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1. Introduction

It is well known that inequality technique is an important tool for investigating dynamical
behavior of differential equation. The significance of differential and integral inequalities
in the qualitative investigation of various classes of functional equations has been fully
illustrated during the last 40 years [1–3]. Various inequalities have been established such
as the delay integral inequality in [4], the differential inequalities in [5, 6], the impulsive
differential inequalities in [7–10], Halanay inequalities in [11–13], and generalized Halanay
inequalities in [14–17]. By using the technique of inequality, the invariant and attracting sets
for differential systems have been studied by many authors [9, 18–21].

However, the inequalities mentioned above are ineffective for studying the invariant
and attracting sets of impulsive nonautonomous neutral neural networks with time-
varying delays. On the basis of this, this article is devoted to the discussion of this
problem.

Motivated by the above discussions, in this paper, a new singular impulsive
delay differential inequality is established. Applying this equality and using the meth-
ods in [10, 22], some sufficient conditions ensuring the invariant set and the global
attracting set for a class of neutral neural networks system with impulsive effects are
obtained.
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2. Preliminaries

Throughout the paper, En means n-dimensional unit matrix, Rthe set of real numbers, N

the set of positive integers, and N Δ= {1, 2, . . . , n}. A ≥ B (A > B) means that each pair of
corresponding elements of A and B satisfies the inequality “≥ (>)”. Especially, A is called a
nonnegative matrix if A ≥ 0.

C(X,Y ) denotes the space of continuous mappings from the topological spaceX to the

topological space Y . In particular, let C Δ= C([−τ, 0],Rn), where τ > 0 is a constant.
PC([a, b],Rn) denotes the space of piecewise continuous functions ψ(s) : [a, b] → R

n

with at most countable discontinuous points and at this points ψ(s) are right continuous.

Especially, let PC Δ= PC([−τ, 0],Rn). Furthermore, put PC([a, b),Rn) =
⋃

c∈[a,b)PC([a, c],R
n).

PC1([a, b],Rn) = {ψ(s) : [a, b] → R
n | ψ(s), ψ̇(s) ∈ PC([a, b],Rn)}, where ψ̇(s)

denotes the derivative of ψ(s). In particular, let PC1 Δ= PC1([a, b],Rn).
H = {h(t) : R → R | h(t) is a positive integrable function and satisfies

supa≤t<b
∫ t
t−τ h(s)ds = σ < ∞ and limt→∞

∫ t
a h(s)ds = ∞}.

For x ∈ R
n,A ∈ R

n×n, ϕ ∈ C or ϕ ∈ PC, we define [x]+ = (|x1|, . . . , |xn|)T , [A]+ =
(|aij |)n×n, [ϕ(t)]τ = ([ϕ1(t)]τ , . . . , [ϕn(t)]τ)

T , [ϕ(t)]+τ = [[ϕ(t)]+]τ , [ϕi(t)]τ = sup−τ≤θ<0{ϕi(t +

θ)}. And we introduce the following norm, respectively,

‖x‖ = max
1≤i≤n

∣
∣xi

∣
∣, ‖A‖ = max

1≤i≤n

n∑

j=1

∣
∣aij

∣
∣, ‖ϕ‖τ = sup

−τ≤s≤0

∥
∥ϕ(s)

∥
∥. (2.1)

For any ϕ ∈ PC1, we define the following norm:

‖ϕ‖1τ = max
{‖ϕ‖τ ,

∥
∥ϕ′∥∥

τ

}
. (2.2)

For an M-matrix D defined in [23], we denote

ΩM(D) �
{
z ∈ R

n | Dz > 0, z > 0
}
. (2.3)

It is a cone without conical surface in R
n. We call it an “M-cone”.

3. Singular Impulsive Delay Differential Inequality

For convenience, we introduce the following conditions.

(C1) Let the r-dimensional diagonal matrix K = diag{k1, . . . , kr} satisfy

ki > 0, i ∈ S ⊂ N∗ Δ= {1, . . . , r}, ki = 0, i ∈ S∗ Δ= N∗ − S. (3.1)

(C2) Let U = −(P +Q) be an M-matrix, where Q = (qij)r×r ≥ 0 and P = (pij)r×r satisfies

pij ≥ 0, i /= j, pij = 0, i /= j, i ∈ N∗, j ∈ S∗. (3.2)
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Theorem 3.1. Assume the conditions (C1) and (C2) hold. Let L = (L1, . . . , Lr) and u(t) =
(u1(t), . . . , ur(t))

T be a solution of the following singular delay differential inequality with the initial
conditions u(t) ∈ PC([a − τ, a],Rr):

KD+u(t) ≤ h(t)
[
Pu(t) +Q

[
u(t)

]
τ + L

]
, t ∈ [a, b), (3.3)

where τ > 0, a < b ≤ +∞, and ui(t) ∈ C([a, b),R), i ∈ S, ui(t) ∈ PC([a, b),R), i ∈ S∗, h(t) ∈ H.
Then

u(t) ≤ dze−λ
∫ t
ah(s)ds − (P +Q)−1L, t ∈ [a, b), (3.4)

provided that the initial conditions satisfy

u(t) ≤ dze−λ
∫ t
ah(s)ds − (P +Q)−1L, t ∈ [a − τ, a], (3.5)

where d ≥ 0, z = (z1, . . . , zr)
T ∈ ΩM(U) and the positive number λ satisfies the following inequality:

[
λK + P +Qeλσ

]
z < 0, t ∈ [a, b). (3.6)

Proof. By the conditions (C2) and the definition of M-matrix, there is a constant vector z =
(z1, . . . , zr)

T such that (P +Q)z < 0, −(P +Q)−1 exists and −(P +Q)−1 ≥ 0.
By using continuity, we obtain that there must exist a positive constant λ satisfying the

inequality (3.6), that is,

r∑

j=1

[
pij + qije

λσ]zj < −λkizi, i ∈ N∗. (3.7)

Denote by

v(t) =
(
v1(t), . . . , vr(t)

)T = u(t) + (P +Q)−1L, t ∈ [a − τ, b). (3.8)

It follows from (3.3) and (3.5) that

KD+v(t) ≤ h(t)
[
Pu(t) +Q

[
u(t)

]
τ + L

]

≤ h(t)
[
Pv(t) +Q

[
v(t)

]
τ

]
, t ∈ [a, b),

v(t) ≤ dze−λ
∫ t
ah(s)ds, t ∈ [a − τ, a].

(3.9)

In the following, we will prove that for any positive constant ε,

vi(t) ≤ (d + ε)zie−λ
∫ t
ah(s)ds � ωi(t), t ∈ [a, b), i ∈ N∗. (3.10)
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Let

℘ =
{
i ∈ N∗ | vi(t) > wi(t) for some t ∈ [a, b)

}
,

θi = inf
{
t ∈ [a, b) |vi(t) > wi(t), i ∈ ℘

}
.

(3.11)

If inequality (3.10) is not true, then ℘ is a nonempty set and there must exist some integer
m ∈ ℘ such that θm = mini∈℘{θi} ∈ [a, b).

Ifm ∈ S, by vm(t) ∈ C([a, b),R) and the inequality (3.5), we can get

θm > a, vm

(
θm

)
= wm

(
θm

)
, D+vm

(
θm

) ≥ ẇm

(
θm

)
, (3.12)

vi(t) ≤ wi(t), t ∈ [a − τ, θm), i ∈ N∗, vi

(
θm

) ≤ wi

(
θm

)
, i ∈ S. (3.13)

By using (C2), (3.3), (3.7), (3.12), (3.13), and [vi(t)]τ = sup−τ≤θ<0{ui(t + θ)}, i ∈ N∗, we obtain
that

kmD
+vm

(
θm

) ≤ h
(
θm

) r∑

j=1

[
pmjvj

(
θm

)
+ qmj

[
vj

(
θm

)]
τ

]

= h
(
θm

)
[

pmmvm

(
θm

)
+

∑

j /=m, j∈S
pmjvj

(
θm

)

+
∑

j∈S∗
pmjvj

(
θm

)
+
∑

j=1

qmj

[
vj

(
θm

)]
τ

]

≤ h(θm)

[
∑

j∈S
pmj(d + ε)zje−λ

∫θm
a h(s)ds +

r∑

j=1

qmj(d + ε)zje−λ
∫θm−τ
a h(s)ds

]

≤ (d + ε)h
(
θm

) r∑

j=1

[
pmj + qmje

λσ]zje
−λ∫θma h(s)ds

< −(d + ε)λkmzmh
(
θm

)
e−λ

∫θm
a h(s)ds.

(3.14)

Since m ∈ S, we have km > 0 by (H1). Then (3.14) becomes

D+um

(
θm

)
< −(d + ε)λzmh

(
θm

)
e−λ

∫θm
a r(s)ds = ẇm

(
θm

)
, (3.15)

which contradicts the second inequality in (3.12).
If m ∈ S∗, then km = 0 by (C1) and vm(t) ∈ PC([a, b),R). From the inequality (3.5), we

can get

θm > a, vm

(
θm

) ≥ wm

(
θm

)
, vi

(
θm

) ≤ wi

(
θm

)
, i ∈ S,

vi(t) ≤ wi(t), t ∈ [a − τ, θm), i ∈ N∗.
(3.16)
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By using (C2), (3.3), (3.7), (3.16), and [vi(t)]τ = sup−τ≤θ<0{vi(t + θ)}, i ∈ N∗, we obtain that

0 ≤
r∑

j=1

pmjvj

(
θm

)
+
∑

j=1

qmj

[
vj

(
θm

)]
τ

=
∑

j∈S
pmjvj

(
θm

)
+ pmmvm(θm) +

∑

j /=m, j∈S∗
pmjvj

(
θm

)
+

r∑

j=1

qmj

[
vj

(
θm

)]
τ

≤ (d + ε)

[
∑

j∈S
pmjzj + pmmzm +

∑

j=1

qmjzje
λ
∫θm
θm−τ h(s)ds

]

e−λ
∫θm
a h(s)ds

≤ (d + ε)
r∑

j=1

[
pmjzj + qmjzje

λσ]e−λ
∫θm
a h(s)ds

< −(d + ε)kmzmh
(
θm

)
e−λ

∫θm
a h(s)ds

= 0.

(3.17)

This is a contradiction. Thus the inequality (3.10) holds. Therefore, letting ε → 0 in (3.10),
we have

v(t) = u(t) + (P +Q)−1L ≤ dze−λ
∫ t
ah(s)ds, t ∈ [a, b). (3.18)

The proof is complete.

Remark 3.2. In order to overcome the difficulty that u(t) in (3.3) may be discontinuous, we
introduce the notation [ui(t)]τ = sup−τ≤s<0{ui(t + s)} which is different from the notation
[ui(t)]τ = sup−τ≤s≤0{ui(t + s)} in [7]. However, when ui(t) is continuous in t, we have

[
ui(t)

]
τ = sup

−τ≤s<0

{
ui(t + s)

}
= sup

−τ≤s≤0

{
ui(t + s)

}
, i ∈ N∗. (3.19)

So we can get [7, Lemma 1] when we choose K = Er , S = N∗, h(t) ≡ 1 in Theorem 3.1.

Remark 3.3. Suppose that L = (L1, . . . , Lr)
T = 0 and h(t) ≡ 1 in Theorem 3.1, then we can get

[10, Theorem 3.1].

4. Applications

The singular impulsive delay differential inequality obtained in Section 3 can be widely
applied to study the dynamics of impulsive neutral differential equations. To illustrate the
theory, we consider the following nonautonomous impulsive neutral neural networks with
delays

ẋ(t) = −D(t)x(t) +A(t)F
(
x(t)

)
+ B(t)G

(
x
(
t − τ(t)

))

+ C(t)H
(
ẋ
(
t − r(t)

))
+ J(t), t /= tk,

x(t) = Ik
(
t, x

(
t−
))
, t = tk,

(4.1)
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where x = (x1, . . . , xn)
T ∈ R

n is the neural state vector; D(t) = diag{d1(t), . . . , dn(t)} >
0, A(t) = (aij(t))n×n, B(t) = (bij(t))n×n, C(t) = (cij(t))n×n are the interconnection matrices
representing the weighting coefficients of the neurons; F(x) = (f1(x1), . . . , fn(xn))

T , G(x) =
(g1(x1), . . . , gn(xn))

T , H(x) = (h1(x1), . . . , hn(xn))
T are activation functions; τ(t) =

(τij(t))n×n, r(t) = (rij(t))n×n are transmission delays; J(t) = (J1(t), . . . , Jn(t))
T denotes

the external inputs at time t. Ik(t, y) = (I1k(t, y), . . . , Ink(t, y))
T represents impulsive

perturbations; the fixed moments of time tk satisfy tk < tk+1, limk→+∞ tk = +∞, k ∈ N.
The initial condition for (4.1) is given by

x
(
t0 + s

)
= ϕ(s) ∈ PC1, t0 ∈ R, − τ ≤ s ≤ 0. (4.2)

We always assume that for any ϕ ∈ PC1, (4.1) has at least one solution through (t0, ϕ),
denoted by x(t, t0, ϕ) or xt(t0, ϕ) (simply x(t) or xt if no confusion should occur).

Definition 4.1. The set S ⊂ PC1 is called a positive invariant set of (4.1), if for any initial value
ϕ ∈ S, we have the solution xt(t0, ϕ) ∈ S for t ≥ t0.

Definition 4.2. The set S ⊂ PC1 is called a global attracting set of (4.1), if for any initial value
ϕ ∈ PC1, the solution xt(t0, ϕ) converges to S as t → +∞. That is,

dist(xt, S) −→ 0 as t −→ +∞, (4.3)

where dist(φ, S) = infψ∈S dist(φ, ψ), dist(φ, ψ) = sups∈[−τ,0]|φ(s) − ψ(s)|, for φ ∈ PC1.

Throughout this section, we suppose the following.

(H1) D(t) ∈ PC(R,Rn), A(t), B(t), C(t), τ(t), r(t) are continuous. Moreover, 0 ≤ τij(t) ≤ τ
and 0 < rij(t) ≤ τ (i, j ∈ N).

(H2) There exist nonnegative matrices D̃1 = diag{d̂11, . . . , d̂1n}, D̃2 = diag{d̂21, . . . , d̂2n},
Ĵ = (Ĵ1, . . . , Ĵn)

T , h(s) ∈ H and a constant δ > 0 such that

D̃1h(t) ≤ D(t) ≤ D̃2h(t), 0 < h(t) ≤ 1
δ
,

[
J(t)

]+ ≤ Ĵh(t). (4.4)

(H3) There exist nonnegative matrices Ã = (âij)n×n, B̃ = (b̂ij)n×n, C̃ = (ĉij)n×n such that

[
A(t)

]+ ≤ Ãh(t),
[
B(t)

]+ ≤ B̃h(t),
[
C(t)

]+ ≤ C̃h(t). (4.5)

(H4) There exist nonnegative matrices F̃ = diag{α1, . . . , αn}, G̃ = diag{β1, . . . , βn}, H̃ =
diag{γ1, . . . , γn} such that for all u ∈ R

n the activating functions F(·), G(·) and H(·)
satisfy

[
F(u)

]+ ≤ F̃[u]+,
[
G(u)

]+ ≤ G̃[u]+,
[
H(u)

]+ ≤ H̃[u
]+
. (4.6)
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(H5) There exists nonnegative matrix Îk = (Îkij)n×n, such that for all u ∈ R
n, i ∈ N and

k ∈ N

[
Ik(t, u)

]+ ≤ Îk[u]
+. (4.7)

(H6) Denote by

Ũ = ÃF̃, Ṽ = B̃G̃, W̃ = C̃H̃,

K =
(
En 0
0 0

)

� diag
{
k̂1, . . . , k̂2n

}
, L =

(
Ĵ , Ĵ

)T
,

P =

(
−D̃1 + Ũ 0
D̃2 + Ũ −δEn

)
Δ=
(
p̂ij(t)

)
2n×2n, Q =

(
Ṽ W̃

Ṽ W̃

)
Δ=
(
q̂ij(t)

)
2n×2n,

(4.8)

and let D = −(P +Q) be an M-matrix, and � = −(P +Q)
−1
L = (�1, �2)

T ≥ 0, �1, �2 ∈
R

n.

(H7) There exists a constant ν such that

lnηk ≤ ν

∫ tk

tk−1
h(s)ds, k ∈ N, μ =

∞∑

k=1

lnμk < ∞, (4.9)

where ν < λ, and the scalar λ > 0 is determined by the inequality

[
λK + P +Qeλσ

]
z∗ < 0, (4.10)

where z∗ = (z1, . . . , z2n)
T ∈ ΩM(D), and

ηk, μk ≥ 1, ηkz
∗
x ≥ Îkz

∗
x, μk�1 ≥ Îk�1, k ∈ N, z∗x =

(
z1, . . . , zn

)T
. (4.11)

Theorem 4.3. Assume that (H1)–(H7) hold. Then S = {φ ∈ PC1 | [φ]+τ ≤ eμ�1} is a global
attracting set of (4.1).

Proof. Denote ẋ(t) = y(t). Let sgn(·) be the sign function. For x = (x1, . . . , xn)
T , define

Sgn(x) = diag{sgn(x1), . . . , sgn(xn)}.
Calculating the upper right derivative D+[x(t)]+ along system (4.1). From (4.1), (H2)

and (H3) we have

D+[x(t)
]+ ≤ h(t)

{( −D1 + Ũ
)[
x(t)

]+ + Ṽ G
[
x(t)

]+
τ

+ W̃
[
y(t)

]+
τ + Ĵ

}
, t ∈ [

tk−1, tk
)
, t ≥ σ, k ∈ N.

(4.12)
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On the other hand, from (4.1) and (H2)–(H4), we have

0 ≤ h(t)
{

− 1
h(t)

[
y(t)

]+ +
(
D̃2 + Ũ

)[
x(t)

]+ + Ṽ
[
x(t)

]+
τ + W̃

[
y(t)

]+
τ + Ĵ

}

≤ h(t)
{ − δ

[
y(t)

]+ + (D̃2 + Ũ)[x(t)]+ + Ṽ
[
x(t)

]+
τ + W̃

[
y(t)

]+
τ + Ĵ

}
, t ∈ [tk−1, tk), k ∈ N.

(4.13)

Let

u(t) = (x(t), y(t))T ∈ R
2n, (4.14)

then from (4.12)–(4.14) and (H6), we have

KD+[u(t)
]+ ≤ h(t)

[
P
[
u(t)

]+ +Q
[
u(t)

]+
τ + L

]
, t ∈ [tk−1, tk), k ∈ N. (4.15)

By the conditions (H6) and the definition of M-matrix, we may choose a vector z∗ =
(z1, . . . , z2n)

T ∈ ΩM(D) such that

Dz∗ = −(P +Q)z∗ > 0. (4.16)

By using continuity, we obtain that there must be a positive constant λ satisfying the
inequality (4.10). Let z∗x = (z1, . . . , zn)

T and z∗y = (zn+1, . . . , z2n)
T , then z∗ = (z∗x, z

∗
y)

T . Since
z∗ > 0, denote

d =
1

min1≤i≤2n
{
zi
} , (4.17)

then dz∗ ≥ e2n = (1, . . . , 1)T ∈ R
2n. From the property of M-cone, we have, dz∗ ∈ ΩM(D).

For the initial conditions x(t0 + s) = ϕ(s), s ∈ [−τ, 0], where ϕ ∈ PC1 and t0 ∈ R (no
loss of generality, we assume t0 ≤ t1), and t ∈ [t0 − τ, t0], we can get

[
x(t)

]+ ≤ ∥
∥ϕ(t)

∥
∥
τe

−λ∫ tt0h(s)dsdz∗x,

[
y(t)

]+ ≤ ∥
∥ϕ′(t)

∥
∥
τe

−λ∫ tt0h(s)dsdz∗y,
(4.18)

Then (4.18) yield

[
u(t)

]+ ≤ dz∗
∥
∥ϕ

∥
∥
1τe

−λ∫ tt0h(s)ds + �, t0 − τ ≤ t ≤ t0. (4.19)

Let N∗ = {1, . . . , 2n}, S = {1, . . . , n} = N and S∗ = {n + 1, . . . , 2n} = N∗ − S. Thus, all
conditions of Theorem 3.1 are satisfied. By Theorem 3.1, we have

[
u(t)

]+ ≤ dz∗
∥
∥ϕ

∥
∥
1τe

−λ∫ tt0h(s)ds + �, t0 ≤ t < t1. (4.20)
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Suppose that for all m = 1, . . . , k, the inequalities

[
u(t)

]+ ≤
m−1∏

j=0

ηjdz
∗∥∥ϕ

∥
∥
1τe

−λ∫ tt0h(s)ds +
m−1∏

j=0

μj�, tm−1 ≤ t < tm, t ≥ t0, (4.21)

hold, where η0 = μ0 = 1.
From (4.21), (H5), and (H7), we can get

[
x
(
tk
)]+ ≤ Îk

[
x
(
t−k
)]+

≤
k∏

j=0

ηj dz
∗
x

∥
∥ϕ(t)

∥
∥
1τe

−∫ tkt0 h(s)ds +
k∏

j=0

μj�1.
(4.22)

Since � = −(P +Q)
−1
L, we have

(
D̃2 + Ũ + Ṽ

)
�1 + W̃�2 + Ĵ = δ�2. (4.23)

On the other hand, it follows from (H7) that

(
D̃2 + Ũ

)
z∗x +

(
Ṽ z∗x + W̃z∗y

)
eλσ < δz∗y. (4.24)

Then from (4.21)–(4.24), we have

[
y
(
tk
)]+ ≤

k∏

j=0

ηjdz
∗
y

∥
∥ϕ

∥
∥
1τe

−λ∫ tkt0 h(s)ds +
k∏

j=0

μj�2, (4.25)

which together with (4.22) yields that

[
u
(
tk
)]+ ≤

k∏

j=0

ηjdz
∗∥∥ϕ

∥
∥
1τe

−λ∫ tkt0 h(s)ds +
k∏

j=0

μj�. (4.26)

Then, it follows from (4.21) and (4.26) that

[
u
(
t
)]+ ≤

k∏

j=0

ηjdz
∗∥∥ϕ

∥
∥
1τe

−λ∫ tt0h(s)ds +
k∏

j=0

μj�

=
k∏

j=0

ηjdz
∗∥∥ϕ

∥
∥
1τe

−λ∫ tkt0 h(s)dse−λ
∫ t
tk
h(s)ds +

k∏

j=0

μj�, ∀ t ∈ [
tk − τ, tk

]
.

(4.27)
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Using Theorem 3.1 again, we have

[
u(t)

]+ ≤
k∏

j=0

ηjdz
∗∥∥ϕ

∥
∥
1τe

−λ∫ tkt0 h(s)dse−λ
∫ t
tk
h(s)ds +

k∏

j=0

μj�

=
k∏

j=0

ηjdz
∗∥∥ϕ

∥
∥
1τe

−λ∫ tt0h(s)ds +
k∏

j=0

μj�, tk ≤ t < tk+1.

(4.28)

By mathematical induction, we can conclude that

[
u(t)

]+ ≤
k∏

j=0

ηjdz
∗∥∥ϕ

∥
∥
1τe

−λ∫ tt0h(s)ds +
k∏

j=0

μj�, tk ≤ t < tk+1, k ∈ N. (4.29)

Noticing that ηk ≤ e
ν
∫ tk
tk−1h(s)ds, by (H7), we can use (4.29) to conclude that

[
u(t)

]+ ≤ dz∗
∥
∥ϕ

∥
∥
1τe

ν
∫ t
t0
h(s)ds

e
−λ∫ tt0h(s)ds + eμ�

= dz∗
∥
∥ϕ

∥
∥
1τe

−(λ−ν)∫ tt0h(s)ds + eμ�, tk−1 ≤ t < tk, k ∈ N.
(4.30)

This implies that the conclusion of the theorem holds.

By using Theorem 4.3 with d = 0, we can obtain a positive invariant set of (4.1), and
the proof is similar to that of Theorem 4.3.

Theorem 4.4. Assume that (H1)–(H7) with Îk = En hold. Then S = {φ ∈ PC1 | [φ]+τ ≤ �1} is a
positive invariant set and also a global attracting set of (4.1).

Remark 4.5. Suppose that ĉij ≡ 0, i, j ∈ N in (H5), and h(t) ≡ 1, then we can get Theorems 1
and 2 in [9].

Remark 4.6. If Ik(t, x(t−)) = x ∈ R
n then (4.1) becomes the nonautonomous neutral neural

networks without impulses, we can get Theorem 4.1 in [22].

5. Illustrative Example

The following illustrative example will demonstrate the effectiveness of our results.

Example 5.1. Consider nonlinear impulsive neutral neural networks:

ẋ1(t) = −(7 + cos2t
)
x1(t) + sin t tan

(
x1
(
t − τ11(t)

)) − 1
4
cos t

∣
∣ẋ2

(
t − r12(t)

)∣
∣ − 1.5 cos t,

ẋ2(t) = −(6 + sin2t
)
x2(t) − 2 cos t

∣
∣x2

(
t − τ22(t)

)∣
∣ +

1
4
sin t tan

(
ẋ1
(
t − r21(t)

))
+ 2.5 sin t,

t /= k,

(5.1)
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with

x1(t) = I1
(
t, x

(
t−
))
,

t = k, k ∈ N,
x2(t) = I2

(
t, x

(
t−
))
,

(5.2)

where τij(t) = (1/4)| cos((i + j)t)| ≤ 1/4 Δ= τ , rij(t) = 1/4 − (1/8)| sin((i + j)t)|, i, j = 1, 2,
Ik(t, x) = (a1k(t)x1 + b1k(t)x2), a2k(t)x1 + b2k(t)x2)

T , k ∈ N.

The parameters of conditions (H3)–(H9) are as follows:

h(t) = δ = 1, D̃1 = diag{7, 6}, D̃2 = diag{8, 7}, σ =
1
4
, Ĵ= (1.5, 2.5)T ,

Ũ =
(
0 0
0 0

)

, Ṽ =
(
1 0
0 2

)

, W̃ =
1
4

(
0 1
1 0

)

,

K =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , P =

(
−D̃1 + Ũ 0
D̃2 + Ũ −δE2

)

=

⎛

⎜
⎜
⎝

−7 0 0 0
0 −6 0 0
8 0 −1 0
0 7 0 −1

⎞

⎟
⎟
⎠ ,

Q =

(
Ṽ W̃

Ṽ W̃

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0
1
4

0 2
1
4

0

1 0 0
1
4

0 2
1
4

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D = −(P +Q
)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

6 0 0 −1
4

0 4 −1
4

0

−9 0 1 −1
4

0 −9 −1
4

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(5.3)

It is easy to prove that D is an M-matrix and

ΩM

(
D
)
=
{(

z1, z2, z3, z4
)T

> 0 | 9z2 + 1
4
z3 < z4 < 24z1, 9z1 +

1
4
z4 < z3 < 16z2

}
. (5.4)

Let z∗= (1, 1, 15, 20)T , then z∗ ∈ ΩM(D) and z∗x= (1, 1)T . Let λ = 0.1 which satisfies the
inequality

[
λK + P +Qeλσ

]
z∗ < 0. (5.5)
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Now, we discuss the asymptotical behavior of the system (5.1) as follows.

(i) If a1k(t) = b2k(t) = 0, b1k(t) = (1/2)e1/5
2k
(1 + sin t), a2k(t) = (1/2)e1/5

2k
(1 − cos t),

then

Îk = e1/5
2k.
(
0 1
1 0

)

. (5.6)

Thus ηk = μk = e1/5
2k ≥ 1, lnηk = e1/5

2k ≤ 0.04, ν = 0.04 < λ, and μ = 1/24. Clearly,
all conditions of Theorem 4.3 are satisfied, by Theorem 4.3, S = {φ ∈ PC1 | [φ]+τ ≤
e1/24�1 ≈ e1/24(1.196, 1.746)T} is a global attracting set of (5.1).

(ii) If a1k(t) = cos t, b2k(t) = sin t, b1k(t) = a2k(t) = 0, then Îk = E2. By Theorem 4.4,
S = {φ ∈ PC1 | [φ]+τ ≤ �1 ≈ (1.196, 1.746)T} is a positive invariant set of (5.1).
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