23n
+ f(2nx−2ny)

23n

]

+24 f(2ny)
23n

+6 f(2nx)
23n

−3 f(2n+1y)
23n

(t)

≥ ρ2nx,2ny
(

23nt
)

.
(2.11)

Taking the limit as n → ∞, we find that C satisfies (1.8) for all x, y ∈ X. Therefore the
mapping C : X → Y is cubic.

To prove (2.3), take the limit as n → ∞ in (2.9). Finally, to prove the uniqueness of
the cubic function C subject to (2.3), let us assume that there exists a cubic function C′ which
satisfies (2.3). Since C(2nx) = 23nC(x) and C′(2nx) = 23nC′(x) for all x ∈ X and n ∈ N, from
(2.3) it follows that

μC(x)−C′(x)(2t) = μC(2nx)−C′(2nx)

(

23n+1t
)

≥ T
(

μC(2nx)−f(2nx)
(

23nt
)

, μf(2nx)−C′(2nx)

(

23nt
))

≥ T
(

T∞
i=1

(

ρ0,2i+n−1x
(

22i+3nt
))

, T∞
i=1

(

ρ0,2i+n−1x
(

22i+3nt
)))

(2.12)

for all x ∈ X and all t > 0. By letting n → ∞ in above inequality, we find that C = C′.

Theorem 2.2. Let f be even and let

lim
n→∞

T∞
i=1

(

ρ0,2n+i−1x
(

24n+3it
))

= 1 = lim
n→∞

ρ2nx,2ny
(

24nt
)

(2.13)
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for all x, y ∈ X and all t > 0, then there exists a unique quartic mapping Q : X → Y such that

μQ(x)−f(x)(t) ≥ T∞
i=1

(

ρ0,2i−1x
(

23it
))

, (2.14)

for all x ∈ X and all t > 0.

Proof. By putting x = 0 in (2.1),we obtain

μf(2y)−16f(y)(t) ≥ ρ0,y(t) (2.15)

for all y ∈ X. Replacing y in (2.15) by x to get

μf(2x)−16f(x)(t) ≥ ρ0,x(t) (2.16)

for all x ∈ X and all t > 0. Hence,

μf(2x)/24−f(x)(t) ≥ ρ0,x
(

24t
)

(2.17)

for all x ∈ X and all t > 0. Therefore,

μf(2k+1x)/24(k+1)−f(2kx)/24k(t) ≥ ρ0,2kx
(

24(k+1)t
)

(2.18)

for all x ∈ X and all k ∈ N. So we have

μf(2k+1x)/24(k+1)−f(2kx)/24k
(

t

2k+1

)

≥ ρ0,2kx
(

23(k+1)t
)

(2.19)

for all x ∈ X, t > 0 and all k ∈ N. As 1 > 1/2 + 1/22 + · · · + 1/2n, by the triangle inequality it
follows that

μf(2nx)/24n−f(x)(t) ≥ Tn−1
k=0

(

μf(2k+1x)/24(k+1)−f(2kx)/24k
(

t

2k+1

))

≥ Tn−1
k=0

(

ρ0,2kx
(

23(k+1)t
))

= Tn
i=1

(

ρ0,2i−1x
(

23it
)) (2.20)

for all x ∈ X and t > 0. We replace x with 2mx in (2.20) to obtain

μf(2n+mx)/24(n+m)−f(2mx)/24m(t) ≥ Tn
i=1

(

ρ0,2i+m−1x

(

23i+4mt
))

. (2.21)

Since the right-hand side of the inequality tends to 1 asm and n tend to infinity, the sequence
{f(2nx)/24n} is a Cauchy sequence. Therefore, we may define Q(x) = limn→∞(f(2nx)/24n)
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for all x ∈ X. Now, we show that Q is a quartic map. Replacing x, y with 2nx and 2ny
respectively, in (2.1), it follows that

μf(2nx+2n+1y)
24n

+ f(2nx−2n+1y)
24n

−4[ f(2nx+2ny)
24n

+ f(2nx−2ny)
24n

]+24 f(2ny)
24n

+6 f(2nx)
24n

−3 f(2n+1y)
24n

(t)

≥ ρ2nx,2ny
(

24nt
)

.
(2.22)

Taking the limit as n → ∞, we find that Q satisfies (1.8) for all x, y ∈ X.Hence, the mapping
Q : X → Y is quartic.

To prove (2.14), take the limit as n → ∞ in (2.20). Finally, to prove the uniqueness
property of Q subject to (2.14), let us assume that there exists a quartic function Q′ which
satisfies (2.14). Since Q(2nx) = 24nQ(x) and Q′(2nx) = 24nQ′(x) for all x ∈ X and n ∈ N, from
(2.14) it follows that

μQ(x)−Q′(x)(2t) = μQ(2nx)−Q′(2nx)

(

24n+1t
)

≥ T
(

μQ(2nx)−f(2nx)
(

24nt
)

, μf(2nx)−Q′(2nx)

(

24nt
))

≥ T
(

T∞
i=1

(

ρ0,2i+n−1x
(

23i+4nt
))

, T∞
i=1

(

ρ0,2i+n−1x
(

23i+4nt
)))

(2.23)

for all x ∈ X and all t > 0. Taking the limit as n → ∞, we find that Q = Q′.

Theorem 2.3. Let

lim
n→∞

T∞
i=1

[

T
(

ρ0,2n+i−1x
(

22i+4nt
)

, ρ0,−2n+i−1x
(

22i+4nt
))]

= 1

= lim
n→∞

T∞
i=1

[

T
(

ρ0,2n+i−1x
(

2i+3nt
)

, ρ0,2n+i−1x
(

2i+3nt
))]

,

lim
n→∞

T
(

ρ2nx,2ny
(

24n−1t
)

, ρ2nx,2ny
(

24n−1t
))

= 1

= lim
n→∞

T
(

ρ2nx,2ny
(

23n−1t
)

, ρ2nx,2ny
(

23n−1t
))

(2.24)

for all x, y ∈ X and all t > 0, then there exist a unique cubic mapping C : X → Y and a unique
quartic mapping Q : X → Y such that

μf(x)−C(x)−Q(x)(t) ≥ T
(

T∞
i=1

[

T
(

ρ0,2i−1x
(

22i−1t
)

, ρ0,−2i−1x
(

22i−1t
))]

,

T∞
i=1

[

T
(

ρ0,2i−1x
(

2i−1t
)

, ρ0,−2i−1x
(

2i−1t
))]) (2.25)

for all x ∈ X and all t > 0.

Proof. Let

fe(x) =
1
2
[

f(x) + f(−x)] (2.26)
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for all x ∈ X. Then fe(0) = 0, fe(−x) = fe(x), and

μfe(x+2y)+fe(x−2y)−4[fe(x+y)+fe(x−y)]+24fe(y)+6fe(x)−3fe(2y)(t) ≥ T

(

ρx,y

(
t

2

)

, ρ−x,−y

(
t

2

))

(2.27)

for all x, y ∈ X.Hence, in view of Theorem 2.1, there exists a unique quartic functionQ : X →
Y such that

μQ(x)−fe(x)(t) ≥ T∞
i=1

[

T
(

ρ0,2i−1x
(

22it
)

, ρ0,−2i−1x
(

22it
))]

. (2.28)

Let

fo(x) =
1
2
[

f(x) − f(−x)] (2.29)

for all x ∈ X. Then fo(0) = 0, fo(−x) = −fo(x), and

μfo(x+2y)+fo(x−2y)−4[fo(x+y)+fo(x−y)]+24fo(y)+6fo(x)−3fo(2y)(t) ≥ T

(

ρx,y

(
t

2

)

, ρ−x,−y

(
t

2

))

(2.30)

for all x, y ∈ X. From Theorem 2.2, it follows that there exists a unique cubic mapping C :
X → Y such that

μC(x)−fo(x)(t) ≥ T∞
i=1

[

T
(

ρ0,2i−1x
(

2it
)

, ρ0,−2i−1x
(

2it
))]

. (2.31)

Obviously, (2.25) follows from (2.28) and (2.31).
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[23] O. Hadžić, E. Pap, and M. Budinčević, “Countable extension of triangular norms and their
applications to the fixed point theory in probabilistic metric spaces,” Kybernetika, vol. 38, no. 3, pp.
363–382, 2002.

[24] E. Baktash, Y. J. Cho, M. Jalili, R. Saadati, and S. M. Vaezpour, “On the stability of cubic mappings
and quadratic mappings in random normed spaces,” Journal of Inequalities and Applications, vol. 2008,
Article ID 902187, 11 pages, 2008.
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