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1. Introduction

In the recent years, bidirectional associative memory (BAM) neural networks and Cohen-
Grossberg neural networks (CGNNSs) with their various generalizations have attracted the
attention of many mathematicians, physicists, and computer scientists (see [1-17]) due to
their wide range of applications in, for example, pattern recognition, associative memory,
and combinatorial optimization. Particularly, as discussed in [18-20], in the hardware
implementation of the neural networks, when communication and response of neurons
happens time delays may occur. Actually, time delays are known to be a possible source
of instability in many real-world systems in engineering, biology, and so forth. (see, e.g.,
[21] and references therein). However, besides delay effect, impulsive effect likewise exists
in a wide variety of evolutionary processes in which states are changed abruptly at certain
moments of time, involving fields such as medicine and biology, economics, mechanics,
electronics, and telecommunications. As artificial electronic systems, neural networks such
as Hopfield neural networks, bidirectional neural networks, and recurrent neural networks
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often are subject to impulsive perturbations which can affect dynamical behaviors of the
systems just as time delays. Therefore, it is necessary to consider both impulsive effect and
delay effect on the stability of neural networks.

As is well known, both continuous and discrete systems are very important in
implementation and applications. However, it is troublesome to study the stability for
continuous and discrete systems, respectively. Therefore, it is worth studying a new method,
such as the time-scale theory, which can unify the continuous and discrete situations.

Motivated by the above discussions, the objective of this paper is to study the global
exponential stability of the following Cohen-Grossberg bidirectional associative memory
networks with impulses and time delays on time scales:

xi(t) = —ai(xi(t)) [bi(x,»(t)) = 2 P5fi(yi(t =)
j=1

‘ZP}J hif(s)ff(yj(t_s))AS+Ti], £>0, t#t, teT,
R
Axi(te) = In(xi(t)), i=1,2,...,n, k=1,2,..., W)

(1) = —c;(y;(t)) [d]- (v (1) = D458 (xi(t - 037))
i=1

‘Z‘J}]f kij(S)gi(xi(t—S))AS+Sj], t>0, t#t, teT,
i=1 0
ij(tk):]k(yj(tk))r ji=12,...,m, k=1,2,...,

where T is a time scale; I, Jx : R — R are continuous, x;(t), y;(t) are the states of the
ith neuron from the neural field Fx and the jth neuron from the neural field Fy at time
t, respectively; f;, gi denote the activation functions of the jth neuron from Fy and the ith
neuron from Fy, respectively; r; and s; are constants, which denote the external inputs on
the ith neuron from Fx and the jth neuron from Fy, respectively; Tji and Oij correspond to
the transmission delays; a;(x;(t)) and c;j(y;(t)) represent amplification functions; b;(x;(t))
and d;(y;(t)) are appropriately behaved functions such that the solutions of system (1.1)
remain bounded; p%, p}i, q?]., and qilj denote the connection strengths which correspond to the
neuronal gains associated with the neuronal activations; I; and J; denote the external inputs.
For each interval I of R, we denote that by It = INT, Ax;(t) = x;(t]) —xi(t,), Ay (te) = yj(ty) -
yj(t,) are the impulses at moments tx, and x;(t]), xi(t.), y;j(t;), y;(t) (G = 1,2,...,n,j =
1,2,...,m) represent the right and left limits of x;(t;) and y;(t,) in the sense of time scales;
0<t; <ty <--- <t — ooisastrictly increasing sequence.
The system (1.1) is supplement with initial values given by

xi(s) = i(s), s€[-»,0]p, i=1,2,...,n,
(1.2)
yj(s) = ¢ij(s), s€[-o,0], j=1,2,...,m,

where ¢;, ¢5; are continuous real-valued functions defined on their respective domains.
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As usual in the theory of impulsive differential equations, at the points of discontinuity
ti of the solution t — (x1(t), x2(t),..., x,(t), y1(£), y2(t), ..., ym(t))T we assume that

x(h) =x(t), vt =y (K), ) =x2(t), vt =y (), (1.3)

fori=1,2,...,n, j=1,2,...,m.

The organization of the rest of this paper is as follows. In Section 2, we introduce
some notations and definitions, and state some preliminary results which are needed in
later sections. In Section 3, by means of homeomorphism theory, we study the existence
and uniqueness of the equilibrium point of system (1.1). In Section 4, by constructing a
suitable Lyapunov function, we establish the exponential stability of the equilibrium of (1.1).
In Section 5, we present an example to illustrate the feasibility and effectiveness of our results
obtained in previous sections.

2. Preliminaries

In this section, we will cite some definitions and lemmas which will be used in the proofs of
our main results.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators 0,p : T — T and the graininess y: T — R are defined, respectively, by

o(t) =inf{s e T:s>t}, p(t) =sup{seT:s<t}, u(t) =o(t) -t (2.1)

A point t € T is called left dense if t > inf T and p(t) = ¢, left scattered if p(t) < t,
right dense if t < sup T and o(t) = t, and right scattered if o(t) > t. If T has a left-scattered
maximum m, then T¥ = T \ {m}; otherwise T* = T. If T has a right-scattered minimum m,
then Ty = T \ {m}; otherwise Ty = T.

A function f : T — R is right dense continuous provided that it is continuous at right
dense point in T and its left-side limits exist at left-dense points in T. If f is continuous at
each right dense point and each left-dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T — R will be denoted by C(T).

Fory : T — Randt € TX, we define the delta derivative of y(t), y*(t) to be the
number (if it exists) with the property that for a given € > 0, there exists a neighborhood U
of t such that

|[ye®) - y©)] - ¥ Blo®) - 51| < elot) - 5| (22)

forall s € U.

If y is continuous, then vy is right dense continuous, and y is delta differentiable at t,
then y is continuous at £.

Let y be right dense continuous. If y2 (t) = y(t), then we define the delta integral by

It y(s)As =Y (t) - Y(a). (2.3)



4 Journal of Inequalities and Applications

Definition 2.1 (see [22]). For each t € T, let N be a neighborhood of t, then, for V € C4[T x
R",R*], define D*V2(t, x(t)) to mean that, given ¢ > 0, there exists a right neighborhood
N, C N of tsuch that

[V(o(t),x(ca(t)) - V(s,x(a(t))) — u(t,s) f(, x(t))]
u(t, s)

< D*VA(tx(t) + ¢ (2.4)

for each s € N, s > t, where u(t,s) = o(t) —s. If t is rd and V (¢, x(t)) is continuous at t, this
reduce to

V(a(t),x(o(t)) - V(t x(a(t)))
o(t) -t

D*VA(t, x(t)) = : (2.5)

Definition 2.2 (see [23]). If a € T,sup T = oo, and f is right dense continuous on [a, o), then
we define the improper integral by

[’ b
J f(t)At:blimj f(t)At (2.6)

provided that this limit exists, and we say that the improper integral converges in this case.
If this limit does not exist, then we say that the improper integral diverges.

A function 7 : T — Ris called regressive if
1+put)r(t)#0 (2.7)

for all t € T.
If r is regressive function, then the generalized exponential function e, is defined by

er(t,s) = exp{’[tgﬂ(r) (r(T))AT} for s,t €T, (2.8)

with the cylinder transformation

Log(1
Log+hz) =0 2o,
¢n(2) = h (2.9)
z, if h=0.
Letp,q: T — R be two regressive functions, then we define
P
®©qg:=p+q+pupq, ©q=pa(29q), op = . 2.10
peq=p+q+pupq,  pOq=pe(0q) P T (2.10)

Then the generalized exponential function has the following properties.
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Lemma 2.3 (see [24]). Assume thatp, q:T — R are two regressive functions, then
(i) eo(t,s) =1 and ep(t, =1
(i) ep(a(t), ) = (1 +pu(t)p(t))ey(t, s)
(iii) ey(t,0(s)) = ep(t,s)/(1+ pu(s)p(s))
(iv) 1/ep(t, s) = ecp(t, s)
(V) ep(t,s) =1/ (ep(s, 1)) = eep(s, t)
(vi) ep(t, s)ep(s, ) = ey(t,r)
(vii) ep(t,5)e4(t, s) = epeq(t, s)
(viii) ey (t,5)/eq4(t, s) = epeqy(t, 5).
Definition 2.4. The equilibrium point w* = (x;,x;,...,x;‘l,yf,yz,...,y,’;l)T of system
(1.1) is said to be exponentially stable if there exists a positive constant a such
that for every 6 € T, there exists N = N(6 > 1 such that the solu-

tion wu(t) = (xl(t),xQ(t),...,xn(t),yl(t),yz(t),...,ym(t))T of (1.1) with initial value
(01(5), 92(5), - .., @n(5), g1(5), g2 (8), - . ., g (s))" satisfies
]. (2.11)

Lemma 2.5 (see [25]). If H(x) € C(R™™, R™™) satisfies the following conditions:

[ — || < Ne_(t, 6) [gﬁgggghlwiw) L ARDI ma;]Ttwj(6> -y

io1 (-0

(i) H(x) is injective on R™™,

(ii) |H|| — +ocas ||x|| — +oo,
then H (x) is a homeomorphism of R™™ onto itself.

Forz = (x1,x2,..., X, Y1, Y2,-- -, ym)T e R™™ we define the norm as
n m
Izl = > el + X lwil- (212)
i1 =1

Throughout this paper, we assume that
(Hi) ai,cj € C(T,R"), and satisfy 0 < g; < a;(x) < a;,0 < ¢ <ci(x) <cj, Vx eR, i=
1,2,...,n,j=12,..., m;

(H>) the activation functions f;, g; € C(R,R) and there exist positive constants M;, N;
such that

|fix) = fiy)| < Mjlx-y|,  |gi(x)-gi(y)| < Nilx-y|, (2.13)

forallx,yeR,i=1,...,n,j=1,...,m;
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(H3) b;,d; € C(R,R),b;(0) = dj(0) =0,i=1,2,...,n, j =1,2,...,m, and there exist
positive constants 7;, w; such that

bi(x) ~ bi(y) dj(x) - d;(y) ,
T 21, T 2 wj, Vx#y; (2.14)

(H4) the kernels hj; and k;; defined on [0, o)y are nonnegative continuous integral func-
tions such that [*hji(s)As = 1, [ shji(s)As < +oo, [ kij(s)As = 1, [ "skij(s)As <
+co0.

3. Existence and Uniqueness of the Equilibrium

In this section, using homeomorphism theory, we will study the existence and uniqueness of
the equilibrium point of system (1.1).

An equilibrium point of (1.1) is a constant vector (x}, x3,..., X5, y], Y5, .., yi) e R
which satisfies the system

- -

ai(x;) bi(x?)—i(pﬁ?ﬁp}i)f,-(y;)+r,- =0, i=12,...,n,
=

L 4

(3.1)
cj<y;> d]-<y]*f> - Z(q?j + q%)gi(x;‘) +s5i|1=0, j=12,...,m,
| i=1 ;
where the impulsive jumps Ii(-), Jx(-) satisfy
L(x}) =0, i=1,2,...,n, ]k<y;f) =0, j=1,2,...,m. (3.2)
From the assumptions (H;) and (Hy), it follows that
bi(x}) = Zl<p?i + pjl.i>f]~ <y;‘) +r, i=1,2,...,n,
]:
(3.3)

n

di(v;) = 2(a +ah)ax) +sj, j=12,...,m.

i=1

Noting that if bi‘l('),d].‘l(-) exist and activation functions f;(-) and g;j(-) are bounded, then
the existence of an equilibrium point of system (1.1) is easily obtained from Brouwer’s fixed
point theorem. We can refer to [2-8].
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Theorem 3.1. Assume that (H,) and (Hs) hold. Suppose further that for each i = 1,2,...,n,j =
1,2,...,m, the following inequalities are satisfied:

m n
> Dlal+ Ny w; > Dlphph| M. (3.4)
=1 i=1

Then there exists a unique equilibrium point of system (1.1).

Proof. Consider a mapping @ : R™" — R™" defined by

®;(z) = bi(xi) - Z(p?i +p}i>f]~(y]-) +r, i=1,2,...,n,
=1
] (3.5)

®i(z) =d;j(y;) - Z(q?j + qil]->gi(x,-) +s;, j=12,...,m
i=1

where z = (xl,xz,...,xn,yl,yz,...,ym)T € R™™" ®d(z) = ((I)l(z),...,(IJn(z),...,(I)n+m(z))T €
R™™_ First, we want to show that @ is an injective mapping on R"*". By contradiction,
suppose that there exists a distinct z, z € R"™™ such that ®(z) = ®(z), where z =
(xl,xz,...,xn,yl,yz,...,ym)T € R™" and z = (El,@...,En,yl,yz,...,ym)T € R™" Then
it follows from (3.5) that

bi(x;) = bi(xi) = Z(Pﬂ +p}) [f; (i) - fi (]/,)] i=1,2,...,n,
=1
] (3.6)
di(y) - () = (e + a}) [stx) - g®)], j=12m.
i=1
In view of (H;)-(Hs3) and (3.6), we have
anlxl xil< ZZ|P]1 +phMily -7,
i=1 j=1
g (3.7)

0, 1 =
qij + qi]-|Ni|xi - Xil.

Soly-7]< 53
=1 j=li=1

Thus, we can obtain

i=1

by [m - Zm;|qi°j + q}].|Ni] i — X +Zm;[wj - anlip% +p}i|M]] lyi-v|<0. (8
j= j= i=

It follows from (3.4) and (3.8) that |x; — ;| = 0 and |y; —yj| =0,i=1,2,...,n j=12,...,m.
That is z = Z, which leads to a contradiction. Therefore, @ is an injective on R"*".
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Then we will prove @ is a homeomorphism on R™". For convenience, we let ®(z) =
®d(z) — D(0), where

®i(2) = bi(x:) Z(P]1+P]z) [fity)) - fiO)], i=12,...n,

= (3.9)

®p(2) = dj (y;) - ;(q?j +a) [giGx) - (O], j=1,2,...,m.

We assert that ||&)|| — oo as ||z]| — oo. Otherwise there is a sequence {z”} such that ||z?|| —
oo and [|@(z7)]| is bounded as v — oo, where z° = (x7,x7,..., X, Y1 Y5,y yfn)T e R™m,
Noting that

gsgn(xf){bi (xf) - &)i(z”)} = gnl:sgn(xl’.’)g(p% +p]1i> [f]- (y;J) - f;(O)]

n m
< ZZ |P?i + P]l'i
i1 j=1

(3.10)
Z;sgn(y?) {d;(v}) - Duj(z0)} = Z:,sgn(y] )Z;(q,] +q)) [8:(x7) - 8i(0)]
j= = i
ilzl a5+ aiy | Nilac?|,
we have
isgn(xf’) {bi(xf.’) - Cf)i(zv)} + isgn(y}’) {dj <y]v> - &)n+j(z”)}
- o m” (3.11)
ZZ|P11+P]1 O+ 0|+ al| Nl -
=1 j=1 j=1i=1
On the other hand, we have
_Enljsgn(x? )b () - iz | + isgn(y}’) {di(v7) - Dui (=)}
1= =
(3.12)

n+j(zv) |

n n - m
> Zm|xf’| - Z'(I)i(zv)| + ij
i1 i=1

i=1

m ~
v _Z@
i=1
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It follows from (3.11) and (3.12) that

®;(z°)

n m n m -
e<Z|X?| + > |7 > <y ("), (3.13)
i=1 =1 i=1 =1

Yi +Z

where

= min{@iﬁnﬂ{qi - ]Z1|q?] + ql-lj|Ni},lré’]l_iSIrln{wj - §|p?l +p]1.i'M]~} } > 0. (3.14)

That is

(3.15)

7

=) < |8

which contradicts our choice of {z”}. Hence, @ satisfies ||®|| — oo as |z]] — oo.
By Lemma 2.5, ® is a homeomorphism on R™ and there exists a unique point z* =
(X3, %5, X Y1, Y5 ,y;‘n)T such that @(z*) = 0. From the definition of ®, we know that
z5 = (X, X5, X, Y Y ,y,’;)T is the unique equilibrium point of (1.1). O

4. Global Exponential Stability of the Equilibrium

In this section, we will construct some suitable Lyapunov functions to derive the sufficient
conditions which ensure that the equilibrium of (1.1) is globally exponentially stable.

Theorem 4.1. Assume that (H1)—( Hy) hold, suppose further that

(Hs) foreachi=1,2,...,n, j=1,2,...,m, the following inequalities are satisfied:
S (R TS vl (R AURE
i= i

(Hs) the impulsive operators Iix(x;(t)) and Jix(y;(t)) satisfy

Iik(xi(tk)) = _Yik(xi(tk) _x;)/ 0< Yik < 2/ i= 1,...,Tl, ke Z+/
(4.2)
Jik(yj(tx)) = —?jk<yj(tk) —y}‘>, 0<¥ik<2 j=1,...,m keZ".

Then the unique equilibrium point of system (1.1) is globally exponentially stable.

Proof. According to Theorem 3.1, we know that (1.1) has a unique equilibrium point z* =
(X3, %5, X, Y3, ..,y;‘n)T. In view of (Hp), it is easy to see that I;(x]) = 0 and ]j(y}‘) = 0.
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Suppose that z(t) = (x1(t), x2(t), ..., x.(t), y1(t), y2(t), ... ,ym(t))T is an arbitrary solution of
(1.1). Let u;(t) = xi(t) — x7, v;(t) = y;(t) - y;f, t > 0, then system (1.1) can be rewritten as

ud () = - (u;(t)) [Eiwi(t)) - > P fi(oi(t-7))
j=1

—ZP}YJ‘ hi(s) f (vt - 5)) As - r,] ,
i o
i=1,2,...,n t>0, t#t, teT, (4.3)

v3(8) = =& (o,(1) [d (5/0) - 35081 )

DY WICH IR s]],
i=1

j=1,2...,m, t>0, t#t, t€T,

where, fori=1,2,...,n, j=1,2,...,m,

G(wi(t) = a;(wi(t) +x7),  bi(ui(t)) = bi(wi(t) + x7) - bi(x}),
E]' (’U](t)) = C]' <’U]'(t) + y;), ﬁ'(vi(t)) = f] <vj(t) + 3/;) _fj <y;>’ (44)

J](U](t)) = d] (U]'(i’) + y]*> -b; (y;>/ g'i(ui(t)) = gi(ui(t) + xl*) - b’(x:)
Also, forallt=t,, keZ*, i=1,2,...,n, j=1,2,...,m,

|i (F)| = i (1) = 27| = [xilt) + I (i) - x|

= (1 =) (xi(te) = x7)

< Jxi(te) — X}

< uite)l,
(4.5)

o ()] = [y (5) ~ 3| = [wi 80 + e (i) - v

= =50 (vt - ;)| < |wit0 ;| < oy 80|,
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Hence by (H;) and (H;), we have

m
D*lus()I* < ~a i (8)]+ @ 3|l | My o (£ - 73)]
j=1

m ©
+Ez§;|p]11|M]J‘O h]'i(S)|U]'(t— S)|AS, i=1,2,...,n,
]:

n
D*[o;(1)|* < —¢;v;(t)| +; > | 48| Nilui(t - o))
i1

0
4ij

+E]'Z
i=1
Also, fori=1,2,...,n,
xi(te +0) — x7 (b + 0) = x;i(t) + L (xi (t)) — xF (k) — Tie (7 (1))
= (1-yix) (xi(te) - X} (tx)), keZ,
thus

i (£7) =% (F0) | = [1 = yar| [xi (Bi) — 7 (1) |

< |xi(tk)—x;‘(tk) , i=1,...,n, keZ".

Similarly, we have

|y () - (&)

= '1 - Yfk' |yj(tk) - y;(tk)|

< 'y](tk) _y;(tk)|/ j= 1/2/”-/"1/ keZ".

Let G; and G; be defined by
Gi(ei) =ami—&i - ZEj'q?j'Nies,- (o(t),t - 0ij)
j=1
m [ee)
- ZEj|q}j|NiJ‘O kij(s)e,(o(t),t—s)As, i=1,2,...,n,
=1

G; (&) = ¢jwj — & = Dai|ph| Mey (o(t), £ - 750)
i=1

- ZlﬁiipHMjJ‘O hji(s)ey (0 (1), t = s)As, j=1,2,...,m,

q}j|Nif0 kij(s)[ui(t—s)|As, j=1,2,...,m.

11

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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respectively, where ¢;, {; € [0, o0). By (Hs), we have

G0 = am- 35 (|| +|as)Ni> 0, i=12.m
" (4.12)

G;(0) = ¢jw; - éﬁi(|pj?i| Hpi )M >0, j=12...m

Since G;, G;.‘ are continuous on [0,00) and Gi(¢;) — —oo, G;(g]-) — -0, as & — +00,¢ —
+00, there exist 52‘,@}‘ > 0 such that G;(g}) = 0, G;(@;) =0and Gj(g;) >0, forg; € (0, ¢7), G;(é]-) >

0, for ¢; € (0, §;.‘). By choosing a = mini<i<y 1<j<m 1€}, & : }, we obtain

Gi(a) = ani—a - ZE,- |q?j |Nie,,, (o), t-0yj)
i=1

a N (s)ealott) e 5)as
0

L f—
-2
=1

>0, i=12,...,n,

(4.13)
G;(a) =cwj—a- Zﬁi |p?i|M]~ea (o), t—Tj)
i=1
— Zal'p]ll|M]’[ hﬁ(s)ea(a(t),t— S)AS
i=1 0
>0, j=12,...,m,
Denote

ui(t) = eq(t,0)lui(t)|, teR,i=1,2,...,n, (4.14)
vi(t) = eq(t,6)|v;(t)|, teR, j=1,2,...,m, (4.15)

where 6 € [-o0,0];. Fort > 0, t#t, k€ Z*, i =1,2,...,n, j = 1,2,...,m, it follows from
(4.6)—(4.15), we can obtain

D*puf (t) = aea(t, 8)|ui(t)] + ex(o(t), 6)D*ui(t)|*

<aeq(t,0)|ui(t)| + es(o(t),5)

m
x [—z,-mlui<t)l £ a3 |ph | Milos (¢ - 7)|
j=1

+E1‘Zl |p]11‘M]fo h,-,-(s) |’U]'(t - S) | AS]
j=
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< (@ - @) () + @ 3 [p% | Miea (o (t), £ = 7i0)v; (t - 73)
j=1
+EiZ'p}i|MjI hii(s)ea(o(t),t - s)vi(t - 5)As,
=1 0

n
D+v].A(t) < —(g].wj - a)vj(t) + EJZ |q?j |Nieu(0'(t), t — i) pi(t - 0ij)
i1

+ Eiz qllj Nifo kij(s)e,,,(o(t),t - S)‘u,‘(t - S)AS.
i=1
(4.16)
Also,
wi(te) <pilte), vi(t) <vi(k), i=12,...,n, j=1,2,...,m, keZ". (4.17)
Define a Lyapunov function
n m t
V(t) = Z pi(t) +ﬁ,~2|p?i'Mjea(o(t),t - Tﬁ)ft vj(s)As
i=1 =1 ~Tji
m =] t
+a;Y, |p}i'Mij hji(s)ea(o(t), t - s)jtsvj(z)AzAs
= (4.18)
m n t
+ Z [vj(t) + E]-Z q?]. Nieq(o(t), t - 0y) pi(s)As
j=1 i=1 t=0ij
n © t
+EjZ;|q}j|NiJO kij(s)es(o(t),t - s) t_syi(z)AzAs].

And we note that V() > 0 for t > 0 and V(0) > 0. Calculating the A-derivatives of V, we get

Mie, (o(t),t - Tji)v;(t)

D'VA(t) < 3 [— (ami=m)pilH) + @ X5 |}
i=1 =1
@y |p}i)MjJ‘ hii(s)ea(o(t), t - s)vj(t)As]
j=1 0
+ [—(g].w]- - q)vj(t) +Cj ). 'q?j |N,~ea(o(t),t — 0ij) pi(t)
j=1 i=1

+Ej§|q3j|NiIO kij(s)ea(o(t),t - s)yi(t)As]



14 Journal of Inequalities and Applications

i=1

-y lmi 1~ gE;|q?j|Nieq(o(t),t_ o)
—gaIq}j)Nif:okﬁ<s>ea<o<t),t— s)As] (8

- g‘ [E,-wj -1- ;Ei'P?i|Mj€q(G(t),t — i)

—éﬁih’}iiMjf:ohfi(S)ea(o(f),t - s)As] v;(t)

== Gi(m)pi(t) = XG; () v; (1)
i=1 j=1

<0, t>0, t#ty, t€T, keZ".

(4.19)
Also,
"
V() = Z[#l(tk) +al IP]1|M ea(o(te) ty — le)f i v](s)As
+azZ|P]z)Mf hji(s)ea (o (t7), 1 — s)j v](z)AzAs]
+Z[v )+ )ql])Nea(o(tZ) t - G”)f pi(s) A
j=1 —0,,
+Ejz‘qilj|NiJ‘ kij(S)ea(O'(tZ),tZ—s)fk y,-(z)AzAs]
i=1 0 ti—s

(4.20)

< Zn; lﬂl(tk) + alZ|p IM e (0 (), t — TJ'),[ vi(s)As

i=1 b=
m © t
+Eizl|p}i|MjI0 hji(s)eq(o(tk), tk = S)It Sv,-(z)AzAs
j= K

m n tr
+ Z [vj(tk) + Ej;|q?j|Niea(0'(tk),tk - oij)f ui(s)As

j=1 ti—0ij

+5]-§nl|qq |Nf kij(s)ea(o (), t — s)f

=V(t), keZ.

ﬂ,(z)AzAs:I

tk—s
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It follows that V (t) < V(0) for t > 0 and hence, for ¢t > 0, we can obtain

0
Mieq(0(0), —Tji)fo “vj(s)As

PHGEDRIACEDY |:/4i(0) + Z|P?i
i=1 j=1 i=1 j=1

m s 0
+EiZ|p}i'MiIO hiji(s)ea(c(0),0 - S)Jo v,-(z)AzAs]
= ’S (4.21)

m n 0
+ Z [v,-(O) + Z‘qu|Niea (0(0),0 - oij)fo ui(s)As
i=1 i-1

-
n [o'e) 0
+E]Z|q11]|NlJ‘ kij(s)eu(G(O)IO—S)J‘ Hi(Z)AZAS].
i1 0 Os
In view of (4.14)-(4.15) and the previous inequality, we have

Slx®) -x; O]+ Y|y ) - ;0]
i=1

=1
n m

< ecalt, 0) 1+ ZE'|‘/]?]'|N1'3/X (0(0), —03;) 0y
i=1 =1

+ Za|q3j|Nif0 k,-]-<s>ea(o(0>,—s)sAs>6€r(ng,x0]T|«pi<6) - (6)]

i=1

: Z<1 b D[P Miea(o0), 77,

j=1 i=1

+§Ei|P}i|Mjf0 hji(S)ea(G(O),—S)sAs)éel({?é]Jqf,-((S) - y;(é)i ]

|

n

< Necal(t, 6) lgae?fifé]ﬂ‘”f(‘s) SEAQIEDI maﬁ]lﬂ(%(& - y;(6)

j=1 €(-o0,

(4.22)

where

N = max{l + ZEi q?]- Nieq(0(0),-0i;) 0y
j=1
+ Z;Ei|q}j|NiJ‘0 kij(s)ex(c(0),—s)sAs, 1+ Z;Ei|p?i|Mj€u(0(O),—T]-l-)q-]-i (423)
j= -
+§Ei|P}i|MjIO hji(s)ea(o(O),—s)sAs} > 1.

The proof is complete. O
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5. An Example

In this section, we give an example to illustrate our results.
Consider the following Cohen-Grossberg BAM neural networks system with dis-
tributed delays and impulses:

xlA(t) = —(1 + %cosxl(t))

x [le(t) - 411 sin(2y1(t-1)) - J‘wie—s sin(2y1(t—s))As+r1],
0

£>0, t#t, teT,

Axi(ty) = hi(xa(tk)), k=1,2,...,
(5.1)

yA(t) = —(1 + %sinyl(t)>
X [3y1(t) 21 cos(2x1(t-1)) — foole‘s cos(2x1(t —s))As + 51
4 0 4 !

£>0, t#t, teT,
Ayl(tk) = jl(l/l(tk)), k= 1121”'/

where T =R, y1x = 1+ (1/2) sin(1 + k), yax = 1 + (2/3) cos 2k, k € Z*. A simple computation
showsthata =c=2/3,a=c=4/3, M1 =Ny =1, =5w; = 3,p(1)1 = p(l)1 = q(l)l = q(l)1 =
1/4,0 < yik, Y1k < 2. Itis easy to check that all conditions of Theorems 3.1 and 4.1 are satisfied.
Hence, (5.1) has a unique equilibrium point, which is globally exponentially stable.

6. Conclusion

Using the time-scale calculus theory, the homeomorphism theory and the Lyapunov
functional method, some sufficient conditions are obtained to ensure the existence and
the global exponential stability of the unique equilibrium point of Cohen-Grossberg BAM
neural networks with distributed delays and impulses on time scales. This is the first time
applying the time-scale calculus theory to unify and improve impulsive Cohen-Grossberg
BAM neural networks with distributed delays on time scales under the same framework.
The sufficient conditions we obtained can easily be checked in practice by simple algebraic
methods.
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