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1. Introduction

Let {Xn, n ≥ 1} be a random variable sequence defined on a fixed probability space (Ω,F, P)
and Sn =

∑n
i=1 Xi for each n ≥ 1. Let n and m be positive integers. Write Fm

n = σ(Xi, n ≤ i ≤
m). Given σ-algebras B, R in F, let

ϕ(B,R) = sup
A∈B,B∈R,P(A)>0

|P(B | A) − P(B)|. (1.1)

Define the ϕ-mixing coefficients by

ϕ(n) = sup
k≥1

ϕ
(
Fk

1 ,F∞
k+n

)
, n ≥ 0. (1.2)

Definition 1.1. A random variable sequence {Xn, n ≥ 1} is said to be a ϕ-mixing random
variable sequence if ϕ(n) ↓ 0 as n → ∞.

The concept of ϕ-mixing random variables was introduced by Dobrushin [1] and
many applications have been found. See, for example, Dobrushin [1], Utev [2], and Chen [3]
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for central limit theorem, Herrndorf [4] and Peligrad [5] for weak invariance principle, Sen
[6, 7] for weak convergence of empirical processes, Iosifescu [8] for limit theorem, Peligrad
[9] for Ibragimov-Iosifescu conjecture, Shao [10] for almost sure invariance principles, Hu
and Wang [11] for large deviations, and so forth. When these are compared with the
corresponding results of independent random variable sequences, there still remains much
to be desired. The main purpose of this paper is to study the maximal inequality for ϕ-mixing
sequences, bywhichwe can get theHájek-Rényi-type inequality, strong law of large numbers,
strong growth rate, and the integrability of supremum for ϕ-mixing sequences.

Throughout the paper,C denotes a positive constant whichmay be different in various
places. The main results of this paper depend on the following lemmas.

Lemma 1.2 (see Lu and Lin [12]). Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables.
Let X ∈ Lp(Fk

1 ), Y ∈ Lq(F∞
k+n), p ≥ 1, q ≥ 1, and 1/p + 1/q = 1. Then

|EXY − EXEY | ≤ 2
(
ϕ(n)

)1/p(
E|X|p)1/p(E|Y |q)1/q. (1.3)

Lemma 1.3 (see Shao [10]). Let {Xn, n ≥ 1} be a ϕ-mixing sequence. Put Ta(n) =
∑a+n

i=a+1 Xi.
Suppose that there exists an array {Ca,n} of positive numbers such that

ET2
a(n) ≤ Ca,n for every a ≥ 0, n ≥ 1. (1.4)

Then for every q ≥ 2, there exists a constant C depending only on q and ϕ(·) such that

E

(

max
1≤j≤n

∣
∣Ta(j)

∣
∣q
)

≤ C

[

C
q/2
a,n + E

(

max
a+1≤i≤a+n

|Xi|q
)]

(1.5)

for every a ≥ 0 and n ≥ 1.

Lemma 1.4 (see Hu et al. [13]). Let b1, b2, . . . be a nondecreasing unbounded sequence of positive
numbers and let α1, α2, . . . be nonnegative numbers. Let r and C be fixed positive numbers. Assume
that for each n ≥ 1,

E

(

max
1≤l≤n

|Sl|
)r

≤ C
n∑

l=1

αl, (1.6)

∞∑

l=1

αl

br
l

< ∞, (1.7)

then

lim
n→∞

Sn

bn
= 0 a.s., (1.8)

and with the growth rate

Sn

bn
= O

(
βn
bn

)

a.s., (1.9)
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where

βn = max
1≤k≤n

bkv
δ/r
k

, ∀0 < δ < 1, vn =
∞∑

k=n

αk

br
k

, lim
n→∞

βn
bn

= 0,

E

(

max
1≤l≤n

∣
∣
∣
∣
Sl

bl

∣
∣
∣
∣

r)

≤ 4C
n∑

l=1

αl

br
l

< ∞,

E

(

sup
l≥1

∣
∣
∣
∣
Sl

bl

∣
∣
∣
∣

r
)

≤ 4C
∞∑

l=1

αl

brl
< ∞.

(1.10)

If further we assume that αn > 0 for infinitely many n, then

E

(

sup
l≥1

∣
∣
∣
∣
Sl

βl

∣
∣
∣
∣

r
)

≤ 4C
∞∑

l=1

αl

βrl
< ∞. (1.11)

Lemma 1.5 (see Fazekas and Klesov [14] and Hu [15]). Let b1, b2, . . . be a nondecreasing
unbounded sequence of positive numbers and let α1, α2, . . . be nonnegative numbers. Denote Λk =
α1 + α2 + · · · + αk for k ≥ 1. Let r be a fixed positive number satisfying (1.6). If

∞∑

l=1

Λl

(
1
br
l

− 1
br
l+1

)

< ∞, (1.12)

Λn

brn
is bounded, (1.13)

then (1.8)–(1.11) hold.

2. Maximal Inequality for ϕ-Mixing Sequences

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables satisfying
∑∞

n=1 ϕ
1/2(n) < ∞. Assume that EXn = 0 and EX2

n < ∞ for each n ≥ 1. Then there exists a
constant C depending only on ϕ(·) such that for any n ≥ 1 and a ≥ 0

E

(
a+n∑

i=a+1

Xi

)2

≤ C
a+n∑

i=a+1

EX2
i , (2.1)

E

⎛

⎝max
1≤j≤n

∣
∣
∣
∣
∣

a+j∑

i=a+1

Xi

∣
∣
∣
∣
∣

2⎞

⎠ ≤ C
a+n∑

i=a+1

EX2
i . (2.2)
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In particular,

E

(
n∑

i=1

Xi

)2

≤ C
n∑

i=1

EX2
i , (2.3)

E

⎛

⎝max
1≤j≤n

∣
∣
∣
∣
∣

j∑

i=1

Xi

∣
∣
∣
∣
∣

2⎞

⎠ ≤ C
n∑

i=1

EX2
i , (2.4)

where C may be different in various places.

Proof. By Lemma 1.2 for p = q = 2, we can see that

E

(
a+n∑

i=a+1

Xi

)2

=
a+n∑

i=a+1

EX2
i + 2

∑

a+1≤i<j≤a+n
E
(
XiXj

)

≤
a+n∑

i=a+1

EX2
i + 4

∑

a+1≤i<j≤a+n
ϕ1/2(j − i

)(
EX2

i

)1/2(
EX2

j

)1/2

≤
a+n∑

i=a+1

EX2
i + 2

n−1∑

k=1

a+n−k∑

i=a+1

ϕ1/2(k)
(
EX2

i + EX2
k+i

)

≤
(

1 + 4
∞∑

k=1

ϕ1/2(k)

)
a+n∑

i=a+1

EX2
i

=̇C
a+n∑

i=a+1

EX2
i ,

(2.5)

which implies (2.1). By (2.1) and Lemma 1.3 (take q = 2), we can get

E

⎛

⎝max
1≤j≤n

∣
∣
∣
∣
∣

a+j∑

i=a+1

Xi

∣
∣
∣
∣
∣

2⎞

⎠ ≤ C

[
a+n∑

i=a+1

EX2
i + E

(

max
a+1≤i≤a+n

X2
i

)]

≤ C
a+n∑

i=a+1

EX2
i .

(2.6)

The proof is completed.

3. Hájek-Rényi-Type Inequality for ϕ-Mixing Sequences

In this section, we will give the Hájek-Rényi-type inequality for ϕ-mixing sequences, which
can be applied to obtain the strong law of large numbers and the integrability of supremum.

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables satisfying
∑∞

n=1 ϕ
1/2(n) < ∞ and let {bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Then for



Journal of Inequalities and Applications 5

any ε > 0 and any integer n ≥ 1,

P

⎧
⎨

⎩
max
1≤k≤n

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≥ ε

⎫
⎬

⎭
≤ 4C

ε2

n∑

j=1

Var
(
Xj

)

b2j
, (3.1)

where C is defined in (2.4) in Theorem 2.1.

Proof. Without loss of generality, we assume that bn ≥ 1 for all n ≥ 1. Let α =
√
2. For i ≥ 0,

define

Ai =
{
1 ≤ k ≤ n : αi ≤ bk < αi+1

}
. (3.2)

For Ai /= ∅, we let v(i) = max{k : k ∈ Ai} and tn be the index of the last nonempty set Ai.
Obviously,AiAj = ∅ if i /= j and

∑tn
i=0 Ai = {1, 2, . . . , n}. It is easily seen that αi ≤ bk ≤ bv(i) < αi+1

if k ∈ Ai and {Xn−EXn, n ≥ 1} is also a sequence of ϕ-mixing random variables. ByMarkov’s
inequality and (2.4), we have

P

⎧
⎨

⎩
max
1≤k≤n

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≥ ε

⎫
⎬

⎭

= P

⎧
⎨

⎩
max

0≤i≤tn,Ai /= ∅
max
k∈Ai

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≥ ε

⎫
⎬

⎭

≤
tn∑

i=0,Ai /= ∅
P

⎧
⎨

⎩

1
αi

max
1≤k≤v(i)

∣
∣
∣
∣
∣
∣

k∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≥ ε

⎫
⎬

⎭

≤ 1
ε2

tn∑

i=0,Ai /= ∅

1
α2i

E

⎧
⎨

⎩
max

1≤k≤v(i)

∣
∣
∣
∣
∣
∣

k∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣

2⎫
⎬

⎭

≤ C

ε2

tn∑

i=0,Ai /= ∅

1
α2i

v(i)∑

j=1

Var
(
Xj

)

≤ C

ε2

n∑

j=1

Var
(
Xj

) tn∑

i=0,Ai /= ∅,v(i)≥j

1
α2i

.

(3.3)

Now we estimate
∑tn

i=0,Ai /= ∅,v(i)≥j(1/α
2i). Let i0 = min{i : Ai /= ∅, v(i) ≥ j}. Then bj ≤ bv(i0) <

αi0+1 follows from the definition of v(i). Therefore,

tn∑

i=0,Ai /= ∅,v(i)≥j

1
α2i

<
∞∑

i=i0

1
α2i

=
1

1 − 1/α2

1
α2i0

<
α2

1 − 1/α2

1
b2j

=
4
b2j

. (3.4)

Thus, (3.1) follows from (3.3) and (3.4) immediately.
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Theorem 3.2. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables satisfying
∑∞

n=1 ϕ
1/2(n) < ∞ and let {bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Then for

any ε > 0 and any positive integers m < n,

P

⎛

⎝max
m≤k≤n

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠ ≤ 4C
ε2

⎛

⎝
m∑

j=1

Var
(
Xj

)

b2m
+ 4

n∑

j=m+1

Var
(
Xj

)

b2j

⎞

⎠, (3.5)

where C is defined in (3.1).

Proof. Observe that

max
m≤k≤n

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣
∣

1
bm

m∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
+ max

m+1≤k≤n

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=m+1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
, (3.6)

thus

P

⎛

⎝max
m≤k≤n

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≥ ε

⎞

⎠

≤ P

⎛

⎝

∣
∣
∣
∣
∣
∣

1
bm

m∑

j=1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≥ ε

2

⎞

⎠ + P

⎛

⎝ max
m+1≤k≤n

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=m+1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
≥ ε

2

⎞

⎠=̇ I + II.

(3.7)

For I, by Markov’s inequality and (2.3), we have

I ≤ 4
ε2b2m

E

⎛

⎝
m∑

j=1

(
Xj − EXj

)
⎞

⎠

2

≤ 4C
ε2

m∑

j=1

Var
(
Xj

)

b2m
. (3.8)

For II, we will apply Theorem 3.1 to {Xm+i, 1 ≤ i ≤ n −m} and {bm+i, 1 ≤ i ≤ n −m}. Noting
that

max
m+1≤k≤n

∣
∣
∣
∣
∣
∣

1
bk

k∑

j=m+1

(
Xj − EXj

)
∣
∣
∣
∣
∣
∣
= max

1≤k≤n−m

∣
∣
∣
∣
∣
∣

1
bm+k

k∑

j=1

(
Xm+j − EXm+j

)
∣
∣
∣
∣
∣
∣
, (3.9)

thus, by Theorem 3.1, we get

II ≤ 4C

(ε/2)2

n−m∑

j=1

Var
(
Xm+j

)

b2m+j

=
16C
ε2

n∑

j=m+1

Var
(
Xj

)

b2j
. (3.10)

Therefore, the desired result (3.5) follows from (3.7)–(3.10) immediately.
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Theorem 3.3. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables satisfying
∑∞

n=1 ϕ
1/2(n) < ∞ and let {bn, n ≥ 1} be a nondecreasing sequence of positive numbers. Denote

Tn =
∑n

i=1(Xi − EXi) for n ≥ 1. Assume that

∞∑

j=1

Var
(
Xj

)

b2j
< ∞, (3.11)

then for any r ∈ (0, 2),

E

(

sup
n≥1

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣

r
)

≤ 1 +
4Cr
2 − r

∞∑

j=1

Var
(
Xj

)

b2j
< ∞, (3.12)

where C is defined in (3.1). Furthermore, if limn→∞bn = +∞, then

lim
n→∞

1
bn

n∑

j=1

(
Xj − EXj

)
= 0 a.s. (3.13)

Proof. By the continuity of probability and Theorem 3.1, we get

E

(

sup
n≥1

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣

r
)

=
∫∞

0
P

(

sup
n≥1

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣

r

> t

)

dt

=
∫1

0
P

(

sup
n≥1

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣

r

> t

)

dt +
∫∞

1
P

(

sup
n≥1

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣

r

> t

)

dt

≤ 1 +
∫∞

1
P

(

sup
n≥1

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣ > t1/r

)

dt

≤ 1 +
∫∞

1
lim

N→∞
P

(

max
1≤n≤N

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣ > t1/r

)

dt

≤ 1 + 4C
∞∑

j=1

Var
(
Xj

)

b2j

∫∞

1
t−2/rdt

= 1 +
4Cr
2 − r

∞∑

j=1

Var
(
Xj

)

b2j
< ∞.

(3.14)

Observe that

P

( ∞⋃

n=m

(∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣ > ε

))

= P

( ∞⋃

N=m

(

max
m≤n≤N

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣ > ε

))

= lim
N→∞

P

(

max
m≤n≤N

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣ > ε

)

. (3.15)
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By Theorem 3.2, we have that

P

(

max
m≤n≤N

∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣ > ε

)

≤ 4C
ε2

⎛

⎝
m∑

j=1

Var
(
Xj

)

b2m
+ 4

N∑

j=m+1

Var
(
Xj

)

b2j

⎞

⎠. (3.16)

Hence, by (3.11) and Kronecker’s Lemma, it follows that

lim
m→∞

P

( ∞⋃

n=m

(∣
∣
∣
∣
Tn
bn

∣
∣
∣
∣ > ε

))

= 0, ∀ε > 0, (3.17)

which is equivalent to

lim
n→∞

1
bn

n∑

j=1

(
Xj − EXj

)
= 0 a.s. (3.18)

So the desired results are proved.

4. Strong Law of Large Numbers and Growth Rate
for ϕ-Mixing Sequences

Theorem 4.1. Let {Xn, n ≥ 1} be a sequence of mean zero ϕ-mixing random variables satisfying
∑∞

n=1 ϕ
1/2(n) < ∞ and let {bn, n ≥ 1} be a nondecreasing unbounded sequence of positive numbers.

Assume that

∞∑

n=1

EX2
n

b2n
< ∞, (4.1)

then

lim
n→∞

Sn

bn
= 0 a.s., (4.2)

and with the growth rate

Sn

bn
= O

(
βn
bn

)

a.s., (4.3)
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where

βn = max
1≤k≤n

bkv
δ/2
k

, ∀ 0 < δ < 1, vn =
∞∑

k=n

αk

b2k
, lim

n→∞
βn
bn

= 0,

αk = CEX2
k, k ≥ 1, where C is defined in (2.4),

(4.4)

E

(

max
1≤l≤n

∣
∣
∣
∣
Sl

bl

∣
∣
∣
∣

2
)

≤ 4
n∑

l=1

αl

b2l
< ∞,

E

(

sup
l≥1

∣
∣
∣
∣
Sl

bl

∣
∣
∣
∣

2
)

≤ 4
∞∑

l=1

αl

b2
l

< ∞.

(4.5)

If further we assume that αn > 0 for infinitely many n, then

E

(

sup
l≥1

∣
∣
∣
∣
Sl

βl

∣
∣
∣
∣

2
)

≤ 4
∞∑

l=1

αl

β2
l

< ∞. (4.6)

Proof. By (2.4) in Theorem 2.1, we have

E

(

max
1≤k≤n

|Sk|2
)

≤ C
n∑

i=1

EX2
i =

n∑

k=1

αk. (4.7)

It follows by (4.1) that

∞∑

n=1

αn

b2n
= C

∞∑

n=1

EX2
n

b2n
< ∞. (4.8)

Thus, (4.2)–(4.6) follow from (4.7), (4.8), and Lemma 1.4 immediately. We complete the proof
of the theorem.

Theorem 4.2. Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables with
∑∞

n=1 ϕ
1/2(n) < ∞.

1 ≤ p < 2. Denote Qn = max1≤k≤nEX2
k
for n ≥ 1 and Q0 = 0. Assume that

∞∑

n=1

Qn

n2/p
< ∞, (4.9)

then

lim
n→∞

1
n1/p

n∑

i=1

(Xi − EXi) = 0 a.s., (4.10)
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and with the growth rate

1
n1/p

n∑

i=1

(Xi − EXi) = O

(
βn

n1/p

)

a.s., (4.11)

where

βn = max
1≤k≤n

k1/pvδ/2
k , ∀0 < δ < 1, vn =

∞∑

k=n

αk

k2/p
, lim

n→∞
βn

n1/p
= 0,

αk = C(kQk − (k − 1)Qk−1), k ≥ 1, where C is defined in (2.4),

(4.12)

E

(

max
1≤l≤n

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

2
)

≤ 4
n∑

l=1

αl

l2/p
< ∞, (4.13)

E

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

2
)

≤ 4
∞∑

l=1

αl

l2/p
< ∞. (4.14)

If further we assume that αn > 0 for infinitely many n, then

E

(

sup
l≥1

∣
∣
∣
∣
Sl

βl

∣
∣
∣
∣

2
)

≤ 4
∞∑

l=1

αl

β2
l

< ∞. (4.15)

In addition, for any r ∈ (0, 2),

E

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

r
)

≤ 1 +
4r

2 − r

∞∑

l=1

αl

l2/p
< ∞. (4.16)

Proof. Assume that EXn = 0, bn = n1/p, and Λn =
∑n

l=1 αl, n ≥ 1. By (2.4) in Theorem 2.1, we
can see that

E

⎛

⎝max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣

2
⎞

⎠ ≤ C
n∑

i=1

EX2
i ≤ CnQn =

n∑

k=1

αk. (4.17)

It is a simple fact that αk ≥ 0 for all k ≥ 1. It follows by (4.9) that

∞∑

l=1

Λl

(
1
b2
l

− 1
b2
l+1

)

= C
∞∑

l=1

lQl

(
1

l2/p
− 1

(l + 1)2/p

)

≤ 2C
p

∞∑

l=1

Ql

l2/p
< ∞.

(4.18)
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That is to say (1.12) holds. By Remark 2.1 in Fazekas and Klesov [14], (1.12) implies (1.13).
By Lemma 1.5, we can obtain (4.10)–(4.15) immetiately. By (4.14), it follows that

E

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

r
)

=
∫∞

0
P

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

r

> t

)

dt

≤ 1 +
∫∞

1
P

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣ > t1/r

)

dt

≤ 1 + E

(

sup
l≥1

∣
∣
∣
∣
Sl

l1/p

∣
∣
∣
∣

2
)∫∞

1
t−2/rdt

≤ 1 +
4r

2 − r

∞∑

l=1

αl

l2/p
< ∞.

(4.19)

The proof is completed.

Remark 4.3. By using the maximal inequality, we get the Hájek-Rényi-type inequality, the
strong law of large numbers and the strong growth rate for ϕ-mixing sequences. In addition,
we get some new bounds of probability inequalities for ϕ-mixing sequences, such as (3.1),
(3.5), (3.12), (4.5)–(4.6), and (4.13)–(4.16).

Acknowledgments

The authors are most grateful to the Editor Sever Silvestru Dragomir, the referee Professor
Mihaly Bencze and an anonymous referee for careful reading of the manuscript and valuable
suggestions and comments which helped to significantly improve an earlier version of this
paper. This work was supported by the National Natural Science Foundation of China (Grant
nos. 10871001, 60803059) and the Innovation Group Foundation of Anhui University.

References

[1] R. L. Dobrushin, “The central limit theorem for non-stationary Markov chain,” Theory of Probability
and Its Applications, vol. 1, no. 4, pp. 72–88, 1956.

[2] S. A. Utev, “On the central limit theorem for ϕ-mixing arrays of random variables,” Theory of
Probability and Its Applications, vol. 35, no. 1, pp. 131–139, 1990.

[3] D. C. Chen, “A uniform central limit theorem for nonuniform ϕ-mixing random fields,” The Annals of
Probability, vol. 19, no. 2, pp. 636–649, 1991.

[4] N. Herrndorf, “The invariance principle for ϕ-mixing sequences,” Zeitschrift für Wahrscheinlichkeits-
theorie und Verwandte Gebiete, vol. 63, no. 1, pp. 97–108, 1983.

[5] M. Peligrad, “An invariance principle for ϕ-mixing sequences,” The Annals of Probability, vol. 13, no.
4, pp. 1304–1313, 1985.

[6] P. K. Sen, “A note on weak convergence of empirical processes for sequences of ϕ-mixing random
variables,” Annals of Mathematical Statistics, vol. 42, no. 6, pp. 2131–2133, 1971.

[7] P. K. Sen, “Weak convergence of multidimensional empirical processes for stationary ϕ-mixing
processes,” The Annals of Probability, vol. 2, no. 1, pp. 147–154, 1974.

[8] J. Iosifescu, “Limit theorem for ϕ-mixing sequences,” in Proceedings of the 5th Conference on Probability
Theory, pp. 1–6, September 1977.

[9] M. Peligrad, “On Ibragimov-Iosifescu conjecture for ϕ-mixing sequences,” Stochastic Processes and
Their Applications, vol. 35, no. 2, pp. 293–308, 1990.



12 Journal of Inequalities and Applications

[10] Q. M. Shao, “Almost sure invariance principles for mixing sequences of random variables,” Stochastic
Processes and Their Applications, vol. 48, no. 2, pp. 319–334, 1993.

[11] S. Hu and X. Wang, “Large deviations for some dependent sequences,” Acta Mathematica Scientia.
Series B, vol. 28, no. 2, pp. 295–300, 2008.

[12] C. R. Lu and Z. Y. Lin, Limit Theory for Mixing Dependent Sequences, Science Press, Beijing, China, 1997.
[13] S. Hu, G. Chen, and X. Wang, “On extending the Brunk-Prokhorov strong law of large numbers for

martingale differences,” Statistics & Probability Letters, vol. 78, no. 18, pp. 3187–3194, 2008.
[14] I. Fazekas and O. Klesov, “A general approach to the strong law of large numbers,” Theory of

Probability and Its Applications, vol. 45, no. 3, pp. 436–449, 2001.
[15] S. Hu, “Some new results for the strong law of large numbers,” Acta Mathematica Sinica, vol. 46, no. 6,

pp. 1123–1134, 2003 (Chinese).


	1. Introduction
	2. Maximal Inequality for ψ-Mixing Sequences
	3. Hájek-Rényi-Type Inequality for ψ-Mixing Sequences
	4. Strong Law of Large Numbers and Growth Rate for ψ-Mixing Sequences
	Acknowledgments
	References

