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Kantorovich inequality is a very useful tool to study the inefficiency of the ordinary least-squares
estimate with one regressor. When regressors are more than one statisticians have to extend it.
Matrix, determinant, and trace versions of it have been presented in the literature. In this paper,
we provide matrix Euclidean norm Kantorovich inequalities.
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1. Introduction

Suppose that A is an n × n positive definite matrix and x is an n × 1 real vector, then the
well-known Kantorovich inequality can be expressed as

(
x′Ax

)(
x′A−1x

)
≤ (λ1 + λn)

2

4λ1λn

(
x′x

)2
, (1.1)

where λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of A. It is a very useful tool to study the
inefficiency of the ordinary least-squares estimate with one regressor in the linear model.
Watson [1] introduced the ratio of the variance of the best linear unbiased estimator to
the variance of the ordinary least-squares estimator. Such a lower bound of this ratio was
provided by Kantorovich inequality (1.1); see, for example, [2, 3]. When regressors are more
than one statisticians have to extend it. Marshall and Olkin [4] were the first to generalize
Kantorovich inequality to matrices (see, e.g., [5])

X′A−1X ≤ (λ1 + λn)
2

4λ1λn
X′X

(
X′AX

)−1
X′X, (1.2)
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where X is an n × p real matrix. If X′X = Ip, then (1.2) becomes

X′A−1X ≤ (λ1 + λn)
2

4λ1λn

(
X′AX

)−1
. (1.3)

Bloomfield and Watson [6] and Knott [7] simultaneously established the inequality

det
(
X′AX

)
det

(
X′A−1X

)
≤

m∏

i=1

(λi + λn−i+1)
2

4λiλn−i+1
, (1.4)

where X is an n × p real matrix such that X′X = Ip andm = min{p, n − p}. Yang [8] presented
its trace version

tr(X′AX)

tr
(
X′A−1X

)−1 ≤
(∑p

i=1(λi + λn−i+1)

2
∑p

i=1

√
λiλn−i+1

)2

, (1.5)

where X is an n × p(2p ≤ n) real matrix such that X′X = Ip.
To the best of our knowledge, there has not been any matrix Euclidean norm version

of Kantorovich inequality yet. Our goal is to present its matrix Euclidean norm version.
This paper is arranged as follows. In Section 2, we will give some lemmas which

are useful in the following section. In Section 3, some matrix inequalities are established by
Kantorovich inequality or Pólya-Szegö inequality, which are referred to as the extensions of
Kantorovich inequality as well and conclusions are given in Section 4.

2. Some Lemmas

We will start with some lemmas which are very useful in the following.

Definition 2.1. Let A be an n × n complex square matrix. A is called a normal matrix if A∗A =
AA∗.

Lemma 2.2. LetA be an n×n complex square matrix and let λ1, . . . , λn be the eigenvalues ofA, then

n∑

i=1

|λi|2 ≤ ‖A‖2, (2.1)

where ‖A‖2 = tr(A∗A) denotes the squared Euclidean norm of A. The equality in (2.1) holds if and
only if A is a normal matrix.

Proof. See [5].
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Lemma 2.3 (Pólya-Szegö inequality). There is

n∑

i=1

a2
i

n∑

i=1

b2i ≤
(m1m2 +M1M2)2

4m1m2M1M2

(
n∑

i=1

aibi

)2

, (2.2)

where 0 < m1 ≤ ai ≤ M1, 0 < m2 ≤ bi ≤ M2 (i = 1, . . . , n).
Moreover Greub and Rheinboldt [9] generalized Pólya-Szegö inequality to matrices.

Lemma 2.4 (Poincare). LetA be an n×nHermitian matrix, and letU be an n×k column orthogonal
and full rank matrix, that isU∗U = Ik, then one has

λn−k+i(A) ≤ λi(U∗AU) ≤ λi(A), i = 1, . . . , k. (2.3)

Let φ = (ϕ1, . . . , ϕn) be a unitary matrix, whose column vectors are eigenvectors corresponding to
λ1(A) ≥ · · · ≥ λn(A), respectively. Assume φ(k) = (ϕ1, . . . , ϕk) and φ[k] = (ϕn−k+1, . . . , ϕn), then
λi(U∗AU) = λi(A), i = 1, . . . , k, if and only if U = φ(k)D; while λn−k+i(A) = λi(U∗AU), i =
1, . . . , k, if and only ifU = φ[k]D, where D is a k × k unitary matrix.

Proof. See [5].

3. Main Results

Theorem 3.1. Let A and B be n × n nonnegative definite Hermitian matrices with rank(A) =
rank(B), and let X be an n × p complex matrix satisfying X∗X = Ip. Then one has

‖X∗AX‖‖X∗BX‖ ≤ 1
2

⎛

⎝

√
λ1μ1

λpμp
+

√
λpμp

λ1μ1

⎞

⎠
p∑

i=1

λiμp−i+1, (3.1)

where λ1 ≥ · · · ≥ λg > 0 (p ≤ g ≤ n) and μ1 ≥ · · · ≥ μg > 0 are eigenvalues of matrices A and B,
respectively.

Proof. We easily get that X∗AX is a Hermitian matrix since A is a Hermitian matrix. Hence
X∗AX is a normal matrix and then we can derive from Lemma 2.2 that

‖X∗AX‖2 =
p∑

i=1

λ2i (X
∗AX). (3.2)

By Lemma 2.4 we get that

p∑

i=1

λ2i (X
∗AX) ≤

p∑

i=1

λ2i (A) =
p∑

i=1

λ2i . (3.3)
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Similarly,

‖X∗BX‖2 ≤
p∑

i=1

μ2
i . (3.4)

Note that

‖X∗AX‖2‖X∗BX‖2 ≤
p∑

i=1

λ2i

p∑

i=1

μ2
i . (3.5)

The latter expression of (3.5)may be expressed as

p∑

i=1

λ2i

p∑

i=1

μ2
i =

p∑

k=1

λ2ik

p∑

k=1

μ2
ik
, (3.6)

where i1, i2, . . . , ip is an arbitrary permutation of 1, 2, . . . , p. Clearly, λ1 = maxk{λik}, λp =
mink{λik}, μ1 = maxk{μik} and μp = mink{μik}. Therefore, let M1 = λ1, m1 = λp, M2 = μ1,
and m2 = μp, then we can derive from Pólya-Szegö inequality that

p∑

i=1

λ2i

p∑

i=1

μ2
i =

p∑

k=1

λ2ik

p∑

k=1

μ2
ik
≤
(
λ1μ1 + λpμp

)2

4λ1μ1λpμp

(
p∑

k=1

λikμik

)2

. (3.7)

Since inequality (3.7) holds for any permutation of 1, . . . , p, thus we find

p∑

i=1

λ2i

p∑

i=1

μ2
i ≤

(
λ1μ1 + λpμp

)2

4λ1μ1λpμp
min
ik

⎧
⎨

⎩

(
p∑

k=1

λikμik

)2
⎫
⎬

⎭
. (3.8)

In the following, the remaining problem is to choose a proper permutation of 1, 2, . . . , p to
minimize

p∑

k=1

λikμik . (3.9)

This may be solved by a nontrivial but elementary combinatorial argument, thus we find

min
ik

p∑

k=1

λikμik =
p∑

i=1

λiμp−i+1. (3.10)
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Then

‖X∗AX‖‖X∗BX‖ ≤
⎡

⎣
(
λ1μ1 + λpμp

)2

4λ1μ1λpμp

(
p∑

i=1

λiμp−i+1

)2
⎤

⎦

1/2

=
1
2

⎛

⎝

√
λ1μ1

λpμp
+

√
λpμp

λ1μ1

⎞

⎠
p∑

i=1

λiμp−i+1.

(3.11)

Remark 3.2. WhenA is positive definite Hermitian matrix and B = A−1, inequality (3.1) plays
an important role in the linear model {y,Xβ,A}. The covariance matrices of the ordinary
least-squares estimator and the best linear unbiased estimator are given in this model

cov
[
OLSE

(
Xβ

)]
= X

(
X′X

)−1
X′AX

(
X′X

)−1
X′,

cov
[
BLUE

(
Xβ

)]
= X

(
X′A−1X

)−1
X′.

(3.12)

Applying inequality (3.1), we can establish a lower bound of the inefficiency of least-squares
estimator

∥∥cov
[
BLUE

(
Xβ

)]∥∥
∥∥cov

[
OLSE

(
Xβ

)]∥∥ ≥
2p
√
λ1λpλn−p+1λn

(
λ1λn−p+1 + λnλp

)∑p

i=1

(
λi/λn−p+i

) . (3.13)

See also [10].

In Theorem 3.1, we need the assumption thatX∗X = Ip. However, we should also point
out that the matrix X may not meet such an assumption in practice. Therefore, we relax this
assumption in the following but the results are weaken.

Theorem 3.3. Let A and B be n × n nonnegative definite Hermitian matrices with rank(A) =
rank(B), and let X be an n × p complex matrix, then one has

‖X∗AX‖‖X∗BX‖ ≤ 1
2

⎛

⎝

√
λ1μ1

λgμg
+

√
λgμg

λ1μ1

⎞

⎠
g∑

i=1

λiμg−i+1‖X∗X‖2, (3.14)

where λ1 ≥ · · · ≥ λg > 0 (g ≤ n) and μ1 ≥ · · · ≥ μg > 0 are eigenvalues of matrices A and B,
respectively.
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Proof. If X = 0, the result obviously holds. Next set X /= 0. Let the spectral decomposition ofA
beA = Q∗ΛQ, whereQ is an orthogonal matrix andΛ = diag(λ1, . . . , λg, 0, . . . , 0). Let T = QX,
then

‖TT ∗‖ = ‖QXX∗Q∗‖ = ‖XX∗‖ = ‖X∗X‖,

‖X∗AX‖ = ‖T ∗ΛT‖ = [tr(T ∗ΛTT ∗ΛT)]1/2 =

[
p∑

i=1

λi(T ∗ΛTT ∗ΛT)

]1/2

=

[
n∑

i=1

λi(ΛTT ∗ΛTT ∗)

]1/2
≤ ‖ΛTT ∗‖ ≤ ‖Λ‖‖TT ∗‖.

(3.15)

We can derive from (3.15) that

‖X∗AX‖ ≤ ‖Λ‖‖X∗X‖. (3.16)

Similarly,

‖X∗BX‖ ≤ ‖Δ‖‖X∗X‖, (3.17)

where Δ = diag(μ1, . . . , μg, 0, . . . , 0). We thus have

‖X∗AX‖‖X∗BX‖
‖X∗X‖2

≤ ‖Λ‖‖Δ‖ =
g∑

i=1

λ2i

g∑

i=1

μ2
i . (3.18)

According to the proof of Theorem 3.1 we can get that

‖X∗AX‖‖X∗BX‖
‖X∗X‖2

≤ 1
2

⎛

⎝

√
λ1μ1

λgμg
+

√
λgμg

λ1μ1

⎞

⎠
g∑

i=1

λiμg−i+1‖X∗X‖2. (3.19)

The proof is completed.

Corollary 3.4. LetA be an n×n positive definite Hermitian matrix with eigenvalues λ1 ≥ · · · ≥ λn >
0, and let X be an arbitrary n × p complex matrix, then one has

∥∥∥X∗AXX∗A−1X
∥∥∥ ≤ n

2

(
λ1
λn

+
λn
λ1

)
‖X∗X‖2. (3.20)

Proof. It is very easy to prove therefore we omit the proof.
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Theorem 3.5. Let A and B be n × n positive definite Hermitian matrices with AB = BA, λ1 ≥ · · · ≥
λn > 0 and μ1 ≥ · · · ≥ μn > 0 be the eigenvalues of A and B, respectively, and let X be an arbitrary
n × p complex matrix. Then,

∥
∥
∥X∗A2XX∗B2X

∥
∥
∥ ≤ n

2

(
λ1μ1

λnμn
+
λnμn

λ1μ1

)
‖X∗ABX‖2. (3.21)

Proof. If X = 0, the result obviously holds. Next set X /= 0. Since AB = BA, there exists a
unitary matrix V such that A = VΔV ∗ and B = VMV ∗, where Δ = diag(λ1, . . . , λn), M =
diag(μi1 , . . . , μin).

Define Z = (ΔM)1/2V ∗X, C = ΔM−1 = diag(λ1/μi1 , . . . , λn/μin). By Corollary 3.4, we
can get that

∥
∥X∗A2XX∗B2X

∥
∥

‖X∗ABX‖2
=

∥
∥Z∗CZZ∗C−1Z

∥
∥

‖Z∗Z‖2
≤ n

2

(
δ1
δn

+
δn
δ1

)
, (3.22)

where δ1 = maxk{λk/μik}, δn = mink{λk/μik}. The right-hand side of (3.22) may be denoted
by d, then

d =
n

2

(
δ1
δn

+
δn
δ1

)
=

n

2

(
δ1
δn

+
1

δ1/δn

)
. (3.23)

It is easy to prove that d is a momotone increasing function of δ1/δn on interval [1,∞). Write
α1 = μ1/λn, αn = μn/λ1, then we have α1/αn ≥ δ1/δn. From the definitions of δ1 and δn, we
thus have

d ≤ n

2

(
λ1μ1

λnμn
+
λnμn

λ1μ1

)
. (3.24)

This completes the proof.

Corollary 3.6. If A and B are positive semidefinite Hermitian matrices with eigenvalues λ1 ≥ · · · ≥
λg > 0 and μ1 ≥ · · · ≥ μg > 0, respectively, inequality (3.21) becomes

∥∥∥X∗A2XX∗B2X
∥∥∥ ≤ g

2

(
λ1μ1

λgμg
+
λgμg

λ1μ1

)

‖X∗ABX‖2. (3.25)

Theorem 3.7. Let A and B be an n × n positive semidefinite Hermitian matrices with rank(A) =
rank(B), λ1 ≥ · · · ≥ λg > 0 and μ1 ≥ · · · ≥ μg > 0 be the eigenvalues A and B, respectively, and let
X, Y be n × p, n × q complex matrices with rank(X) = rank(Y ). Then

‖X∗AY‖‖Y ∗BX‖ ≤ 1
2

⎛

⎝

√
λ1μ1

λgμg
+

√
λgμg

λ1μ1

⎞

⎠
g∑

i=1

λiμg−i+1‖X∗X‖‖Y ∗Y‖. (3.26)
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Proof. Note that

‖X∗AY‖2 = tr(Y ∗AXX∗AY ) = tr(YY ∗AXX∗A) ≤ λ1(A)tr(YY ∗AXX∗)

= λ1(A)tr(XX∗YY ∗A) ≤ λ21(A)tr(XX∗YY ∗)

= λ1
(
A2)tr(XX∗YY ∗) ≤ tr

(
A2)tr(XX∗YY ∗).

(3.27)

Similarly,

‖Y ∗BX‖2 ≤ tr
(
B2
)
tr(XX∗YY ∗). (3.28)

Using the abbreviations S = XX∗, T = YY ∗. Clearly, S ≥ 0, T ≥ 0. Let a1 ≥ · · · ≥ as, b1 ≥ · · · ≥
bs be the eigenvalues of S, T , respectively. Applying Hölder inequality, we can derive that

tr(ST) ≤
s∑

i=1

aibi ≤
(

s∑

i=1

a2
i

)1/2( s∑

i=1

b2i

)1/2

=
(
tr
(
S2
))1/2(

tr
(
T2
))1/2

= ‖S‖‖T‖. (3.29)

Thus

‖X∗AY‖‖Y ∗BX‖
‖X∗X‖‖Y ∗Y‖ ≤ ‖A‖‖B‖ ≤ 1

2

⎛

⎝

√
λ1μ1

λgμg
+

√
λgμg

λ1μ1

⎞

⎠
g∑

i=1

λiμg−i+1. (3.30)

This completes the proof.

Corollary 3.8. When B = A−1, inequality (3.26) becomes

‖X∗AY‖
∥∥∥Y ∗A−1X

∥∥∥ ≤ n

2

(
λ1
λn

+
λn
λ1

)
‖X∗X‖‖Y ∗Y‖. (3.31)

4. Conclusions

The study of the inefficiency of the ordinary least-squares estimator in the linear model
requires a lower bound for the efficiency defined as the ratio of the variance or covariance of
the best linear unbiased estimator to the variance or covariance of the ordinary least-squares
estimator. Such a bound can be given by Kantorovich inequality or its extensions. Matrix,
determinant, and trace versions of it have been presented in the literature. In this paper, we
present its matrix Euclidean norm version.
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