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1. Introduction

The classical Hardy inequality says

|ul? ' P ‘pJ‘ o (MmN
— < | —4— VulP R .
J-RN |u|pdx N RN| ulfdx, wue G < \ {0}), (1.1)

where the constant |[p/ (N — p)[F is optimal but never attained; see, for example, [1-4]. This
suggests that one might look for an error term. Brezis and Vazques [5] showed that if Q is a
bounded domain in RN, N > 3, with 0 € Q, then there exists a positive constant Ag such that

—7)2 2
I Q|Vu|2c1x > %J‘Q;?dx + Agfguzdx, u e HY(Q). (1.2)

This result was extended to the L? setting by Gazzola et al. [6]. Adimurthi et al. proved that
Hardy’s inequality can be successively improved by adding lower order terms; see [7, 8] for
details. Abdellaoui et al. [9] obtained Hardy’s inequality with the type of weight |x| ™. See
[10, 11] for the case of general weight ¢(|x]).
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Another type of Hardy’s inequality contains weight involving the distant to the
boundary of the domain. For a convex domain Q ¢ RN with smooth boundary the Hardy
inequality

|”|p P\’ P ©
dP dx < pTl Q|Vu| dx, ueCy(Q) (1.3)

is valid with (p/(p—1))? being the best constant, where d is the distance to the boundary 0Q,
thatis, d = d(x) = dist(x,0Q), cf [12, 13]. Brezis and Marcus [14] proved that for bounded
and convex domain Q there holds

2 2 o)
’[Q|Vu| dx > f d2 4L2f dx, ueCy(Q), (1.4)

where L = diam Q.

Throughout this paper, p > 1, Q is a domain in RN, N > 2, and K C Q is a piecewise
smooth closed and connected surface of codimension k = 1,..., N. The distance from K is
denoted by d, that is d = d(x) = dist(x, K). Then d is a Lipschitz continuous function with
|Vd|=1a.e.

Suppose that for p #k, the following inequality holds in the weak sense:

ApdP /P <0, in Q\K. Q)

Define X, (t) = (1 - log )" for t € (0,1), and recursively Xi(f) = X5 (Xk-1(t)) fork =2,3,....
Barbatis et al. [15] proved that if sup _,d(x) < oo, then there exists a positive constant Dy =
Dy(k,p) > sup, od(x) such that forany D > Dy, m € Nand all u € Wé’p (Q\ K) there holds

k— P
f apdx— | <P 1,
Q P o dr
AR B4 () -
" 2p | op <)o dr TI\D "\D ’

and the constants in front of integrals are optimal. The authors also obtained the result for the
degenerate case of p = k.

Let ¢ be positive and continuous in (0, 0). In this paper, we are concerned with a
general class of sharp Hardy inequality with general weight ¢(d). Define

h(r,m) = COJ‘r2 <¢1’k—1>_1/(p_1)dr (1.6)

n
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for 0 < 1 <1 < oo, where ¢ is a positive constant. Let us consider three cases:
(A1) h(r,o0) < oo and E(O,r) =oo forr > 0;
(A2) E(r,oo) = oo and E(O,r) = oo forr > 0;
(As) h(r,o0) = oo and h(0,7) < oo for r > 0.

Definition 1.1. Let p > 1. If (A1) or (Az) occurs, we denote by Wg’p(Q, ¢) the completion of
Cy(Q) with respect to the norm

1/p
il 5 = ( f Q¢<d>|Vu|de) . (17)

If (A3) occurs, we denote by Wé’p (Q\ K, ¢) the completion of C5°(2 \ K) with respect to the
above norm. For simplicity, we use W to denote WS’P (Q,¢) or Wg’p(Q \ K, ).

Let r > 0, define

(h(r,0), if (A1) occurs,
h(r) = { h(r,D), if (A;) occurs, (1.8)
E(O,r), if (A3) occurs,

* e, NP
<C0j (¢pr ) d”) , if (A1) occurs,
.

—(p-1/p

D (r-D/p
h(r)=h (r) = 1 <Coj (¢rk1)1/(p1)dr> , if (Ay) occurs, (1.9)

' -y, \PTVP
<C0f (prk-y= dT) , if (A3) occurs,
\ 0

where D is a positive constant such that Q C Bp(0).

Theorem 1.2. Let p > 1, Q be a bounded domain in RN and K a piecewise smooth surface of
codimension k, k =1,...,N. Assume

div<¢(d)|VE(d)'p_2VE(d)> <0 inQ\K ()
Then forallu e W,
[ waprax< [ gamarax (110)
Q Q

where ¢ = |’ /h|P. Moreover, the constant 1 is optimal, that is,

Joy(@)lul”

= _— 1.11
uell/\rll\{o} [o®(d)|VulPdx (L1D)
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Example 1.3. Let K = RN"*. Thend = [x/| = (x? +--- + x2)/2. If ¢(r) = r* with @ > p — k, then
k —p\P?
h(r) = rP-k-a/p, (r) = ( +;;£ P) rop, (1.12)

and we have by Theorem 1.2

P
IRN|u|p|x'|adx < <aP+k> IRN|Vu|p|x'|a+de, ueCy <RN>, (1.13)

see also Secchi et al. [16]. If ¢(r) = r* with a = p — k, then

h(r) = <1n g)(p—l)/l” @(r) = (%)pr‘“’ <ln g>_p. (1.14)

If ¢(r) = r* with a« = p — k = 0, Theorem 1.2 turns to be Theorem 4.2 in [17].
Let r > 0, define

(_p kO

(p - 1)c0 (D)’ if (A1) occurs,

hi(r) = 4 ﬁ Inh(r), if (Az) occurs, (1.15)

P, hD)

n , if (A3) occurs,
(Do “hey s A

and h;y1(r) = In eh;(r) fori=1,2,....
For convenience, we write

j h2(d) - h2(d)ul d.
(1.16)

bl = [ g ivuras— | papupax- D

Theorem 1.4. Let p > 1, Q be a bounded domain in RN and K a piecewise smooth surface of
codimension k, k =1,...,N. Assume that (C*) holds, then

(1) there exists a positive constant Dy = Do(k,p) > sup, od(x) such that for all D > Dy and
u € W, there holds

f g(dh*(d) - b (d)|uf dx

(1.17)

[ p@rvurar-[ p@prars P TEED

where ¢ = ¢|W'/h|P, if in addition p > 2 and (A1) occurs, then one can take Dy =
sup, . od(x).
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(2) the constants in (1.17) are optimal, that is,

p inf In- 1¢[u]
2(p-1)c5 " w0 How(dh?(d) - by (d)ufPdx’

(1.18)

Remark 1.5. Let ¢(r) = r*. Then (A1) occurs if k > p — a, (Ap) occurs if k = p — a and (A3)
occurs if k < p — a. There are three cases for kand K: (1) k=1and K =0Q; (2)2<k< N -1
and QN K#0; (3) k= Nand K = {0} c Q. If a = 0 and k = 1, then neither (A7) nor (Aj)
occurs because of p > 1.

Remark 1.6. Theorem 1.4 extends the inequality (1.5) to Sobolev space with general weight
¢(d). Moreover, it also includes the results of [18, 19].

Example 1.7. Let ¢(r) = r*. If a > p — k, we have

— — P
o= SEEZP gy ek, qr<r>=<_k+; p) e,

-1
p (1.19)
D .
hi(r) =1In P hiv(r) =Inehi(r), i=1,2,....
Then it follows from Theorem 1.4 that for all u € W& P(Q,d),
k+a-p
I d*|VulPdx — [ —— f d*PlulPdx
Q
) o (1.20)
> P—‘u f APR2(d) - h2(d) | dx,
2p P

which is (1.5) [15, Theorem A],if a = 0 (i.e., p < k). If a < p — k, the above inequality holds
forall u € WS’P(Q \ K,d%).If a = p — k, we have

frmiac (52 o (n8) e
> %( >P 1 mJ d“"’(ln—) w2 (d) -+ b (d)|ulPdx.

This is the result of Theorem B in [15] if « = 0.

(1.21)
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2. Preliminary Lemmas

Lemma 2.1. If (A1) or (Ay) occurs, then

k-1

div(ph*(-1')"'Vd) = (1 - a)ph (<H')" + ph* (=) (Ad - 7).

If (A3) occurs, then

div(d)h“(—h,)p_lVd) =(a- 1)¢hu—1 (—h')p + (i)ha(—h,)p_l (Ad - %)

Proof. Note that

b (p-1/p
h= (Cof ((i)rk_l)—l/(p_l)dr) .
d

where b = oo for the case (A1) and b = D for the case (A;), then

NG b (p-D(a-1)/p
()‘bh'x(—h/)p_l _ <P ; > Cg—l <COJ‘ (¢rk—1)—1/(P—1)dr> dl_k.
d

Hence
(e (-h)"")’
(p-D)(a-1)/p-1
_/p-1\ . b N D
= <T) (1-a)c, <COJ‘d<¢r > dr
-1/(p-1 _
x <¢dk-1) O ok Ph* () (1 - k)d .

Then

div(ph (-h')""'vd) = <¢h“(—h’)”’l)IIWII2 + gph* (1)’ Ad

k-1

— (L= gl (R + gl (<) (ad - 20,

The same argument can give the corresponding result if (A3) occurs.

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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Lemma 2.2. Let 1 < p < N and K = {0} C Q. If (Ay) is satisfies, then h is the fundamental solution
for the p-Laplace operator with weight ¢, that is,

—div <¢|Vﬁ|p_2VE> = w6 (x), (2.7)

where 6(x) is the Dirac measure, and wy denotes the volume of the unit sphere in RN.

Proof. Since h = (cof:°((i)rN‘l)_1/(p_1)dr)(p_l)/p, we have

_ div<¢|Vﬁ|p72VE> = —div <¢|E|”’1i>

|x]

— e aiv(p(pr ) ) 29

|x|
-1 5. x -1
= —cg dlv(W) = —cg wnNO(x),

where the last equality sign is because of — div(x/|x|N) = wnb(x). O

Proposition 2.3. Let 1 < p < N and K = {0} C Q. If (A1) is satisfies, then h; is the fundamental
solution for the Laplace operator with weight ¢;, that is, fori=1,2,...,

—d1V<¢th,) = —cin(S(x). (29)

Proof. The result follows by the following equalities:

—div(¢:Vh;) = - div <¢ih;%) - ¢ div<$> = —Ciwn(x). (2.10)

Set YT L(r) = hy(r), it follows from (1.15) that, if (A;) or (A;) occurs,

Y] , p K
-—— =) = —— 2.11
v =)' =By @11)
Define Yl.‘l(r) = h;(r), then
_ 1 14 I
-Y72Y! = (h)' = Anhis) = —(hi) = ———Yi1--- Y4, 2.12
Y] = (hi) = (Inhi) hH( 1) p-Deo N (2.12)
that is,
hl
Y=-——F Tyiv,v (2.13)

Co(p-Dak
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and so for any f# —1,i € N, we have

£\’ p n p+1
Y') = fp—-—-—Y--- Y Y . 2.14
(/) P Y, (2.14)
Let m € N and write
nr)y=>Yi---Y;,  B(r)=>Y]--Y], (2.15)
i=1 i=1

then a simple calculation gives

0=t (5 (P < r@)) @.16)

Similarly, if (A3) occurs, we have

SRR
Y2 -1 Co h !
1 (p-1) (2.17)
! p W 2
=——=Y1---Yiq Y7
-k T
Then
! p W <1 2 )
=———(=(Bd d)) ). .
1= o D 5(B@) + (@) (218)
3. Proof of Theorems
Proof of Theorem 1.2. Define a C! vector field as
H\
¢<_ﬁ> vd if (A1) or (Ay) occurs,
T= (3.1)

H\P
_¢<ﬁ> Vd if (Az) occurs.

Then we can prove (1.10) analogous to the following proof of Theorem 1.4 (1). As to the best
constant, we fix small positive parameter a and define the functions

w(x) = h1~@/ D), (3.2)

The rest is similar to the following proof of Theorem 1.4(2). O
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Proof of Theorem 1.4(1) . We will make use of a suitable vector field as in [15]. To proceed we
now make a specific choice of T Firstly, we consider the cases (A1) and (A,). We take

A -1 2
T=¢ 0 <1+c011+a11>Vd

o) o 5 () e

=: T1 +T2+T3,

where a is a free parameter to be chosen later. In any cases a will be such that the quantity
1+ c,'n+ an? is positive on Q. Note that T is singular at x € K, but div T and T are integrable
if (A1) or (Az) occurs.

Letu € C(Q) if (A1) or (Az) occurs. We integrate by parts to obtain, for any positive e,

f div T|u|Pdx = —pJ (T - V) |[ulPudx + pf T-|ulPvd-7nds, (3.4)
Q\Q, Q\Q. Qn{d=e)

where Q, = {x € Q| d(x) < €}, and 7 denotes the unit outer normal to 0Q.. Note that

7 L
< f IT|[ulPdS = f q‘b‘—
Qn{d=e} Qn{d=e) h

I= lulPdsS. (3.5)

f T-|ufPVd-ndS
Qn{d=e¢)

It follows from (1.9) that

-(p-1)

p-1 b A\l (D) _
< <L (1) dr> a1, (3.6)

where b = oo if (A1) occurs, or b = D if (Aj;) occurs. Since

h/
qs'ﬁ

arFl< f ds < erk! (3.7)
Qn{d=r}
for some positive constants c and c1, (A1) or (Ay) implies that

<fb<¢r"‘1>'”(”'” dr>_(p_l) —0 (3.8)

as € tends to 0. Since 7 is bounded, we know I — 0 as e — 0. Hence,

f div T|ulPdx = —pf (T - Vu)|uludx. (3.9)
Q Q
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By Holder’s inequality and Young’s inequality, we obtain

f div T|uPdx = —pf (T - V) |[ulPudx
Q Q

1/p /(p-1 (r-1)/p
< p(f ¢|Vu|de> <f |T<;b‘1/”|p v )|u|de> (3.10)

1/p p/p-1

I P|Vuldx + (p - 1)J' |T¢ |ulPdx.
We therefore arrive at
. 1/ p/(p-1)
PIVuPdx > | (divT - (p-1) |T¢ P| ulPdx. (3.11)
Q Q
If (A3) occurs, the above inequality is obvious for u € C{(Q \ K).
By Lemma 2.1 and condition (C*), we have
I\ P _ '\ P
=Y vy (s (Y. e

Similarly, it follows from Lemma 2.1, condition (C*) and (2.16)

|2 p-1 % p-1
diszzc(;lqdim(—Z) Vd+c51¢<—ﬁ> \Vd|*y

v () + e (7) (3°5)
) oo 1)C ( ) B+112> (3.14)

(3.13)

divT; > apqz(j)(

Combining (3.12)—(3.14), we obtain

!

divT > ¢<—%>p[<p + pcaln + aPT]2> + Z(p—r;l)cz<B + 112> + f—p()(Bq + 113>:|. (3.15)
0
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Next we compute (p — 1)¢~V/ P~V |T|P/ -1 We set for convenience

_ p/(p-1)
gn) = (1+g'n+ar?)” "

When 77 > 0 is small, the Taylor expansion of g(77) about 7 = 0 gives

1 2pa
g(n)=1+(L11+5< i >n2

p-1)co (p-1)°2 p-1

+%<p(2_p)+ e >'13+O(714>,

(p-1°¢ (p-1)°co

and so

oD/ — _a(_EN L P _r
(p= 1)@~ ITPY ¢< h) [(P 1)+C0n+<2(p_1)65

L (P@2p)  pa .
<(P—1)208 (P‘1)00>n ?

Hence

divT - (p— 1)¢—1/(P—1)|T|p/(z’*1)

24,( h’>”[1 pB pa_ g PRoP) 5

- + +
h 2(p-Dcg (p-Da =~ (p-1)°¢

If we show

ap ([ p2-p) /s
(p=T)eo - <(P—1)208 Om)) B

then we obtain

. 1/p - h\"
awt =g () |1 g
0

From the definition of 7 and B it follows easily that

w3,
v
—_

+ pa) 1’12

()]

o(q‘*)].

B].

11

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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(a) If 1 < p < 2, we assume that 7 is small for the case (A;). Since

h(r)

P
I’ll In I’l(D)

~ (- Dao

(3.23)

and Q C B, (0) is bounded, we can choose D large enough such that h;l (r) is small enough if
r < 19, and then 7 is small. It is enough to show that we can choose a such that (3.20) holds. In
view of (3.22), we see that for (3.20) to be valid, it is enough to take a to be big and positive.
It is similar for the case (A;).

(b) If p > 2, we choose a = 0, then

1 \P/(P-D) p p p(2-p) 1\ G2p)/(p-1)
<1+c01q> =1+ n n+ 5 27]2+ 3 3<1+c01§> 713
(p-Deco™ 2(p-1)°c 6(p—1)c,

(3.24)
for some ¢ € (0, 77), without any smallness assumption. Since 2 — p < 0, we have
_ /(p=1) p p
1+cty) <1+ + 2. 3.25
( 0 12) (P—l)C()’Z Z(p—l)zcéq ( . )
It follows from (3.15) that
, P 5\, P(B+)
divT > ¢( -— l1+cy'n)+ —>———5|. 3.26
v —¢< h> [p< CO Tl) 2(P—1)C5 ( )
Hence
_ H\? Bp
divT - (p - 1)@ P DT/ D > <——> T+ ——— ). 3.27
VT - (p= 1) VTP > p( - -T2 (327)

Then (1.17) follows by inserting the above inequality into (3.11).
Now we consider the case (A3). In this case, ' > 0, that is,

(r-D/p

h= (cofz <¢rk1)_1/(p_l)dr> . (3.28)
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We take
_ h, P -1 2
T_—¢<Z> Vd(l—co 1+ an ) (3.29)

where a is a free parameter to be chosen later. In any case a will be such that the quantity
1 - cy'n + an? is positive on Q. Note that T is singular at x € K, but since u € C2(Q \ K) all
previous calculations are legitimate. Analogues to the calculations before, by Lemma 2.1 and
(2.18), we have

(5 (10 00)- (545 o) e
"2~ 1)c2¢( >p< *BVﬁ‘P(%’)p(BW@
> ¢(%)p [p(l—coln+an2)+2(p+;)cg (17+B~2acy <Bq+q3)>],
(p- 1)/ @D/ D > 4)(%,),, [(p ~1) - 6%11 + <2(P+M +pa>nz

L1 pCop)  6pa N\ | (e
6< (p—l)zcg (P‘1)00>11] O<11>'

(3.30)

Hence

divT - (p— 1)¢—1/(P—1)|T|P/(P*1)
\ B B 2- (3.31)
z¢<ﬁ> <1+ pE___apB , p@-p) 113> co(r).
h 2(p-Dcg (p-Deao ™ 6(p-1)°c

If 1 <p<2,since

po P hD)

e " h@ (332)

when (A;) occurs, we can choose D large enough such that h(D) is so large and h;l(r) is
small, then we know that 7 is small. By taking a = 0, we obtain

'\ P B
divT - (p-1)¢~ VeV TP/ PD > 4)(%) <1 + m) (3.33)

If p > 2, taking a be negative with |a| large enough, we also arrive at (3.33) by using (3.21).
The result (1.17) then follows from (3.11) and (3.33). O
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Proof of Theorem 1.4(2). All our analysis will be local, say, in a fixed ball of radius 6 (denoted
by Bs) centered at the origin, for some fixed small 6. The proof we present works for any k =
1,2,...,N. Wenote however that for k = N (distant from a point) the subsequent calculations
are substantially simplified, whereas for k = 1 (distant from the boundary) one should replace
Bs by Bs N Q. This last change entails some minor modifications, the arguments otherwise
being the same. Without any loss of generality we may assume that 0 € KN Q (k#1), or
0 € 0Q if k = 1. We divide the proof into several steps.

Step 1. Let 0 € C{°(Bs) be such that 0 < 6 < 1in Bs and 6 = 1 in Bg/>. We fix small positive
parameters ag, ay, ..., &, and define the functions

ZU(.X) — hl—ag/(p—l)mh(lfﬂl)/P . hgl*“m)/r’ (d),
' (3.34)
u(x) = 0(x)w(x).

Let (A1) or (Az) happen. Hence u € WS’P (Q, ¢). To prove the proposition we will estimate the
corresponding Rayleigh quotient of « in the limit @y — 0,4y — 0,...,a, — 01in this order.
It is easily seen that

lta lta -1 7
Vo = p h—ug/(p—l)coh/del( Tta)/p Y,51 L) /p u + 1 ; (3.35)
(p=1)co P p

where Y; = hl.‘1 and7j=-ag+ (1 -a)Yi+---+ (1 —a,) Y1 Y.
Now Vu = 8Vw + wV6 and hence, using the elementary inequality

la+blP < |alf + c,,(|a|P—1|b| + |b|P), a,beRN (3.36)
for p > 1, we obtain

f ¢|Vu|pdx§J‘ ¢9p|Vw|pdx+cpj ¢9p_1|V9||w||Vw|p_1dx+cpf P|VOP|wPdx
Q Q Q Q (3.37)

=: 11 +12+[3.

We claim that

I, I3 =O(1) uniformly as ag, ay,...,an tend to zero. (3.38)
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Let us give the proof for I:
IZ < C ¢h—m)/Cg |Vh|p—1yl(*1+a1)(P*1)/P . Y’(n*1+“m)(l’*1)/}7
Bs
X [(p - 1)C0 + ap + (1 — (Xl)Yl +--+ (1 — [Xm)Yl . 'Ym]p_l
% hl—ao/(P—l)Coyl(_l"'al)/P . Yrsq_l+“m)/l”dx (339)
<C ¢h1—a0p/(p—1)co|Vh|P—1Y1*1+t¥1 . Yr:llﬂlm
Bs
x[(p-Tco+ap+ (1 —an)Yi+-+(1—ay)Yy - Y]’ du.
It follows from the definition of h that
b -1
, p-1 J‘ -1\ V(-1 ( k-1 —1/(p—1)>
H="o—| ¢ r dr —co(pd ) (3.40)
S (of ) ()
Then
_ ~1)\"*
$(~H')" " = <M> vk, (3.41)
p
Hence, by the coarea formula and the fact that
artt < f dS < ! (3.42)
{d=r}NB;s
we have
L<C| dlkpreor/ eyt oy gy
Bs
& dl—kh—uop/(p—l)cUyl—Hlxl . Y—1+b¥m
= cf er' ®__ds
o Jid=r) |Vd|
(3.43)

6
— CI er‘ dl—kh—aop/(p—l)cgyl—ﬂm . Y,:,l-mmds
0 {d=r}

6
< Cf hooop/ (pDeoy Ty T () di
0

The boundedness of h™'(r) together with the fact h™1(0) = 0 implies that I, is uniformly

bounded. The integral I3 is treated similarly.
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Step 2. We will repeatedly deal with integrals of the form
Q= J'Qer’thﬂor’/ Do (' YPy, Py P, (3.44)

By (1.9), we have

—Po/co-1

b -1/(p-1) —p/(p-1)
¢H%W@”%emm=¢<%f(@kﬂ Pch> (copat) ",
d

(3.45)
e . , b NV et e\ (D)
Akl Pop/ pDeo (_pyP = ¢ j (¢r°) dr (pa") .
d
Using the coarea formula and (3.41), if fy = -+ = B—1 = 0 and S, > 0, by (1.15), (2.14) and
W/h=((p-1)/p)(H /h ), we have
6/2 W 1 o1 1,/ 1 C 9]
cf — 1Y) Y Y Prdr < Q < cf Yy Y Y Prdr = —YE"| <40, (3.46)
o |h 0 Pm 0
Analogue arguments arrive at
po >0, or
ﬂo =0, ﬂl >0, or
Q<o (3.47)
(Po=P1="=Pma, Pn>0.
Moreover, if f,, — 0, we have
Q — oo. (3.48)

Step 3. We introduce some auxiliary quantities and prove some simple relations about them.
For 0 <i < j < mwe define

Ap = f 9P¢h—aop/(p—1)q)(_hI)Pyl—lﬂxl .. Yn}“a’”dx,
Q

A; = j Gpd)h—aop/(pfl)co (_h/)PY11+a1 . Yi1+a,- ylran Yr;llﬂxm dx,
Q

i+l

(3.49)

i+l

T = f ep(ph—rxop/(p—l)co (_h/)P'Yll’ll . Yiﬂi y ot Y;Zlﬂlm dx,
Q

Ljj = j P phor/ p=De (_p\Py [ty ey Y]f"fy‘“"‘f” Y
Q

i+1 j+l
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with I';; = A;. We have the following two identities. Let 0 < i < m — 1 be given and assume
thatag =ay =---=a;_1 =0, then

m
a;A; = Z (1 - aj)l"i]- + O(l), (350)
j=i+l
j m
alij == > alij+ D) (1— )T+ O(1), (3.51)
k=i+1 k=j+1

where the O(1) is uniform as the a;’s tend to zero. Let us give the proof for (3.50). Firstly, we
discuss the case of i = 0. By Lemma 2.1, we have

¢h—dop/(P—1)Co (_h/)P

— (p - 1)C0 [le <¢h1—ao p/(p-1)co (_hI)P—1Vd> _¢h1—aop/(P—1)Co (_h!)}”—l <Ad— k-1 >] )

pao d
(3.52)
Multiplying the above equality by 67Y, By, and integrating over Q, we obtain

-1
Ag = p-Dea )COI div<gbh1’“°”/ (P’l)CO(—h’)’”_1Vd>6”Yl‘““l Y dx
pao Q

-1 - - 3.53
_ (P pao)cof ¢h1—a0p/(p—1)c0 (_h/)p 1 (Ad _ k - 1 >6PY1—1+0¢1 . Y;11+amdx ( )
Q
=: A01 + App.
Let us estimate Ag;. Using integration by parts, we obtain
(p-1eco 1-aop/ (p-1)c np-1 —l+ay ~l+ay,
Ay === | g/ Ve ()P (0ry, Y e e
Pxo Q
- _ (p - 1)COI ¢h1—agp/(p—1)co (_h/)P—l
P Ja (3.54)

X {QP [<Y1—1+a1 >'Y2_1+a2 ... Yr:llﬂxm Tt Y1—1+a1 o Yn—il_;am,l (Yr:11+um>l]

+ Y1_1+ul . Y;Z1+um . pvepvd}dx.
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It follows from (2.14) that

() = (- a) p Yo Yo Yo (3.55)

(p-Deo h
Then we have

Apt = (1 —ag)lor +---+ (1 = ap)lom

_ (3.56)
_ P(P 1)C0f (i)hl_u(]p/(p_l)cﬂ (_h,)p—l vedeyl—lwcl L Y,,]““"’dx.
pao Q
Hence, by (3.41), (3.42) and condition (A;) (or (Az)), we obtain
A()l = (1 - ao)F01 +--+ (1 — am)l"o,,, + O(l) (357)
For A, note that it is a direct consequence of [20, Theorem 3.2], that
dAd+1-k=0(d) (3.58)
as d tends to zero, a similar argument as before, we can obtain Agp, = O(1).
Now we assume that ag = a1 = --- = a;_1 = 0. By Lemma 2.1 and (2.14), we have
div(gh(-n)""Y[Vd)
= Y div(ph(-h')""Vd) + ph(-H)"" (") |VdP (3.59)
= Y ph(-h)"! <Ad - E) — aiph (=K7Y Y Y _r_ "
' d ! (p-1)co h
that is,
“i(p(_hl)pyl . Yi—lyi“ai
(3.60)

—M iv Py _(P“l)CO _np-lya k-1
-, d (#h(-1)"" v vd) S Ph(-H)Y, (Ad y )
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Hence, we have

i+1

aiA; = f Qp(i)( h)Pyl Yl+u,y—1+u,+1_ .Yr:11+umdx

Y—1+a,+1 . Y,;Hamdx

i+l

'El +E2.

Integration by parts gives

-1
E; = _MJ 9”¢h(—h')p 1Y“‘Vd V(Yﬁl“’””
p Q

i+1

JQGP[(p pl)Co (¢h( )y 1Ya,vd> (r- 1)Co¢h( WYy a,<

LY, ) dx

-1 _
+ (P ; )CO’[ d)h(_h/)p 1YiainV9PYi:11+uM » -Y,,]““’”dx
Q

=: E11 + Ex.

Since

!

/ ph
I+t |y ltam ) _ Aisl
(v = J%( 1+zx])—(p ek Yy Yy

we have

i+1 j TjH

m

j=i+l

= i (1 - a,-)l"i]-.

j=i+l
A similar argument as the estimation of I, in Step 1 shows that
Ep = O(1).
For E,, since

dAd + (1-k) = O(d)

aj ~l+a
Y Y]+1

1
Y, “mdx

k-1
d

Ad__)]

asd — 0, by (3.41) and (3.42), we can know that E, is bounded uniformly in ay, ..
Hence (3.50) has been proved. To prove (3.51), we use (3.59) once more and proceed similarly,

we omit the details.

19

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

R
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Step 4. We proceed to estimate I;:

= f $07|Vw[Pdx
Q

_ _ -Deo 7\’
S 0P pheor/ =Deo (_p\Py Ly, 1*“'"((’”— + _> dx,
((p 1)C0>I ¢ (=H) p p

where 77 = —ag+ (1 —a1)Y1 + -+ (1 — a;) Y1 - - Yy, Since 7] is small compared to (p — 1)co/p
we may use Taylor’s expansion to obtain

(o5 ) () () w5 e
(3.68)

Using this inequality we can bound I; by

L <ho+ Iy +In+ s, (3.69)

where
I = I 9P¢h—aop/(p—l)co (_h/)pY1—1+a1 "-Yr;llm'"dx
Q
= j QP(PhpfaoP/(pfl)coyl—Hal L. Y;;l“umdx
Q
= f qu;|w|pdx = J‘ qj|u|pdx’
Q Q

— p pp_]‘ (p_ l)CO)p_ZI 14 —agp/(p-1)co ( _1,/\P —1+a; ~1+a,—=2
Ilz_((p—1)6‘0> 2p < P 99 ¢h ()Y, Y, " dx

_ p- 1 < p )ZJ‘ 9P¢h—ﬂ0p/(p_1)60 (—h/)PY71+a] . Y—l+amﬁ2dx
2p \(p-Deco/ Ja 1 "

Gpd)h aop/ (p— 1)00( hl)Py—l+a1 . Y*lJramTl dx
2(P 1>Coj
(3.70)

We will prove that

L1, i3 = O(1) uniformly in ag, a1, ..., Am. (3.71)
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Firstly,

_ P : (p_l)c())pl’[ P 4(_1,\P1,—aop/(p-1)coy—1+a1  y—l+am—
= (520a) (75 oK) Y Yy T d

= L —ap or _h/ Ph—rxop/(p—l)c[)y—Hul . Y,:,lm’"dx
(p-1)e '
- 0 Q

+(1- al)Lf”(l)(—h’)Ph‘“Op/(”"DCUYf‘ LY (3.72)
+ (1 —am)j 0P (~h') P/ PNy f . yindx | + O(1)

——— (Ao + (1 —a)lo1 + -+ + (1 = ap)lom) + O(1).

(p- 1)
To estimate I13, by (1.15) and Y; = h;l, we have

Y- Y; <CY; for some C >0 (3.73)

and thus obtain

I < CagJ' OF p(—h' )P oo/ (p-Deoy Tl Ly T
Q

CIQQF¢(_h’)Phﬂop/(ﬁl)C(yyleral . Yr:zl-mm dx (3.74)
= I, + I
Note that
2
4 75 In : ((I;)) if (A1) occurs,
=] P-Da (3.75)
—FP—Inh@  if (A oceurs.
(r-1)"c

hence, if (A1) occurs, by the coarea formula and (3.42) we have

I, < Cagf 6”¢h‘“op/(p—l)cU (—h')pY{de
Q

0 ~1/(p-1 —ap/co
SCan ew(f (9r1) v )dr>
Q d

“ <I:(¢rk1)1/(p1)dr>l <¢dk—1>‘P/(P—1) ;Pll((g))] A 1dx
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< Cané (‘i’rk_l)l_p/(p_l) (Iw ((,brk_l)_l/(p_l)dr)_1_a0/co [ln ;11((1;)) 2dr

0 r

= Cagjj <J‘oo <¢rk1)—1/(P—1)dr>—1—ao/co n :((IrD)) 2d<Jm (¢r"*1>_1/(P—1)dr>

r r

< CaSCOJ’S [ln :(([T))) Zd (Jw <¢rk—1>—1/(lﬂ—1)dr>—rxo/c(]'

r

(3.76)

Denote

s = <J:o <¢rk_1>_1/(p_1)dr> o (3.77)

and then we have

6 _1 2
I, < Cagf [c _p=Daoy s] ds < 0(1). (3.78)
0 pao

The boundedness of Y; "', " ... Y;,"**" implies that I’, is bounded uniformly in the
a;’s. Hence we conclude that

f ¢|VulPdx - f glulPdx < I, + O(1) (3.79)
Q Q

uniformly in the a;’s. If (A;) occurs, we can also obtain the above estimate by similar
arguments with oo being replaced by D.

Step 5. Recalling the definition of I,,1 4[] we obtain from (3.79)

Liaglu] < f SR Rer Ry Ly e

~2(p-1)g
x <ﬁ2 —mZ_lle---Yf>dx+O(l) (3.80)
i=1
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where

J= I 9?4, (_h')Ph*aop/(pfl)cf)ylf“al ...Y;l““m
Q

m m-1 m
x <a5 + (M=) Y Y= DY Y= 2m0 > (1-a)) Yy Y
i=1

i=1 j=1
m-1 m

+23 Y (1-a)(1-a) Y7 Y Yiq---Y; )dx (3.81)
i=1 j=i+1

m m
= (XSAO + A, + Z(LXIZ - 2[Xi>Ai - 2“02(1 - (Xj)roj
i=1 =1

m-1 m
+ Z Z 2(1 - ai) (1 - a,-)l",-j.

i=1 j=i+1

Step 6. We intend to take the limit @y — 01in (3.81). By (3.50) and (3.51), analogues to [15,
Step 7], we have

m m m-1 m
LX(ZJAO — 2“02(1 — [X]')ro]' = Z(di — a?)Ai + Z Z (2[1,’ — 1)(1 — a]-)l",-]- + O(l) (382)
j=1 i=1 i=1 j=itl

All the terms in the last expression remain bounded as ay — 0, taking the limit in (3.81) we
obtain

m m=1 m
J=An-DaiAi+ > > (1-a)T;;+O0(1) (ag=0), (3.83)
i1

i=1 j=i+1

where the O(1) is uniform with respect to ay, ..., a,,. Next taking ¢; — 0,...,a,,-1 — 0in
order, the same argument as before gives

J=0-an)A,+01) (xp=a1=-=ay1=0) (3.84)
uniformly in a,,. Combing (3.80) and (3.84), we conclude that

L1, [u] B p (1-a,)A,,+0(1) . p

[o¥h® - hylulfPdx ~ 2(p-1)c; Am 2(p-1)c?

(3.85)

as a, — 0, since A,, — oo as a,;, — 0by (3.48). This completes the proof. m
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