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1. Introduction

Throughout this paper, X denotes an infinite dimensional complex Banach space. We denote
by L(X) the space of all bounded linear operators on X. The subspace of all compact
operators of L(X) is denoted by K(X). We write N(T) ⊆ X for the null space and
R(T) ⊆ X for the range of T . The nullity, n(T), of T is defined as the dimension of N(T)
and the deficiency, d(T), of T is defined as the codimension of R(T) in X. The set of upper
(lower) semi-Fredholm operators are defined, respectively by Φ+(X) = {T ∈ L(X);n(T) <
∞ and R(T) is closed in X}and, respectively, Φ−(X) = {T ∈ L(X); d(T) < ∞}. We use
Φ(X) := Φ+(X) ∩ Φ−(X) for the set of Fredholm operators in L(X), and Φ±(X) := Φ+(X) ∪
Φ−(X) for the set of semi-Fredholm operators in L(X). If T ∈ Φ±(X), then i(T) := n(T) − d(T)
is called the index of T . It is well known that the index is a continuous function on the set of
semi-Fredholm operators.

Various notions of essential spectrum appear in the applications of spectral theory
(see, e.g., [1, 2]). We use σ(T) for the spectrum of T ∈ L(X), σe(T) = {λ ∈ C; λ − T /∈Φ(X)}
for Wolf essential spectrum, σess(T) = C \ {λ ∈ C; λ − T ∈ Φ(X) and i(λ − T) = 0} for
Schechter essential spectrum, and σa(T) = {λ ∈ C; inf‖x‖=1‖(λ − T)(x)‖ = 0} for approximate
point spectrum.
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Recall that a(T) (resp., δ(T)), the ascent (resp., the descent) of T ∈ L(X), is the smallest
nonnegative integer n such thatN(Tn) = N(Tn+1) (resp.R(Tn) = R(Tn+1)). If no such n exists,
then a(T) = +∞ (resp. δ(T) = +∞). The sets of upper and lower semi-Browder operators
are defined, respectively by B+(X) = {T ∈ L(X); T ∈ Φ+(X) and a(T) < ∞},B−(X) =
{T ∈ L(X); T ∈ Φ−(X) and δ(T) < ∞}. The set of Browder operators on X is B(X) =
B+(X) ∩ B−(X). The corresponding spectrum is defined by σb(T) = {λ ∈ C; λ − T /∈B(X)}.

We are interested in this paper (Section 2) to the study of the stability problem in
Fredholm operators set and semi-Fredholm operators set. In the past few years, a lot of
work has been done along these lines, [3–5] and others. A well-known fact is that Φ+(X)
is an open set. An important question is to characterize, for a given S ∈ Φ+(X), the class of
bounded operators T on X, such that S + T still belongs to Φ+(X). Recall that if T ∈ K(X),
then S + T ∈ Φ+(X) (see [2, Theorem16.9] ). More generally, this fact holds true also for T
a strictly singular operator (see [6, Proposition 2.c.10]). Noncompactness measures provide
advanced techniques to obtain current precise results along this line; see for example [7, 8].
By means of the Kuratowski measure, for a given S ∈ Φ+(X), we describe in Theorem 2.2 a
class of bounded operators T onX, for which S+T ∈ Φ+(X). We should notice that, in general,
the size of the perturbation depends upon S. This key-result permits to prove in Corollary 2.3
some localization results about the essential spectra σe and σess of bounded operators on X.
Next, we investigate the stability in the semi-Browder operators set. In [9], Grabiner proves
that B+(X) and B−(X) are closed under commuting perturbation. In [4], Rakočević extends
this result to the perturbation classes associated with the sets of semi-Fredholm operators. In
Theorem 2.4, by means of the Kuratowski measure, we characteriz for a given S ∈ B+(X),
a class of bounded operators T on X, that commute with S, such that S + T ∈ B+(X). As
the corollary of this theorem we obtain the main result of Grabiner. As the application of the
obtained results, we describe the essential spectra of weighted shift operators.

In Section 3, we are interested in the study of polynomially compact opera-
tors. Consider P(K(X)) := {T ∈ L(X) such that P(T) ∈ K(X) for some nonzero
complex polynomial P}. For T ∈ P(K(X)) there exists a unique unitary polynomial mT (z)
of least degree such that mT (T) is compact. This polynomial will be called the minimal
polynomial of T. In this section, we describe σe(S − T), for T, S ∈ L(X) with compact
commutator such that T ∈ P(K(X)). Next, we show that if there exists an analytic function
f in a neighborhood of σ(T) such that f(T) is compact, then T ∈ P(K(X)). As application,
we use the obtained results to investigate the solvability for operator equations in Banach
spaces, Sϕ − Tϕ = ψ. For T ∈ P(K(X)), we give affirmative answer under several sufficient
conditions on S. This result extends the analysis started in [10, 11] and generalizes the result
obtained, in case S = λI, in [12, Theorem 2.2].

2. Some New Properties in Fredholm Theory by Means of
the Kuratowski Measure of Noncompactness

In this section, we give some results concerning the classes of Fredholm operators and
Browder operators via the concept of measures of noncompactness. General definition can
be found in [13]. We write MX for the family of all nonempty and bounded subset of X. We
deal with a specific measure: the Kuratowski measure of noncompactness defined on MX as
follows (see [14]):

γ(A) = inf
{
ε > 0 : A may be covered by finitely many set of diameter ≤ ε

}
. (2.1)
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For T ∈ L(X), we define the two nonnegative quantities (see [15]) associated with T by

α(T) = sup
{
γ(T(A))
γ(A)

;A ∈ MX, γ(A) > 0
}
, β(T) = inf

{
γ(T(A))
γ(A)

;A ∈ MX, γ(A) > 0
}
.

(2.2)

Let X1 be an infinite dimensional subspace of X and let JX1 be the natural embedding of X1

into X. The disc (resp., circle)with center 0 and radius r is denoted by D(0, r) (resp., C(0, r)).
We write D(0, r) for the closure of D(0, r) and we use C[r1, r2] := D(0, r2) \D(0, r1), for r1 ≤ r2.

We start this section by some fundamental properties satisfied by α and β which will
be useful in the remainder of the text. For more detail, we refer to [15].

Proposition 2.1. Let T, S be in L(X). Then one has the following.

(i) α(tT) = |t|α(T) and β(tT) = |t|β(T), for all t ∈ R.

(ii) |α(T) − α(S)| ≤ α(T + S) ≤ α(T) + α(S).

(iii) α(T ◦ S) ≤ α(T)α(S) and β(T ◦ S) ≥ β(T)β(S).

(iv) β(T) − α(S) ≤ β(T + S) ≤ β(T) + α(S).

(v) If T is an isomorphism, then α(T−1)β(T) = 1.

(vi) β(T) > 0 if and only if T ∈ Φ+(X).

(vii) α(T) ≤ ‖T‖ and β(T) ≥ lim inf‖x‖→+∞‖T(x)‖/‖x‖.

In the following theorem we establish a stability property in the upper semi-Fredholm
operators set. This result provides, in particular, an extension of Theorem 6.1 in [8].

Theorem 2.2. Let T, S be two bounded operators on X and let f be an analytic function in a
neighborhood Ω of σ(S) ∪ σ(T) not vanishing on a connected component of σ(S) ∪ σ(T).

(i) If α(T) < β(S), then T + S ∈ Φ+(X) and i(T + S) = i(S).

Suppose moreover that the commutator [T, S] ∈ K(X) and α(f(T)) < β(f(S)), then one has the
following.

(ii) T − S ∈ Φ+(X).

(iii) f(S) ∈ Φ(X) implies that T − S ∈ Φ(X).

(iv) f(z) = zn, for some n ∈ N
∗, implies that i(T − S) = i(S).

Proof. By Proposition 2.1, we have for all t ∈ [0, 1], β(tT + S) ≥ β(S) − tα(T) > 0, then tT + S ∈
Φ+(X), for all t ∈ [0, 1], in particular, T + S ∈ Φ+(X). By the continuity of the index on Φ+(X),
we get i(T + S) = i(S), and this proves (i).

Now, assume that α(f(T)) < β(f(S)), applying (i), we get f(T) − f(S) ∈ Φ+(X) and
i(f(T) − f(S)) = i(f(S)). Let ω be an open set with closure ω ⊂ Ω and whose boundary
∂ω consists of finite number of simple closed curves that do not intersect, and such that
σ(S) ∪ σ(T) ⊂ ω. Then we have

f(T) − f(S) =
1

2iπ

∫

∂ω

(
(z − T)−1 − (z − S)−1

)
f(z)dz. (2.3)
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Since [S, T] ∈ K(X), then there exist compact operators K1 and K2 such that

(z − T)−1 − (z − S)−1 = (T − S)(z − T)−1(z − S)−1 +K1 = (z − T)−1(z − S)−1(T − S) +K2.
(2.4)

Integrating along ∂ω, we get

f(T) − f(S) = (T − S)L +K3 = L(T − S) +K4, (2.5)

where L = (1/(2iπ))
∫
∂ω(z − T)−1(z − S)−1f(z)dz. It is easily checked that L ∈ L(X) and

K3, K4 ∈ K(X). This leads to T − S ∈ Φ+(X). If f(S) ∈ Φ(X), then f(T) − f(S) ∈ Φ(X).
By (2.5), we conclude that T − S ∈ Φ(X).

Now, if f(z) = zn, then α(Tn) < β(Sn) yields α((tT)n) < β(Sn), ∀t ∈ [0, 1]. Therefore,
by (ii), tT − S ∈ Φ+(X), for all t ∈ [0, 1]. By the continuity of the index function on Φ+(X), we
get i(T − S) = i(S).

For T ∈ L(X), define β0(T) (resp., α0(T)) to be the limit of the sequence (β(Tn))1/n

(resp., (α(Tn))1/n). For the existence of these limits see [2, Lemma 1.21].

Corollary 2.3. Let T be a bounded operator on X, the one has the following.

(i) σess(T) ⊂ D(0, α0(T)).

(ii) If T /∈Φ−(X), then D(0, β0(T)) ⊂ σe(T).

(iii) If T ∈ Φ−(X), then σe(T) ⊂ C[β0(T), α0(T)].

(iv) If 0/∈ σess(T), then σess(T) ⊂ C[β0(T), α0(T)].

(v) If 0 ∈ σess(T), then D(0, β0(T)) ⊂ σess(T).

Proof. Let n ∈ N
∗ and suppose that |λ|n > α(Tn), then, by Theorem 2.2(iv), we have λ − T ∈

Φ(X) and i(λ − T) = 0. Hence, if |λ| > α0(T), then λ/∈ σess(T), and this proves (i).
Notice that if β(T) = 0, then β0(T) = 0 and the results are all trivial. Suppose that

β(T) > 0. For |λ| < β0(T), there exists n ∈ N
∗ such that |λ|n < β(Tn). Then, by Theorem 2.2(iv),

we have λ − T ∈ Φ+(X) and i(λ − T) = i(T).Hence, we get easily (ii)–(v).

2.1. Stability in the Browder and the Semi-Browder Operators

The following theorem uses the measure of noncompactness to establish stability in the semi-
Browder operators set. More precisely, we have the following.

Theorem 2.4. Suppose that S and T are commuting bounded linear operators on the Banach spaceX.
Assume that α(T) < β(S), then

a(S) < ∞ implies that a(T + S) < ∞. (2.6)



Journal of Inequalities and Applications 5

Proof. For t ∈ [0, 1], we have α(tT) < β(S), and then, by Theorem 2.2(i), tT + S ∈ Φ+(X). Set
N∞(T) =

⋃
n N(Tn) and R∞(T) =

⋂
nR(Tn). Since S and T are commuting, then according to

[16, Theorem 3], for all t ∈ [0, 1], there exists ε(t) > 0 such that, for all s in the disk D(t, ε(t)),

N∞(tT + S) ∩ R∞(tT + S) = N∞(sT + S) ∩ R∞(sT + S). (2.7)

Hence,N∞(tT + S) ∩R∞(tT + S) is a locally constant function of t on the interval [0, 1]. Since
every locally constant function on a connected set is constant, then

∀t ∈ [0, 1], N∞(tT + S) ∩ R∞(tT + S) = N∞(S) ∩ R∞(S). (2.8)

Now, since a(S) < ∞, then from [5, Proposition 1.6(i)]

N∞(S) ∩ R∞(S) = N∞(S) ∩ R∞(S) = {0}. (2.9)

Thus, N∞(T + S) ∩ R∞(T + S) = {0}, and again by [5, Proposition 1.6(i)], it follows that
a(T + S) < ∞.

Remark 2.5. Theorem 2.4 extends the results of Grabiner [9, Theorem 2]. Indeed, if T is
compact, we obtain 0 = α(T) < β(S) = β(T + S). Hence, Theorem 2.4 yields a(S) < ∞ if and
only if a(T+S) < ∞. This proves thatB+(X) is closed under commuting compact perturbation.
By duality argument, we prove the closeness of B−(X).

Corollary 2.6. Let S, T be commuting bounded operators onX. Suppose that there exists n ∈ N
∗ such

that α(Tn) < β(Sn).

(i) If S ∈ B+(X), then T + S ∈ B+(X).

(ii) If S ∈ B(X), then T + S ∈ B(X).

Proof. (i) Let t ∈ [0, 1]. Since α((tT)n) < β(Sn), then from Theorem 2.2, tT +S ∈ Φ(X).Arguing
as in the proof of Theorem 2.4, we get the result.

(ii) Since S ∈ B(X), then i(S) = 0. By Theorem 2.2, i(T + S) = 0. On the other hand, (i)
yields a(T + S) < ∞. According to [17, Theorem 4.5(d)], we get δ(T + S) < ∞.

Corollary 2.7. Let T be a bounded operator on X, thene one has the following.

(i) σb(T) ⊂ D(0, α0(T)).

(ii) If 0/∈ σb(T), then σb(T) ⊂ C[β0(T), α0(T)].

Proof. (i) For |λ| > α0(T), there exists n ∈ N
∗ such that |λ|n > α(Tn). By Corollary 2.6, we have

λ − T ∈ B(X). The result follows since we can choose n arbitrary large.
(ii) Since 0/∈ σb(T), then T ∈ Φ(X) and hence β(T) > 0. For |λ| < β0(T), there exists

n ∈ N
∗ such that |λ|n < β(Tn). Corollary 2.6 implies that λ − T ∈ B(X) since T ∈ B(X).

2.2. Application: Weighted Shift Operators

Let ω = (ωn)n∈N be a bounded complex sequence. Consider the unilateral backward
weighted shift operator W(ω, p) defined on X = lr(N,C), r ≥ 1, by W(ω, p)(x0, x1, . . .) =
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(ωpxp,ωp+1xp+1, . . .). In [18, Proposition 1.6.15], the authors give a localization results for
the spectrum and the approximate point spectrum of unilateral backward weighted shift
operator. In this section, we investigate the Wolf essential spectrum ofW(ω, p).

Proposition 2.8. The following statements hold true.

(i) α(W(ω, p)) ≤ ω+ := lim supn→+∞|ωn| and β(W(ω, p)) ≥ ω− := lim infn→+∞|ωn|.

(ii) σe(W(ω, p)) ⊂ C[ω−, ω+].

Proof. For ε > 0, the set E = {n ∈ N; |ωn| > ε +ω+ or |ωn| < −ε +ω−} is finite. Consider

X1 = {(xn)n ∈ X;xn = 0, ∀n ∈ E}, X2 = {(xn)n ∈ X; xn = 0, ∀n/∈E}. (2.10)

We have X = X1 ⊕X2. Since X2 is finite dimensional subspace, then

α
(
W

(
ω, p

))
= α

(
W

(
ω, p

)
JX1

) ≤ ∥∥W
(
ω, p

)
JX1

∥∥ ≤ ε +ω+. (2.11)

Otherwise, by Proposition 2.1,

β
(
W

(
ω, p

))
= β

(
W

(
ω, p

)
JX1

) ≥ lim inf
‖x‖→+∞

∥∥W
(
ω, p

)
JX1(x)

∥∥

‖x‖ ≥ −ε +ω−. (2.12)

Since we can choose ε arbitrary small, then we get (i).
We should notice that if 0 is a cluster point for the sequence (|ωn|)n, then ω− = 0 and

(ii) follows from Corollary 2.3(i). If not, then F0 = {n ≥ p such that ωn = 0} is a finite set and
W(ω, p) is a Fredholm operator with index p. More precisely, n(W(ω, p)) = p + card(F0) and
d(W(ω, p)) = card(F0), here card(F0) denotes the cardinal of F0. Now, by Corollary 2.3(iii),
we get σe(W(ω, p)) ⊂ C[ω−, ω+], which proves the proposition.

Remark 2.9. Notice that if (|ωn|)n converges to l, then according to Proposition 2.8, we get
α(W(ω, p)) = β(W(ω, p)) = l and σe(W(ω, p)) ⊂ C(0, l). Since i(W(ω, p))/= 0, then by the
continuity of the index function on Φ(X), we obtain σe(W(ω, p)) = C(0, l). This is a well-
known fact (see, e.g., [19, Proposition 27.7, page 139]).

In what follows, we investigate more precisely the essential spectrum of W(ω, p). For
this end define A(0)(|ω|) to be the limit set of (|ω|)n, that is, the set of all cluster points of the
sequence (|ωn|)n, andA(k+1)(|ω|) to be the limit set of A(k)(|ω|) for k ≥ 0.

Proposition 2.10. Suppose that A(0)(|ω|) = {0 ≤ l1 < · · · < lN} is finite, then

σe

(
W

(
ω, p

)) ⊂
⋃

1≤i≤N
C(0, li). (2.13)
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Proof. For 0 < ε < (1/2)infi /= j |li − lj |, consider Ai = {n ∈ N; ||ωn| − li| > ε}, i = 1, . . . ,N, A0 =
⋂N

i=1Ai and Xi = {(xn)n ∈ X; xn = 0, ∀n ∈ Ai}, i = 0, . . . ,N. We can write X = ⊕N
i=0Xi. For

i = 0, . . . ,N, define the operator Si by

Si = W
(
ω, p

)
on Xi,

Si = 0 on ⊕j /= iXj .
(2.14)

Since, For all i /= j, Si ◦ Sj = 0 and W(ω, p) =
∑n

i=0 Si, then

∏

i∈{0,...,N}
(λ − Si) = λN−1(λ −W

(
ω, p

))
. (2.15)

This yields

σe

(
W

(
ω, p

)) \ {0} =

[
⋃

0≤i≤N
σe(Si)

]

\ {0}. (2.16)

Observe that X0 is finite dimensional and then S0 is finite rank. Hence, σe(S0) = {0}. It
remains to prove that, For all i = 1, . . . ,N, σe(Si) ⊂ C(0, li).Consider the operator S′

i : X → X
defined by

S′
i = 0 on Xi

S′
i = liS on ⊕j /= iXj ,

(2.17)

where S = W(1, p) is the corresponding un-weighted shift operator.We have Si+S′
i = W(v, p),

with v = (vn)n being the sequence defined by

vn = ωn for n/∈Ai,

vn = li for n ∈ Ai.
(2.18)

Observe that (|vn|)n converges and limn→+∞|vn| = li, then σe(W(v, p)) = C(0, li). Since Si◦S′
i =

S′
i ◦ Si = 0, then, as above, σe(W(v, p)) \ {0} = (σe(Si) ∪ σe(S′

i)) \ {0}.Hence, σe(Si) ⊂ C(0, li),
and this completes the proof.

Now, we prove the following result.

Theorem 2.11. Suppose that there exists k ≥ 0 such that A(k)(|ω|) is a finite set, then

σe

(
W

(
ω, p

)) ⊂
⋃

l∈A(0)(|ω|)
C(0, l). (2.19)

Proof. (by induction). For k = 0, the result follows by Proposition 2.10. Let k ≥ 0 be an
integer and suppose that if A(k)(|ω|) is a finite set, then (2.19) holds true. Suppose now that
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A(k+1)(|ω|) = {l1, . . . , lN} is a finite set. For 0 < ε < (1/2)infi /= j |li − lj | and i = 1, . . . ,N, we
consider Bi = {n ∈ N; ||ωn|− li| > ε} and B0 =

⋂N
i=1Bi.Define the sequence ui = (ui

n)n, 0 ≤ i ≤ N
by

ui
n = ωn, ∀n/∈Bi,

ui
n = 0, ∀n ∈ Bi.

(2.20)

Since W(ω, p) =
∑N

i=0 W(ui, p) andW(ui, p) ◦W(uj, p) = 0, for all i /= j, then

σe

(
W

(
ω, p

)) \ {0} ⊂
[

N⋃

i=0

σe

(
W

(
ui, p

))]

\ {0}. (2.21)

Observe that A(k)(|u0|) is a finite set and A(0)(|u0|) ⊂ A(0)(|ω|) ∪ {0}. Hence

σe

(
W

(
u0, p

))
⊂

⋃

l∈A(0)(|ω|)
C(0, l) ∪ {0}. (2.22)

Now, consider the sequence vi = (vi
n)n, i = 1, . . . ,N defined by

vi
n = li, ∀n ∈ Bi,

vi
n = 0, ∀n/∈Bi.

(2.23)

Clearly, lim infn→+∞|ui
n+v

i
n| ≥ li−ε and lim supn→+∞|ui

n+v
i
n| ≤ li+ε.Hence, by Proposition 2.8,

σe(W(ui
n + vi

n, p)) ⊂ C[li − ε, li + ε]. Since W(ui, p) ◦ W(vi, p) = W(vi, p) ◦ W(ui, p) = 0 and
W(ui, p) +W(vi, p) = W(ui + vi, p), then

σe

(
W

(
ui + vi, p

))
\ {0} =

[
σe

(
W

(
ui, p

))
∪ σe

(
W

(
vi, p

))]
\ {0}. (2.24)

Hence, we get, for i = 1, . . . ,N,

σe

(
W

(
ui, p

))
⊂ C[li − ε, li + ε]. (2.25)

Since we can choose ε > 0 arbitrary small, then by (2.21), (2.22), and (2.25), we get (2.19).

Finally, consider the superposition of two weighted shift operatorsW(ω, p) +W(u, k).
Suppose that lim supn→+∞|un| < lim infn→+∞|ωn|, then, by Proposition 2.8, α(W(u, k)) <
β(W(ω, p)). By Theorem 2.2, W(ω, p) + W(u, k) ∈ Φ(X) and i(W(ω, p) + W(u, k)) =
i(W(ω, p)).

To close this section, we define a special class of bounded operators on a Banach space
X, that presents some interesting properties. Set

L0(X) :=
{
T ∈ L(X); α(T) = β(T)

}
. (2.26)
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First, we observe that K(X) ⊂ L0(X), and λI ∈ L0(X) for all λ ∈ C. Also, we notice that if
ω = (ωn)n is a complex sequence that converges, then the weighted shift operator W(ω, p) is
a nontrivial element of L0(lr(N,C)). Now, we prove the following result.

Proposition 2.12.

(i) For all T1, T2 ∈ L0(X) one has T1T2 ∈ L0(X), and α(T1T2) = α(T1)α(T2).

(ii) If T ∈ L0(X) is invertible, then T−1 ∈ L0(X).

Proof. We observe, by Proposition 2.1, that

α(T1)α(T2) = β(T1)β(T2) ≤ β(T1T2) ≤ α(T1T2) ≤ α(T1)α(T2). (2.27)

This proves the statement (i). Again, by Proposition 2.1, for T invertible, we have α(T−1) =
1/β(T) = 1/α(T) = β(T−1). This proves (ii).

As an immediate result we get, for all T being in L0(X), α0(T) = α(T) = β0(T) = β(T).
In the following proposition we describe the essential spectra for a given T ∈ L0(X).

Proposition 2.13. Let T be in L0(X) and suppose that 0 ∈ σess(T), then one has the following.

(i) σb(T) = σess(T) = D(0, α(T)).

(ii) If T /∈Φ−(X), then σe(T) = D(0, α(T)).

(iii) If T ∈ Φ−(X), then σe(T) = C(0, α(T)).

Proof. According to Corollary 2.3, we have D(0, α(T)) ⊂ σess(T). By Corollary 2.7, we get
σb(T) ⊂ D(0, α(T)). Since σess(T) ⊂ σb(T), then we get (i). The assertion (ii) follows from
Corollary 2.3(i)–(ii). For (iii), on one hand, by Corollary 2.3(iii), we have σe(T) ⊂ C(0, α(T)),
on the other hand, the boundary ∂σess(T) ⊂ σe(T).

Notice that if ω = (ωn)n is a complex sequence that converges to l, then by
Proposition 2.13 (i),

σb

(
W

(
ω, p

))
= σess

(
W

(
ω, p

))
= D(0, l). (2.28)

3. Fredholm Theory for Polynomially Compact Operators

In this section, we present a spectral analysis for polynomially compact operators. We begin
by proving an important result about perturbation by polynomially compact operators in the
general context of normed spaces. First, we make the following definition.

Definition 3.1. Let Y be a normed space, let T ∈ P(K(Y )), mT be the minimal polynomial of
T, and let S ∈ L(Y ). We say that T and S communicate if There exists a continuous map ϕ :
[0, 1] → C; ϕ(0) = 0 and ϕ(1) = 1, such that, for all λ zero of mT, ϕ(t)λ ∈ ρe(S), for all t ∈
[0, 1].

Theorem 3.2. Let T, S be two bounded operators on a normed space Y with compact commutator.
Suppose that T ∈ P(K(Y )) and mT (λ)/= 0, for all λ ∈ σe(S). Then T − S ∈ Φ(Y ).

If moreover, T and S communicate, then i(T − S) = i(S).
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Proof. Since mT (λ)/= 0 for all λ ∈ σe(S), then we can write mT (S) =
∏N

i=1(S − λi), with
λi /∈ σe(S). This yields mT (S) ∈ Φ(Y ). On the other hand mT (T) is compact, then mT (S) −
mT (T) ∈ Φ(Y ). Writing mT (S) −mT (T) = (S − T)L +K1 = L(S − T) +K2, with L ∈ L(Y ) and
K1, K2 ∈ K(Y ),we conclude that S − T ∈ Φ(Y ).

Now, consider Qt(z) =
∏N

i=1(z − λiϕ(t)), then Qt(ϕ(t)T) = (ϕ(t))NmT (T). Thus,
Qt(ϕ(t)T) is compact and, for all λ ∈ σe(S), Qt(λ)/= 0. This yields

ϕ(t)T − S ∈ Φ(Y ), ∀t ∈ [0, 1]. (3.1)

By the continuity of the index function on Φ(Y ),we get i(ϕ(t)T − S) constant for all t ∈ [0, 1].
In particular, i(T − S) = i(S).

Remark 3.3. Theorem 3.2 is an improvement of [12, Theorem 2.1]. Indeed, if σe(S) is a discrete
set of C, then T and S communicate. In the particular case where S = λI,we have σe(S) = {λ}.
Therefore, (λI − T) is a Fredholm operator of index zero.

We notice that if, for some p ∈ N
∗, mT (z) = zp, then, for all S ∈ Φ(Y ), S and T

communicate. Hence, we obtain the following.

Corollary 3.4. Let T, S be two bounded operators on a normed space Y with compact commutator.
Suppose that Tp ∈ K(Y ), for some p ∈ N

∗. If S ∈ Φ(Y ), then T − S ∈ Φ(Y ) and i(T − S) = i(S).

Corollary 3.5. Let T, S be two commuting bounded operators on the Banach space X. Suppose that
T ∈ P(K(X)), S ∈ B(X), and assume that T and S communicate, then T + S ∈ B(X).

Proof. As in the proof of Theorem 3.2, (3.1) we obtain S − ϕ(t)T ∈ Φ(X). Arguing as in the
proof of Theorem 2.4, we get a(S−T) < ∞. Now, by Theorem 3.2, we have i(T −S) = i(S) = 0.
Therefore, according to [17, Theorem 4.5(d)]we get δ(S − T) < ∞.

The following proposition is a well-know result, see [12, 20]. Here, we present a simple
proof for this fact.

Proposition 3.6. Let T ∈ P(K(X)) and letmT be the minimal polynomial of T. Then

σe(T) = σb(T) = {λ ∈ C such that mT (λ) = 0}. (3.2)

Proof. Since mT (T) is compact, then σb(mT (T)) = {0}. By [3, Theorem 1], σb(mT (T)) =
mT (σb(T)).Hence, σe(T) ⊂ σb(T) ⊂ {λ ∈ C; mT (λ) = 0}. Let λ ∈ C be such thatmT (λ) = 0,we
can writemT (T) = (T −λ)Q(T) = Q(T)(T −λ). SincemT (T) is compact and, by the minimality
ofmT , Q(T) is not compact, then (T − λ)/∈Φ(X). Hence, {λ ∈ C;mT (λ) = 0} ⊂ σe(T).

Proposition 3.7. Let T, S be two bounded operators on X with compact commutator.

(i) If T ∈ P(K(X)), then σe(S − T) ⊂ σe(S) − σe(T).

(ii) If there exists p ∈ N
∗ such that Tp ∈ K(X), then σe(S − T) = σe(S) − σe(T).

Proof. (i) If λ ∈ σe(S − T), then S − T − λ/∈Φ(X). On the other hand T + λI ∈ P(K(X)), and
[T + λI, S] = [T, S] is compact. According to Theorem 3.2, there exists λS ∈ σe(S) such that
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mT+λ(λS) = 0,wheremT+λ(z) = mT (z−λ) is theminimal polynomial of T+λ.Hence λ = λS−λT ,
where mT (λT ) = 0. Finally, the result follows from Proposition 3.6

(ii) By (i), σe(S−T) ⊂ σe(S)−σe(T). Since Tp ∈ K(X), then σe(T) = {0}, and we obtain
σe(S − T) ⊂ σe(S) = σe(S − T − (−T)) ⊂ σe(S − T).

Notice that in general, the converse inclusion in (i) does not hold.

Example 3.8. Consider the unweighted shift operator S = W(1, p). According to Remark 2.9,
we have σe(S) = C(0, 1), the unit circle. Let λ = (λn)n be a bounded complex sequence and let
Kλ : lr(N,C) → lr(N,C) be defined byKλ((xn)n) = (λnxn)n. Suppose that λi+p = λi, for all i ≥
0, then KλS = SKλ. Consider P(z) =

∏p−1
i=0 (z − λi), then P(Kλ) = 0 ∈ K(X). Suppose that

|λi|/= 1, for all i ∈ {0, . . . , p − 1}, then, applying Theorem 3.2, we get that Sλ = S − Kλ is a
Fredholm operator. By Proposition 3.7, we get σe(Sλ) ⊂

⋃p−1
i=0 C(−λi, 1).

The index of Sλ depends on the position of λi with respect to C(0, 1). If |λi| <
1, for all i ∈ {0, . . . , p−1}, thenKλ and S communicate and by Theorem 3.2, i(Sλ) = i(S) = p. If
we suppose that λi = λ, for all i ∈ {0, . . . , p−1}with |λ| > 1, thenKλ = λI, and Sλ is invertible.
In this case i(Sλ) = 0/= i(S). Observe that in this case, Kλ and S do not communicate.

Theorem 3.9. Let T be a bounded operator on X. Suppose that there exists an analytic function
f in a neighborhood of σ(T) which does not vanish on a connected component of σ(T) such that
f(T) ∈ K(X), then T ∈ P(K(X)).

Proof . From [3, Theorem 1] , we have σb(f(T)) = f(σb(T)). Since f(T) ∈ K(X), then
σb(f(T)) = {0}. Hence, σb(T) ⊂ σ(T) ∩ {λ ∈ C; f(λ) = 0} and therefore, σb(T) is a finite set
{λ1, . . . , λn}. Write f(z) = P(z)g(z),where P(z) :=

∏n
i=1(z − λi)

αi and g is an analytic function
with g(λi)/= 0, for all i ∈ {1, . . . , n}. Since g does not vanish on σb(T), then 0/∈ σb(g(T)). Thus,
g(T) ∈ Φ(X) and P(T) ∈ K(X).

3.1. Application: Solvability of Operator Equations

In the following theorem, we treat the question of the solvability of operator equations. We
will prove, under several sufficient conditions, that if the homogeneous equation Sϕ−Tϕ = 0
only has the trivial solution ϕ = 0, then for all ψ ∈ X the nonhomogeneous equation Sϕ−Tϕ =
ψ has a unique solution ϕ ∈ X, and this solution depends continuously on ψ.

Theorem 3.10. Let Y be a normed space and let T, S be two communicating commuting bounded
operators on Y . Suppose that T ∈ P(K(Y )) and let mT be the minimal polynomial of T. Assume that
0/∈ σess(S) ∪ σa(mT (S)).

If F := S − T is injective, then the inverse operator F−1 : Y → Y exists and is bounded.

Proof. F is injective, then N(F) = {0}, thus n(F) = 0. Applying Theorem 3.2, we get
i(F) = i(S) = 0. It follows that d(T) = 0 and therefore, the operator F is surjective. Hence,
the inverse operator F−1 = (S − T)−1 : Y → Y exists. Since Y is not necessary a Banach
space, we have to prove that F−1 is bounded. Suppose that it is not so, then there exists
(fn)n ⊂ X with ‖fn‖ = 1 and the sequence ϕn = F−1fn satisfies: ‖ϕn‖ → +∞ as n → +∞.
Set gn := fn/(‖ϕn‖) and ψn := ϕn/‖ϕn ‖ , n ∈ N. Then gn → 0 as n → 0, and ‖ψn‖ = 1. Since
Fψn = gn and FS = SF, then there exists L ∈ L(Y ) such that

mT (T)ψn = mT (S)ψn + L
(
gn

)
. (3.3)
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Since mT (T) is compact, we can choose a subsequence (ψn(k))k such that (mT (T)ψn(k)) → ψ
as k → +∞. Using (3.3), we observe that mT (S)ψn(k) → ψ as k → +∞. On the one
hand, FmT (S)ψn(k) = mT (S)Fψn(k) = mT (S)(gn) → 0 as k → +∞. On the other hand,
FmT (S)ψn(k) → F(ψ). Hence, F(ψ) = 0 which implies that ψ = 0. This is in contradiction
with 0/∈ σa(mT (S)).

Theorem 3.11. Let T ∈ P(K(X)) and S ∈ B(X) be communicating, commuting operators on the
Banach space X. Suppose that 0/∈ σa(mT (S)), and set F = S − T . Then the projection P : X →
N(Fa(F)) defined by the decompositionX = N(Fa(F))

⊕R(Fa(F)) is compact, and the operator F −P
is bijective.

Proof. First we notice that by Corollary 3.5, F ∈ B(X), then F ∈ Φ(X) and a(F) < ∞. Thus,
Fa(F) ∈ Φ(X), which implies that N(Fa(F)) is finite dimensional. Hence, the projection P is
continuous and compact. Now, we claim that F − P is bijective. Let ϕ ∈ N(F − P). Since
Pϕ ∈ N(Fa(F)), then Fa(F)+1(ϕ) = 0, which implies that Fa(F)(ϕ) = 0. Thus P(ϕ) = ϕ. Since
F(ϕ) = P(ϕ), then F(ϕ) = ϕ. We get by iteration Fa(F)(ϕ) = ϕ = 0. On the other hand, from
Theorem 3.10 applied to the operator T + P,we conclude that F − P is surjective.
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