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1. Introduction

Let Kn denote the set of convex bodies (compact, convex subsets with nonempty interiors)
in Euclidean space R

n, for the set of convex bodies containing the origin in their interiors
and the set of origin-symmetric convex bodies in R

n, we, respectively, write Kn
o and Kn

s . Let
Sn−1 denote the unit sphere in R

n, and denote by V (K) the n-dimensional volume of bodyK,
for the standard unit ball B in R

n, and denote ωn = V (B). The groups of nonsingular linear
transformations and the group of special linear transformations are denoted by GL(n) and
SL(n), respectively.

Suppose that R is the set of real numbers. If K ∈ Kn, then its support function, hK =
h(K, ·): Rn → R, is defined by (see [1, page 16])

h(K,x) = max
{
x · y : y ∈ K

}
, x ∈ R

n, (1.1)

where x · y denotes the standard inner product of x and y.
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A convex body K ∈ Kn is said to have a curvature function f(K, ·) : Sn−1 → R, if
its surface area measure S(K, ·) is absolutely continuous with respect to spherical Lebesgue
measure S, and

dS(K, ·)
dS

= f(K, ·). (1.2)

For K ∈ Kn
o , and real p ≥ 1, the Lp-surface area measure, Sp(K, ·), of K is defined by

(see [2, 3])

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p. (1.3)

Equation (1.3) is also called Radon-Nikodym derivative, and the measure Sp(K, ·) is
absolutely continuous with respect to surface area measure S(K, ·).

A convex body K ∈ Kn
o is said to have a Lp-curvature function (see [2]) fp(K, ·) :

Sn−1 → R, if its Lp-surface area measure Sp(K, ·) is absolutely continuous with respect to
spherical Lebesgue measure S, and

dSp(K, ·)
dS

= fp(K, ·). (1.4)

IfK is a compact star shaped (about the origin) in R
n, its radial function, ρK = ρ(K, ·) :

R
n \ {0} → [0,+∞), is defined by (see [1, page 18])

ρ(K,x) = max{λ ≥ 0 : λx ∈ K}, x ∈ R
n \ {0}. (1.5)

If ρK is positive and continuous,K will be called a star body (about the origin). Let Sn
o denote

the set of star bodies (about the origin) in R
n. Two star bodies K and L are said to be dilates

(of one another) if ρK(u)/ρL(u) is independent of u ∈ Sn−1.
For the radial function, if c > 0, then (see [1, page 18])

ρK(cx) =
1
c
ρK(x). (1.6)

From (1.6), we have that, for μ > 0,

ρμK(x) = max
{
λ ≥ 0 : λx ∈ μK

}
= max

{
λ ≥ 0 : λ

x

μ
∈ K

}
= ρK

(
x

μ

)
= μρK(x). (1.7)

Let Fn
o , Fn

s denote the set of all bodies in Kn
o , Kn

s , respectively, that have a positive
continuous curvature function.

Lutwak in [2] showed the notion of Lp-curvature image as follows. For each K ∈ Fn
o

and real p ≥ 1, define ΛpK ∈ Sn
o , the Lp-curvature image of K, by

fp(K, ·) = ωn

V
(
ΛpK

)ρ
(
ΛpK, ·)n+p. (1.8)
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Note that, for p = 1, this definition differs from the definition of classical curvature image (see
[2]). For the study of classical curvature image [1, 4–7].

Further, he proved that if K ∈ Fn
s and p ≥ 1, then

V
(
ΛpK

) ≤ ω
(2p−n)/p
n V (K)(n−p)/p (1.9)

with equality if and only if K is an ellipsoid centered at the origin.
In this paper, we continuously study the Lp-curvature image for convex bodies. First,

we give a monotonic property of Lp-curvature image as follows.

Theorem 1.1. If K,L ∈ Fn
o , p ≥ 1, and ΛpK ⊆ ΛpL, then

V
(
ΛpK

)
V (K)(n−p)/n ≤ V

(
ΛpL

)
V (L)(n−p)/n (1.10)

with equality for n = p > 1 if and only if K and L are dilates, for n/= p > 1 if and only if K = L, and
for n/= p = 1 if and only if K and L are translation.

Next, we establish an inequality for the Lp-curvature image as follows.

Theorem 1.2. If K ∈ Fn
s , and p ≥ 1, then

V
(
ΛpK

) ≤ ω
n/p
n V (K∗)(p−n)/p (1.11)

with equality if and only if K is an ellipsoid.

Further, we get the following inequality for the polar of the Lp-curvature image.

Theorem 1.3. If K ∈ Fn
o , ΛpK ∈ Kn

o , and p ≥ 1, then

V
(
Λ∗

pK
)
≤ ω

n/p
n V (K)(p−n)/p (1.12)

with equality for p > 1 if and only if Λ∗
pK and K are dilates, and for p = 1 if and only if Λ∗

pK and K
are homothetic.

HereΛ∗
pK denote the polar ofΛpK, rather than (ΛpK)∗. Compare with inequality (1.9),

we see that inequality (1.12) may be regarded as a dual form of inequality (1.9).
Finally, we obtain an interesting inequality for the Lp-curvature image and Lp-

projection body ΠpK as follows.

Theorem 1.4. If K ∈ Fn
o , p ≥ 1, then

V
(
ΠpK

) ≥ V
(
ΛpK

)
(1.13)

with equality if and only if K is an ellipsoid centered at the origin.
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2. Preliminaries

2.1. Polar of Convex Body

If K ∈ Kn
o , the polar body of K, K∗, is defined by (see [1, page 20])

K∗ =
{
x ∈ R

n : x · y ≤ 1, ∀y ∈ K
}
. (2.1)

From the definition (2.1), we know that if K ∈ Kn
o , then the support and radial

functions of K∗, the polar body of K, are defined, respectively, by (see [1])

hK∗ =
1
ρK

, ρK∗ =
1
hK

. (2.2)

The Blaschke-Santaló inequality can be stated that (see [1] or [7]): If K ∈ Kn
s , then

V (K)V (K∗) ≤ ω2
n (2.3)

with equality if and only if K is an ellipsoid.

2.2. Lp-Mixed Volume

For K,L ∈ Kn
o and ε > 0, the Firey Lp-combination K+pε · L ∈ Kn

o is defined by (see [8])

h
(
K+pε · L, ·

)p = h(K, ·)p + εh(L, ·)p (2.4)

where “·” in ε · L denotes the Firey scalar multiplication.
If K,L ∈ Kn

o in R
n, then for p ≥ 1, the Lp-mixed volume, Vp(K,L), of the K and L is

defined by (see [9])

n

p
Vp(K,L) = lim

ε→ 0+

V
(
K+pε · L

) − V (K)
ε

. (2.5)

Corresponding to each K ∈ Kn
o , there is a positive Borel measure, Sp(K, ·), on Sn−1

such that (see [9])

Vp(K,Q) =
1
n

∫

Sn−1
h(Q,u)pdSp(K,u) (2.6)

for each Q ∈ Kn
o . The measure Sp(K, ·) is just the Lp-surface area measure of K.

From the formula (2.6) and definition (1.3), we immediately get that

Vp(K,K) =
1
n

∫

Sn−1
h(K,u)dS(K,u) = V (K). (2.7)



Journal of Inequalities and Applications 5

The Lp-Minkowski inequality states that (see [9]) if K,L ∈ Kn
o and p ≥ 1, then

Vp(K,L) ≥ V (K)(n−p)/nV (L)p/n (2.8)

with equality for p > 1 if and only if K and L are dilates, and for p = 1 if and only if K and L
are homothetic.

2.3. Lp-Dual Mixed Volume

ForK,L ∈ Sn
o , and ε > 0, the Lp-harmonic radial combinationK+−pε ·L is the star body whose

radial function is defined by (see [2])

ρ
(
K+−pε · L, ·

)−p = ρ(K, ·)−p + ερ(L, ·)−p. (2.9)

Note that here “ε · L” and the Firey scalar multiplication “ε · L” are different.
If K,L ∈ Sn

o , for p ≥ 1, the Lp-dual mixed volume, Ṽ−p(K,L), of the K and L is defined
by (see [2])

n

−p Ṽ−p(K,L) = lim
ε→ 0+

V
(
K+−pε · L

) − V (K)
ε

. (2.10)

The definition above and the polar coordinate formula for volume give the following
integral representation of the Lp-dual mixed volume Ṽ−p(K,L) of K,L ∈ Sn

o :

Ṽ−p(K,L) =
1
n

∫

Sn−1
ρ(K,u)n+pρ(L, u)−pdS(u), (2.11)

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
From the formula (2.11), it follows immediately that, for each K ∈ Sn

o and p ≥ 1,

Ṽ−p(K,K) = V (K) =
1
n

∫

Sn−1
ρ(K,u)ndS(u). (2.12)

The Minkowski inequality for the Lp-dual mixed volume Ṽ−p is that if K,L ∈ Sn
o and

p ≥ 1 (see [2]), then

Ṽ−p(K,L) ≥ V (K)(n+p)/nV (L)−p/n (2.13)

with equality if and only if K and L are dilates.
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2.4. Lp-Affine Surface Area

Lutwak in [2] showed that for each K ∈ Kn
o and p ≥ 1, the Lp-affine surface area, Ωp(K), of

K can be defined by

n−p/nΩp(K)(n+p)/n = inf
{
nVp(K,Q∗)V (Q)p/n : Q ∈ Sn

o

}
. (2.14)

For p = 1, Ωp(K) is just classical affine surface area Ω(K) by Leichtweiβ (see [4]). Further,
Lutwak proved that if K ∈ Fn

o and p ≥ 1, then the Lp-affine surface area of K has the integral
representation

Ωp(K) =
∫

Sn−1
fp(K,u)n/(n+p)dS(u). (2.15)

2.5. Lp-Projection Body

The notion of Lp-projection body is shown by Lutwak et al. (see [10]). For K ∈ Kn
o and

p ≥ 1, the Lp-projection body,ΠpK, ofK is the origin-symmetric convex body whose support
function is given by

h
p

ΠpK
(u) =

1
nωncn−2,p

∫

Sn−1
|u · v|pdSp(K,v) (2.16)

for all u ∈ Sn−1. Here Sp(K, ·) is just the Lp-surface area measure of K, and

cn,p =
ωn+p

ω2ωnωp−1
. (2.17)

2.6. Lp-Centroid Body

Lutwak and Zhang in [11] introduced the notion of Lp-centroid body. For each compact star-
shaped body about the originK ⊂ R

n and for real number p ≥ 1, the polar of Lp-centroid body,
Γ∗pK (rather than (ΓpK)∗), of K is the origin-symmetric convex body, whose radial function
is defined by [11]

ρ
−p
Γ∗pK

(u) =
1

cn,pV (K)

∫

K

|u · x|pdx (2.18)

for all u ∈ Sn−1, where cn,p satisfy (2.17).
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From definition (2.18) and equality (2.2), if K ∈ Sn
o , then the Lp-centroid body ΓpK of

K is the origin-symmetric convex body whose support function is given by

h
p

ΓpK
(u) =

1
cn,pV (K)

∫

K

|u · x|pdx

=
1

(
n + p

)
cn,pV (K)

∫

Sn−1
|u · v|pρn+pK (v)dS(v)

(2.19)

for all u ∈ Sn−1.

3. The Proof of Theorems

In order to prove our theorems, the following lemmas are essential.

Lemma 3.1. If K ∈ Fn
o , p ≥ 1 and the constant c > 0, then

ΛpcK = c(n−p)/pΛpK. (3.1)

Proof. For c > 0, from (1.3) and (1.4), then

fp(cK, ·) = cn−pfp(K, ·), (3.2)

this together with (1.7) and (1.8), and notice that V (λQ) = λnV (Q) for λ > 0, we get that

ρ
(
ΛpcK, ·)n+p

V
(
ΛpcK

) =
fp(cK, ·)

ωn
= cn−p

fp(K, ·)
ωn

= cn−p
ρ
(
ΛpK, ·)n+p

V
(
ΛpK

) =
ρ
(
c(n−p)/pΛpK, ·

)n+p

V
(
c(n−p)/pΛpK

) ,

(3.3)

that is,

ρ
(
ΛpcK, ·) =

⎡

⎢
⎣

V
(
ΛpcK

)

V
(
c(n−p)/pΛpK

)

⎤

⎥
⎦

1/(n+p)

ρ
(
c(n−p)/pΛpK, ·

)
, (3.4)

and this together with formula (2.12), we have that

V
(
ΛpcK

)
= V

(
c(n−p)/pΛpK

)
. (3.5)

Hence, from (3.4), then

ρ
(
ΛpcK, ·) = ρ

(
c(n−p)/pΛpK, ·

)
, (3.6)

and this yields (3.1).
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If φ ∈ SL(n), Lutwak (see [2]) proved that, for p ≥ 1,

ΛpφK = φ−tΛpK, (3.7)

where φ−t denotes the inverse of the transpose of φ.
Now we rewrite (3.1) as follows:

ΛpcK = c(n−p)/pΛpK = (cn)1/pc−1ΛpK, (3.8)

this together with (3.7) and the fact Λp(−K) = −ΛpK, we easily get the following result.

Proposition 3.2. If K ∈ Fn
o , p ≥ 1, then for φ ∈ GL(n),

ΛpφK =
∣∣detφ

∣∣1/pφ−tΛpK. (3.9)

Lemma 3.3 (see [2]). If K ∈ Fn
o , p ≥ 1, then

Vp(K,Q∗) =
ωn

V
(
ΛpK

) Ṽ−p
(
ΛpK,Q

)
(3.10)

for all Q ∈ Sn
o .

Lemma 3.4. If K,L ∈ Sn
o , p ≥ 1, then for all Q ∈ Sn

o ,

Ṽ−p(K,Q) = Ṽ−p(L,Q) ⇐⇒ K = L. (3.11)

Proof. Taking Q = K in (3.11), and using (2.12), we have that V (K) = Ṽ−p(L,K). Now
inequality (2.13) gives V (K) ≥ V (L), with equality if and only if K and L are dilates. Let
Q = L in (3.11), and get V (L) ≥ V (K). Hence V (K) = V (L), and K and L must be dilates.
Thus K = L. In turn, when K = L, the result obviously is true.

Proof of Theorem 1.1. Since ΛpK ⊆ ΛpL, then from formula (2.11), we know

Ṽ−p
(
ΛpK,Q

) ≤ Ṽ−p
(
ΛpL,Q

)
(3.12)

for all Q ∈ Sn
o , with equality in (3.12) if and only if ΛpK = ΛpL by (3.11). Using equality

(3.10), then inequality (3.12) can be rewritten

V
(
ΛpK

)
Vp(K,Q∗) ≤ V

(
ΛpL

)
Vp(L,Q∗), (3.13)

for all Q ∈ Sn
o . Let Q

∗ = L, together with (2.7) and Lp-Minkowski inequality (2.8), we have

V
(
ΛpL

)
V (L) ≥ V

(
ΛpK

)
Vp(K,L) ≥ V

(
ΛpK

)
V (K)(n−p)/nV (L)p/n. (3.14)
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Thus

V
(
ΛpK

)
V (K)(n−p)/n ≤ V

(
ΛpL

)
V (L)(n−p)/n (3.15)

and this is just inequality (1.10).
According to the conditions of equality that hold in inequalities (3.12) and (2.8), we

know that equality holds in inequality (1.10) for p > 1 if and only if K and L are dilates and
ΛpK = ΛpL, and for p = 1 if and only if K and L are homothetic and ΛpK = ΛpL.

For the case p > 1 of equality that holds in (1.10), we may suppose L = cK (c > 0), and
together with ΛpK = ΛpL, then ΛpK = ΛpcK. Thus, from (3.1), we have ΛpK = c(n−p)/pΛpK.
Hence c = 1 when n/= p, this means that if n/= p, then K = L. For n = p > 1, we easily see
thatK and L are dilates that impliy ΛpK = ΛpL. So we know that equality holds in inequality
(1.10) for n = p > 1 if and only if K and L are dilates, and for n/= p > 1 if and only if K = L.

For the case p = 1 of equality that holds in (1.10), we may take L = x + cK (c > 0, x ∈
R

n), then

Λ1K = Λ1L = Λ1(x + cK). (3.16)

But S1(x + K, ·) = S(x + K, ·) = S(K, ·), then f1(x + K, ·) = f(x + K, ·) = f(K, ·) by (1.2). By
this together with (2.15) and (3.10), we have Ω(x +K) = Ω(K) and V (Λ1(x +K)) = V (Λ1K),
respectively. Thus, from the definition (1.8), we obtain that

ρ(Λ1(x +K), ·)n+1 = V (Λ1(x +K))
ωn

f(x +K, ·)

=
V (Λ1K)

ωn
f(K, ·) = ρ(Λ1K, ·)n+1,

(3.17)

hence

Λ1(x +K) = Λ1K. (3.18)

From (3.18) and (3.1), equality (3.16) can be rewritten as follows:

Λ1K = Λ1(x + cK) = cn−1Λ1K, (3.19)

and this gives c = 1, that is, L = x + K when n > 1. Therefore, we see that equality holds in
inequality (1.10) for n/= p = 1 if and only if K and L are translation.
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Proof of Theorem 1.2. Let Q = K∗ in (3.10), together with (2.7) and (2.13), we have that

V (K) =
ωn

V
(
ΛpK

) Ṽ−p
(
ΛpK,K∗)

≥ ωn

V
(
ΛpK

)V
(
ΛpK

)(n+p)/nV (K∗)−p/n

= ωnV
(
ΛpK

)p/n
V (K∗)−p/n

(3.20)

with equality in inequality (3.20) if and only if ΛpK and K∗ are dilates.
From this, and using the Blaschke-Santaló inequality (2.3), then

V
(
ΛpK

)p/n ≤ 1
ωn

V (K)V (K∗)p/n

≤ ωnV (K∗)(p−n)/n,

(3.21)

and equality holds in second inequality of (3.21) if and only if K is an ellipsoid.
From (3.21), we immediately obtain inequality (1.11). According to the conditions of

equality that hold in (3.20) and second inequality of (3.21), we get equality in (1.11) if and
only if K is an ellipsoid.

Proof of Theorem 1.3. Taking Q = ΛpK in (3.10), and using (2.12), then

Vp

(
K,Λ∗

pK
)
= ωn. (3.22)

From (3.22), and together with inequality (2.8), we have

ωn = Vp

(
K,Λ∗

pK
)
≥ V (K)(n−p)/nV

(
Λ∗

pK
)p/n

, (3.23)

this inequality immediately gives (1.12). According to equality conditions of inequality (2.8),
we get equality in (1.12) for p > 1 if and only if Λ∗

pK and K are dilates, and for p = 1 if and
only if Λ∗

pK and K are homothetic.

The proof of Theorem 1.4 requires the following two lemmas.

Lemma 3.5. If K ∈ Fn
o , p ≥ 1, then

ΠpK = ΓpΛpK. (3.24)

Note that the proof of Lemma 3.5 can be found in [12]. Here, for the sake of
completeness, we present the proof as follows.
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Proof. Using the definitions (2.16), (1.4), and (1.8), we have

h
p

ΠpK
(u) =

1
nωncn−2,p

∫

Sn−1
|u · v|pdSp(K,v)

=
1

nωncn−2,p

∫

Sn−1
|u · v|pfp(K,v)dS(v)

=
1

ncn−2,pV
(
ΛpK

)
∫

Sn−1
|u · v|pρ(ΛpK, v

)n+p
dS(v)

(3.25)

for all u ∈ Sn−1. According to (2.19), we also have that, for all u ∈ Sn−1,

h
p

ΓpΛpK
(u) =

1
(
n + p

)
cn,pV

(
ΛpK

)
∫

Sn−1
|u · v|pρ(ΛpK, v

)n+p
dS(v). (3.26)

But (2.17) gives ncn−2,p = (n + p)cn,p; hence from (3.25) and (3.26), we obtain

hΠpK(u) = hΓpΛpK(u) (3.27)

for all u ∈ Sn−1. Thus ΠpK = ΓpΛpK.

Lemma 3.6 ([10] (Lp-Busemann-Petty centroid inequality)). If K ∈ Sn
o , p ≥ 1, then

V
(
ΓpK

) ≥ V (K) (3.28)

with equality if and only if K is an ellipsoid centered at the origin.

Proof of Theorem 1.4. From (3.28) and (3.24), we immediately get inequality (1.13). According
to the case of equality that holds in (3.28), we see equality in (1.13) if and only if K is an
ellipsoid centered at the origin.
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