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Let C be a nonempty closed convex subset of a Banach space E with the dual E∗, let T : C → E∗

be a continuous mapping, and let S : C → C be a relatively nonexpansive mapping. In this paper,
by employing the notion of generalized projection operator we study the variational inequality
(for short, VI(T − f, C)): find x ∈ C such that 〈y − x, Tx − f〉 ≥ 0 for all y ∈ C, where f ∈ E∗ is
a given element. By combining the approximate proximal point scheme both with the modified
Ishikawa iteration and with the modified Halpern iteration for relatively nonexpansive mappings,
respectively, we propose two modified versions of the approximate proximal point scheme L. C.
Ceng and J. C. Yao (2008) for finding approximate solutions of the VI(T − f, C). Moreover, it is
proven that these iterative algorithms converge strongly to the same solution of the VI(T − f, C),
which is also a fixed point of S.

Copyright q 2009 L. C. Ceng et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Let E be a real Banach space with the dual E∗. As usually, 〈·, ·〉 denotes the duality pairing
betweenE andE∗. In particular, ifE is a real Hilbert space, then 〈·, ·〉 denotes its inner product.
Let C be a nonempty closed convex subset of E and T : C → E∗ be a mapping. Given f ∈ E∗,
let us consider the following variational inequality problem (for short, VI(T − f, C)): find an
element x ∈ C such that

〈y − x, Tx − f〉 ≥ 0 ∀y ∈ C. (1.1)

Suppose that the VI(T − f, C) (1.1) has a (unique) solution x∗ ∈ C. For any x0 ∈ C,
define the following successive sequence in a uniformly convex and uniformly smooth
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Banach space E:

xn+1 = ΠC

(
J−1

(
Jxn − λ

(
Txn − f

)))
, n = 1, 2, . . . , (1.2)

where J : E → E∗ is the normalized duality mapping on E andΠC : E → C is the generalized
projection operator which assigns to an arbitrary point x ∈ E the minimum point of the
functional φ(y, x) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 with respect to y ∈ C. In [1, Theorem8.2], Alber
proved that the above sequence converges strongly to the solution x∗, that is, ‖xn − x∗‖ → 0
as n → ∞, if the following conditions hold:

(i) T : E → E∗ is uniformly monotone, that is,

〈x1 − x2, Tx1 − Tx2〉 ≥ ψ(‖x1 − x2‖) ∀x1, x2 ∈ E, (1.3)

where ψ(t) is a continuous strictly increasing function for all t ≥ 0 with ψ(0) = 0;

(ii) T : E → E∗ has ϕ arbitrary growth, that is,

‖Tx − f‖ ≤ ϕ(‖x − x∗‖) ∀x ∈ E, (1.4)

where ϕ(t) is a continuous nondecreasing function for all t ≥ 0 with ϕ(0) ≥ 0. Note
that solution methods for the problem (1.1) has also been studied in [2–10].

Let C be a nonempty closed convex subset of a real Banach space E with the dual E∗.
Assume that T : C → E∗ is a continuous mapping on C and S : C → C is a relatively
nonexpansive mapping such that F(S)/= ∅. The purpose of this paper is to introduce and
study two new iterative algorithms (1.5) and (1.6) in a uniformly convex and uniformly
smooth Banach space E.

Algorithm 1.1.

x0 ∈ C chosen arbitrarily,

〈y − x̃n, Jxn − Jx̃n − λn
(
Tx̃n − f

)〉 ≤ 0, ∀y ∈ C,

zn = J−1
(
βnJx̃n +

(
1 − βn

)
JSx̃n

)
,

yn = J−1(αnJx̃n + (1 − αn)JSzn),

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn)
}
,

Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, . . . ,

(1.5)

where {αn}∞n=0, {βn}∞n=0 are sequences in [0, 1], {λn}∞n=0 is a bounded sequence in (0,∞), and
x̃n is assumed to exist for each xn, n = 0, 1, 2, . . . .
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Algorithm 1.2.

x0 ∈ E chosen arbitrarily,

〈y − x̃n, Jxn − Jx̃n − λn
(
Tx̃n − f

)〉 ≤ 0, ∀y ∈ C,

yn = J−1(αnJx0 + (1 − αn)JSx̃n),

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ(v, x0) + (1 − αn)φ(v, x̃n)
}
,

Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, . . . ,

(1.6)

where {αn}∞n=0 is a sequence in [0, 1], {λn}∞n=0 is a bounded sequence in (0,∞), and x̃n is
assumed to exist for each xn, n = 0, 1, 2, . . . .

In this paper, strong convergence results on these two iterative algorithms are
established; that is, under appropriate conditions, both the sequence {xn} generated by
algorithm (1.5) and the sequence {xn} generated by algorithm (1.6) converge strongly to
the same point ΠF(S)x0, which is a solution of the VI(T − f, C). Our results represent
the improvement, generalization, and development of the previously known results in the
literature including Li [8], Zeng and Yao [9], Ceng and Yao [10], and Qin and Su [11].

Notation 1. ⇀ stands for weak convergence and → for strong convergence.

2. Preliminaries

Let E be a Banach space with the dual E∗. We denote by J the normalized duality mapping
from E to 2E

∗
defined by

Jx =
{
f∗ ∈ E∗ :

〈
x, f∗〉 = ‖x‖2 = ‖f∗‖2

}
, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E is smooth, then
J is single-valued and if E is uniformly smooth, then J is uniformly norm-to-norm continuous
on bounded subsets of E. We will still denote the single-valued duality mapping by J .

Recall that if C is a nonempty closed convex subset of a Hilbert space H and PC :
H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actually
characterizes Hilbert spaces and hence, it is not available in more general Banach spaces.
In this connection, Alber [1] recently introduced a generalized projection operator ΠC in a
Banach space E which is an analogue of the metric projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined as
in [1, 12] by

φ
(
x, y

)
= ‖x‖2 − 2

〈
x, Jy

〉
+ ‖y‖2 ∀x, y ∈ E. (2.2)

It is clear that in a Hilbert space H, (2.2) reduces to φ(x, y) = ‖x − y‖2, for all x, y ∈ H.
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The generalized projectionΠC : E → C is a mapping that assigns to an arbitrary point
x ∈ E the minimum point of the functional φ(y, x); that is, ΠCx = x, where x is the solution
to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x

)
. (2.3)

The existence and uniqueness of the operatorΠC follow from the properties of the functional
φ(x, y) and strict monotonicity of the mapping J (see, e.g., [13]). In a Hilbert space,ΠC = PC.

From [1], in uniformly convex and uniformly smooth Banach spaces, we have

(‖y‖ − ‖x‖)2 ≤ φ
(
y, x

) ≤ (‖y‖ + ‖x‖)2 ∀x, y ∈ E. (2.4)

Let C be a closed convex subset of E, and let S be a mapping from C into itself. A point p
in C is called an asymptotically fixed point of S [14] if C contains a sequence {xn} which
converges weakly to p such that Sxn − xn → 0. The set of asymptotical fixed points of S will
be denoted by F̂(S). A mapping S from C into itself is called relatively nonexpansive [15–17]
if F̂(S) = F(S) and φ(p, Sx) ≤ φ(p, x) for all x ∈ C and p ∈ F(S).

A Banach space E is called strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x /=y. It is said to be uniformly convex if xn − yn → 0 for any two
sequences {xn}, {yn} ⊂ E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 1. Let
U = {x ∈ E : ‖x‖ = 1} be a unit sphere of E. Then the Banach space E is called smooth if

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.5)

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ U. Recall also that if E is uniformly smooth, then J is uniformly norm-to-norm
continuous on bounded subsets of E. A Banach space is said to have the Kadec-Klee property
if for any sequence {xn} ⊂ E, whenever xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, we have xn → x. It
is known that if E is uniformly convex, then E has the Kadec-Klee property; see [18, 19] for
more details.

Remark 2.1 ([11]). If E is a reflexive, strictly convex, and smooth Banach space, then for any
x, y ∈ E, φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0, then x = y.
From (2.4), we have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖2 = ‖y‖2. From the definition
of J , we have Jx = Jy. Therefore, we have x = y; see [18, 19] for more details.

We need the following lemmas and proposition for the proof of our main results.

Lemma 2.2 (Kamimura and Takahashi [20]). Let E be a uniformly convex and smooth Banach
space and let {xn} and {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or {yn} is
bounded, then xn − yn → 0.

Lemma 2.3 (Alber [1]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then, x0 = ΠCx if and only if

〈z − x0, Jx0 − Jx〉 ≥ 0 ∀z ∈ C. (2.6)



Journal of Inequalities and Applications 5

Lemma 2.4 (Alber [1]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed convex subset of E and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

) ∀y ∈ C. (2.7)

Lemma 2.5 (Matsushita and Takahashi [21]). Let E be a strictly convex and smooth Banach space,
let C be a closed convex subset of E, and let S be a relatively nonexpansive mapping from C into itself.
Then F(S) is closed and convex.

Lemma 2.6 (Chang [7]). Let E be a smooth Banach space. Then the following inequality holds

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, J

(
x + y

)〉 ∀x, y ∈ E. (2.8)

3. Main Results

Now we are in a position to prove the main theorems of this paper.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let T : C → E∗ be a continuous mapping and, let S : C → C be a relatively
nonexpansive mapping such that F(S)/= ∅. Assume that {αn}∞n=0, {βn}∞n=0 are sequences in [0, 1] and
{λn}∞n=0 is a sequence in (0,∞) such that lim supn→∞αn < 1, βn → 1 and λn → λ ∈ (0,∞). Define
a sequence {xn}∞n=0 in C by the following algorithm:

x0 ∈ C chosen arbitrarily,
〈
y − x̃n, Jxn − Jx̃n − λn

(
Tx̃n − f

)〉 ≤ 0, ∀y ∈ C,

zn = J−1
(
βnJx̃n +

(
1 − βn

)
JSx̃n

)
,

yn = J−1(αnJx̃n + (1 − αn)JSzn),

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn)
}
,

Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, . . . ,

(3.1)

where x̃n is assumed to exist for each xn, n = 0, 1, 2, . . . . If S is uniformly continuous and
limn→∞〈xn − x̃n, Tx̃n − f〉 = 0, then {xn} converges strongly to ΠF(S)x0, which is a solution of
the VI(T − f, C) (1.1).

Proof. First of all, let us show that Cn and Qn are closed and convex for each n ≥ 0. Indeed,
from the definition of Cn and Qn, it is obvious that Cn is closed and Qn is closed and convex
for each n ≥ 0. We claim that Cn is convex. For any v1, v2 ∈ Cn and any t ∈ (0, 1), put
v = tv1 + (1 − t)v2. It is sufficient to show that v ∈ Cn. Note that the inequality

φ
(
v, yn

) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn) (3.2)
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is equivalent to the one

2αn〈v, Jx̃n〉 + 2(1 − αn)〈v, Jzn〉 − 2
〈
v, Jyn

〉 ≤ αn‖x̃n‖2 + (1 − αn)‖zn‖2 − ‖yn‖2. (3.3)

Observe that there hold the following:

φ
(
v, yn

)
= ‖v‖2 − 2

〈
v, Jyn

〉
+ ‖yn‖2, φ(v, x̃n) = ‖v‖2 − 2〈v, Jx̃n〉 + ‖x̃n‖2, (3.4)

and φ(v, zn) = ‖v‖2 − 2〈v, Jzn〉 + ‖zn‖2. Thus, we have

2αn〈v, Jx̃n〉 + 2(1 − αn)〈v, Jzn〉 − 2
〈
v, Jyn

〉

= 2αn〈tv1 + (1 − t)v2, Jx̃n〉 + 2(1 − αn)〈tv1 + (1 − t)v2, Jzn〉
− 2〈tv1 + (1 − t)v2, Jyn〉

= 2tαn〈v1, Jx̃n〉 + 2(1 − t)αn〈v2, Jx̃n〉
+ 2(1 − αn)t〈v1, Jzn〉 + 2(1 − αn)(1 − t)〈v2, Jzn〉
− 2t〈v1, Jyn〉 − 2(1 − t)〈v2, Jyn〉

≤ αn‖x̃n‖2 + (1 − αn)‖zn‖2 − ‖yn‖2.

(3.5)

This implies that v ∈ Cn. So, Cn is convex. Next let us show that F(S) ⊂ Cn for all n. Indeed,
we have for all w ∈ F(S)

φ
(
w,yn

)
= φ

(
w, J−1(αnJx̃n + (1 − αn)JSzn)

)

= ‖w‖2 − 2〈w,αnJx̃n + (1 − αn)JSzn〉 + ‖αnJx̃n + (1 − αn)JSzn‖2

≤ ‖w‖2 − 2αn〈w, Jx̃n〉 − 2(1 − αn)〈w, JSzn〉 + αn‖x̃n‖2 + (1 − αn)‖Szn‖2

≤ αnφ(w, x̃n) + (1 − αn)φ(w,Szn)

≤ αnφ(w, x̃n) + (1 − αn)φ(w, zn).

(3.6)

So w ∈ Cn for all n ≥ 0. Next let us show that

F(S) ⊂ Qn ∀n ≥ 0. (3.7)

We prove this by induction. For n = 0, we have F(S) ⊂ C = Q0. Assume that F(S) ⊂ Qn. Since
xn+1 is the projection of x0 onto Cn ∩Qn, by Lemma 2.3, we have

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0, ∀z ∈ Cn ∩Qn. (3.8)

As F(S) ⊂ Cn ∩ Qn by the induction assumption, the last inequality holds, in particular, for
all z ∈ F(S). This together with the definition of Qn+1 implies that F(S) ⊂ Qn+1. Hence (3.7)
holds for all n ≥ 0. This implies that {xn} is well defined.



Journal of Inequalities and Applications 7

On the other hand, it follows from the definition of Qn that xn = ΠQnx0. Since xn+1 =
ΠCn∩Qnx0 ∈ Qn, we have

φ(xn, x0) ≤ φ(xn+1, x0) ∀n ≥ 0. (3.9)

Thus {φ(xn, x0)} is nondecreasing. Also from xn = ΠQnx0 and Lemma 2.4, it follows that

φ(xn, x0) = φ
(
ΠQnx0, x0

) ≤ φ(w,x0) − φ(w,xn) ≤ φ(w,x0) (3.10)

for each w ∈ F(S) ⊂ Qn for each n ≥ 0. Consequently, {φ(xn, x0)} is bounded. Moreover,
according to the inequality

(‖xn‖ − ‖x0‖)2 ≤ φ(xn, x0) ≤ (‖xn‖ + ‖x0‖)2, (3.11)

we conclude that {xn} is bounded and so is {Sxn}. Indeed, since S is relatively nonexpansive,
we derive for each p ∈ F(S)

φ
(
p, Sxn

) ≤ φ
(
p, xn

) ≤ (‖p‖ + ‖xn‖
)2 ∀n ≥ 0, (3.12)

and hence {φ(p, Sxn)} is bounded. Again from (‖p‖ − ‖Sxn‖)2 ≤ φ(p, Sxn), we know that
{Sxn} is also bounded.

On account of the boundedness and nondecreasing property of {φ(xn, x0)},we deduce
that limn→∞φ(xn, x0) exists. From Lemma 2.4, we derive

φ(xn+1, xn) = φ
(
xn+1,ΠQnx0

)

≤ φ(xn+1, x0) − φ
(
ΠQnx0, x0

)

= φ(xn+1, x0) − φ(xn, x0)

(3.13)

for all n ≥ 0. This implies that φ(xn+1, xn) → 0. So it follows from Lemma 2.2 that xn+1 −xn →
0. Since xn+1 = ΠCn∩Qnx0 ∈ Cn, from the definition of Cn, we also have

φ
(
xn+1, yn

) ≤ αnφ(xn+1, x̃n) + (1 − αn)φ(xn+1, zn). (3.14)

Observe that

φ(xn+1, zn) = φ
(
xn+1, J

−1(βnJx̃n +
(
1 − βn

)
JSx̃n

))

= ‖xn+1‖2 − 2
〈
xn+1, βnJx̃n +

(
1 − βn

)
JSx̃n

〉
+ ‖βnJx̃n + (1 − βn)JSx̃n‖2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jx̃n〉 − 2
(
1 − βn

)〈xn+1, JSx̃n〉

+ βn‖x̃n‖2 +
(
1 − βn

)‖Sx̃n‖2

= βnφ(xn+1, x̃n) +
(
1 − βn

)
φ(xn+1, Sx̃n).

(3.15)
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On the other hand, since from (3.1)we have for each n ≥ 0

〈
y − x̃n, Jxn − Jx̃n − λn

(
Tx̃n − f

)〉 ≤ 0, ∀y ∈ C, (3.16)

utilizing Lemma 2.3 we obtain x̃n = ΠC(J−1(Jxn − λn(Tx̃n − f))). Thus, in terms of Lemmas
2.4 and 2.6 we conclude that

φ(xn, x̃n) = φ
(
xn,ΠC

(
J−1

(
Jxn − λn

(
Tx̃n − f

))))

≤ φ
(
xn, J

−1(Jxn − λn
(
Tx̃n − f

)))

− φ
(
ΠC

(
J−1

(
Jxn − λn

(
Tx̃n − f

)))
, J−1

(
Jxn − λn

(
Tx̃n − f

)))

= φ
(
xn, J

−1(Jxn − λn
(
Tx̃n − f

))) − φ
(
x̃n, J

−1(Jxn − λn
(
Tx̃n − f

)))

= ‖xn‖2 − 2
〈
xn, Jxn − λn

(
Tx̃n − f

)〉
+ ‖Jxn − λn

(
Tx̃n − f

)‖2

−
[
‖x̃n‖2 − 2

〈
x̃n, Jxn − λn

(
Tx̃n − f

)〉
+ ‖Jxn − λn

(
Tx̃n − f

)‖2
]

= ‖xn‖2 − 2
〈
xn, Jxn − λn

(
Tx̃n − f

)〉 − ‖x̃n‖2 + 2
〈
x̃n, Jxn − λn

(
Tx̃n − f

)〉

= ‖xn‖2 − ‖x̃n‖2 + 2
〈
x̃n − xn, Jxn − λn

(
Tx̃n − f

)〉

= ‖x̃n + xn − x̃n‖2 − ‖x̃n‖2 + 2
〈
x̃n − xn, Jxn − λn

(
Tx̃n − f

)〉

≤ ‖x̃n‖2 + 2〈xn − x̃n, Jxn〉 − ‖x̃n‖2 + 2
〈
x̃n − xn, Jxn − λn

(
Tx̃n − f

)〉

= 2〈xn − x̃n, Jxn〉 + 2
〈
x̃n − xn, Jxn − λn

(
Tx̃n − f

)〉

= 2λn
〈
xn − x̃n, Tx̃n − f

〉
.

(3.17)

Since λn → λ ∈ (0,∞) and limn→∞〈xn − x̃n, Tx̃n − f〉 = 0, we obtain φ(xn, x̃n) → 0. Thus
by Lemma 2.2 we have xn − x̃n → 0. From ‖x̃n‖ ≤ ‖x̃n − xn‖ + ‖xn‖, it follows that {x̃n} is
bounded. At the same time, observe that

φ(xn+1, x̃n) − φ(xn, x̃n) = ‖xn+1‖2 − 2〈xn+1, Jx̃n〉 + ‖x̃n‖2

−
[
‖xn‖2 − 2〈xn, Jx̃n〉 + ‖x̃n‖2

]

= ‖xn+1‖2 − 2〈xn+1, Jx̃n〉 − ‖xn‖2 + 2〈xn, Jx̃n〉
= (‖xn+1‖ − ‖xn‖)(‖xn+1‖ + ‖xn‖) + 2〈xn − xn+1, Jx̃n〉
≤ ‖xn+1 − xn‖(‖xn+1‖ + ‖xn‖) + 2‖xn − xn+1‖‖x̃n‖
= ‖xn+1 − xn‖(‖xn+1‖ + ‖xn‖ + 2‖x̃n‖),

(3.18)
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and hence

φ(xn+1, x̃n) ≤ φ(xn, x̃n) + ‖xn+1 − xn‖(‖xn+1‖ + ‖xn‖ + 2‖x̃n‖). (3.19)

From φ(xn, x̃n) → 0, xn+1 − xn → 0, and the boundedness of {xn} and {x̃n}, we derive
φ(xn+1, x̃n) → 0. Note that S : C → C is uniformly continuous. Hence Sx̃n − Sxn → 0 by
virtue of x̃n − xn → 0. Since

‖Sx̃n‖ ≤ ‖Sx̃n − Sxn‖ + ‖Sxn‖, (3.20)

it is known that {Sx̃n} is bounded. Consequently, from (3.15), φ(xn+1, x̃n) → 0 and βn → 1,
it follows that

lim
n→∞

φ(xn+1, zn) = 0. (3.21)

Further, it follows from (3.14), φ(xn+1, x̃n) → 0 and φ(xn+1, zn) → 0 that

lim
n→∞

φ
(
xn+1, yn

)
= 0. (3.22)

Utilizing Lemma 2.2, we obtain

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn+1 − x̃n‖ = lim
n→∞

‖xn+1 − zn‖ = 0. (3.23)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we have

lim
n→∞

‖Jxn+1 − Jyn‖ = lim
n→∞

‖Jxn+1 − Jx̃n‖ = 0. (3.24)

Furthermore, we have

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖. (3.25)

It follows from xn+1 − xn → 0 and xn+1 − zn → 0 that

lim
n→∞

‖xn − zn‖ = 0. (3.26)

Noticing that

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (αnJx̃n + (1 − αn)JSzn)‖
= ‖αn(Jxn+1 − Jx̃n) + (1 − αn)(Jxn+1 − JSzn)‖
= ‖(1 − αn)(Jxn+1 − JSzn) − αn(Jx̃n − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JSzn‖ − αn‖Jx̃n − Jxn+1‖,

(3.27)
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we have

‖Jxn+1 − JSzn‖ ≤ 1
1 − αn

(‖Jxn+1 − Jyn‖ + αn‖Jx̃n − Jxn+1‖
)
. (3.28)

From (3.24) and lim supn→∞αn < 1, we obtain

lim
n→∞

‖Jxn+1 − JSzn‖ = 0. (3.29)

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗, we obtain

lim
n→∞

‖xn+1 − Szn‖ = 0. (3.30)

Observe that

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Szn‖ + ‖Szn − Sxn‖. (3.31)

Since S is uniformly continuous, it follows from (3.26), (3.30) and xn+1 − xn → 0 that xn −
Sxn → 0.

Finally, let us show that {xn} converges strongly to ΠF(S)x0, which is a solution of the
VI(T − f, C) (1.1). Indeed, assume that {xni} is a subsequence of {xn} such that xni ⇀ x̃ ∈ E.
Then x̃ ∈ F̂(S) = F(S). Next let us show that x̃ = ΠF(S)x0 and convergence is strong. Put
x = ΠF(S)x0. From xn+1 = ΠCn∩Qnx0 and x ∈ F(S) ⊂ Cn ∩ Qn, we have φ(xn+1, x0) ≤ φ(x, x0).
Now from weakly lower semicontinuity of the norm, we derive

φ(x̃, x0) = ‖x̃‖2 − 2〈x̃, Jx0〉 + ‖x0‖2

≤ lim inf
i→∞

(
‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2

)

= lim inf
i→∞

φ(xni , x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(x, x0).

(3.32)

It follows from the definition of ΠF(S)x0 that x̃ = x and hence

lim
i→∞

φ(xni , x0) = φ(x, x0). (3.33)

Sowe have limi→∞‖xni‖ = ‖x‖. Utilizing the Kadec-Klee property ofE, we conclude that {xni}
converges strongly toΠF(S)x0. Since {xni} is an arbitrarily weakly convergent subsequence of
{xn}, we know that {xn} converges strongly to x = ΠF(S)x0. Now observe that from (3.1) we
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have for each n ≥ 0

〈
y − x̃n, Jxn − Jx̃n − λn

(
Tx̃n − f

)〉 ≤ 0, ∀y ∈ C. (3.34)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, from xn − x̃n → 0
we infer that Jxn − Jx̃n → 0. Noticing that xn → x and T : C → E∗ is a continuous mapping,
we obtain that x̃n → x and T x̃n → Tx. Therefore, from λn → λ ∈ (0,∞), it follows that

∣∣〈y − x̃n, Jxn − Jx̃n − λn
(
Tx̃n − f

)〉 − 〈
y − x,−λ(T x − f

)〉∣∣

=
∣∣〈y − x̃n, Jxn − Jx̃n〉 + 〈y − x̃n,−λn

(
Tx̃n − f

)〉 − 〈y − x,−λ(T x − f
)〉∣∣

≤ ∣∣〈y − x̃n, Jxn − Jx̃n〉
∣∣ + ∣∣〈y − x̃n,−λn

(
Tx̃n − f

)〉 − 〈y − x,−λ(T x − f
)〉∣∣

=
∣∣〈y − x̃n, Jxn − Jx̃n

〉∣∣ + ∣∣〈y − x̃n −
(
y − x

)
,−λn

(
Tx̃n − f

)〉

+
〈
y − x,−λn

(
Tx̃n − f

) − (−λ(T x − f
))〉∣∣

≤ ∥∥y − x̃n

∥∥‖Jxn − Jx̃n‖ + ‖x̃n − x‖∥∥λn
(
Tx̃n − f

)∥∥

+
∥∥y − x

∥∥∥∥λn
(
Tx̃n − f

) − λ
(
T x − f

)∥∥

≤ ∥∥y − x̃n

∥∥‖Jxn − Jx̃n‖ + ‖x̃n − x‖∥∥λn
(
Tx̃n − f

)∥∥

+
∥∥y − x

∥∥[λn‖Tx̃n − T x‖ + |λn − λ|∥∥T x − f
∥∥] −→ 0 (n −→ ∞),

(3.35)

that is,

lim
n→∞

〈
y − x̃n, Jxn − Jx̃n − λn

(
Tx̃n − f

)〉
=
〈
y − x,−λ(T x − f

)〉
. (3.36)

Letting n → ∞ we conclude from (3.34) that

〈
y − x,−λ(T x − f

)〉 ≤ 0 ∀y ∈ C, (3.37)

and hence

〈y − x, T x − f〉 ≥ 0 ∀y ∈ C. (3.38)

This shows that x = ΠF(S)x0 is a solution of the VI(T − f, C) (1.1). This completes the
proof.
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Corollary 3.2 ([11, Theorem2.1]). Let E be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of E, and let S : C → C be a relatively nonexpansive
mapping such that F(S)/= ∅. Assume that {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that
lim supn→∞αn < 1 and βn → 1. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = J−1
(
βnJxn +

(
1 − βn

)
JSxn

)
,

yn = J−1(αnJxn + (1 − αn)JSzn),

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ(v, xn) + (1 − αn)φ(v, zn)
}
,

Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠCn∩Qnx0,

(3.39)

where J is the single-valued duality mapping on E. If S is uniformly continuous, then {xn} converges
strongly to ΠF(S)x0.

Proof. In Theorem 3.1, we know from (3.1) and Lemma 2.3 that

〈
y − x̃n, Jxn − Jx̃n − λn

(
Tx̃n − f

)〉 ≤ 0, ∀y ∈ C, (3.40)

is equivalent to x̃n = ΠC(J−1(Jxn − λn(Tx̃n − f))). Now, put Tx = f for all x ∈ C. Then we
have

x̃n = ΠC

(
J−1

(
Jxn −

(
Tx̃n − f

)))

= ΠC

(
J−1

(
Jxn −

(
f − f

)))

= xn,

(3.41)

for all n. Thus algorithm (3.1) reduces to algorithm (3.39). By Theorem 3.1 we obtain the
desired result.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let T : C → E∗ be a continuous mapping, and let S : C → C be a relatively
nonexpansive mapping such that F(S)/= ∅. Assume that {αn}∞n=0 ⊂ (0, 1) satisfies limn→∞αn = 0 and
{λn}∞n=0 ⊂ (0,∞) satisfies limn→∞λn = λ > 0. Define a sequence {xn}∞n=0 in C by the following
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algorithm:

x0 ∈ C chosen arbitrarily,
〈
y − x̃n, Jxn − Jx̃n − λn

(
Tx̃n − f

)〉 ≤ 0, ∀y ∈ C,

yn = J−1(αnJx0 + (1 − αn)JSx̃n),

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ(v, x0) + (1 − αn)φ(v, x̃n)
}
,

Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, . . . ,

(3.42)

where x̃n is assumed to exist for each xn, n = 0, 1, 2, . . . If S is uniformly continuous and limn→∞〈xn−
x̃n, Tx̃n − f〉 = 0, then {xn} converges strongly to ΠF(S)x0, which is a solution of the VI(T − f, C)
(1.1).

Proof. We only derive the difference. First, let us show that Cn is closed and convex for each
n ≥ 0. From the definition of Cn, it is obvious that Cn is closed for each n ≥ 0. We prove that
Cn is convex. Similarly to the proof of Theorem 3.1, since

φ
(
v, yn

) ≤ αnφ(v, x0) + (1 − αn)φ(v, x̃n) (3.43)

is equivalent to

2αn〈v, Jx0〉 + 2(1 − αn)〈v, Jx̃n〉 − 2〈v, Jyn〉 ≤ αn‖x0‖2 + (1 − αn)‖x̃n‖2 − ‖yn‖2, (3.44)

we know that Cn is convex. Next, let us show that F(S) ⊂ Cn for each n ≥ 0. Indeed, we have
for each w ∈ F(S)

φ
(
w,yn

)
= φ

(
w, J−1(αnJx0 + (1 − αn)JSx̃n)

)

= ‖w‖2 − 2〈w,αnJx0 + (1 − αn)JSx̃n〉 + ‖αnJx0 + (1 − αn)JSx̃n‖2

≤ ‖w‖2 − 2αn〈w, Jx0〉 − 2(1 − αn)〈w, JSx̃n〉 + αn‖x0‖2 + (1 − αn)‖Sx̃n‖2

≤ αnφ(w,x0) + (1 − αn)φ(w,Sx̃n)

≤ αnφ(w,x0) + (1 − αn)φ(w, x̃n).

(3.45)

So w ∈ Cn for all n ≥ 0 and F(S) ⊂ Cn. Similarly to the proof of Theorem 3.1, we also
obtain F(S) ⊂ Qn for all n ≥ 0. Consequently, F(S) ⊂ Cn ∩ Qn for all n ≥ 0. Therefore, the
sequence {xn} generated by (3.42) is well defined. As in the proof of Theorem 3.1, we can
obtain φ(xn+1, xn) → 0. Since xn+1 = ΠCn∩Qnx0 ∈ Cn, from the definition of Cn, we also have

φ
(
xn+1, yn

) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, x̃n). (3.46)
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As in the proof of Theorem 3.1, we can deduce from λn → λ ∈ (0,∞) and limn→∞〈xn −
x̃n, Tx̃n − f〉 = 0 that φ(xn, x̃n) → 0 and hence x − x̃n → 0 by Lemma 2.2. Further, it follows
from φ(xn, x̃n) → 0, xn+1 − xn → 0 and the boundedness of {xn} and {x̃n} that

lim
n→∞

φ(xn+1, x̃n) = 0. (3.47)

Since xn+1 = ΠCn∩Qnx0 ∈ Cn, from the definition of Cn, we also have

φ
(
xn+1, yn

) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, x̃n). (3.48)

It follows from (3.47) and αn → 0 that

lim
n→∞

φ
(
xn+1, yn

)
= 0. (3.49)

Utilizing Lemma 2.2, we have

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

‖xn+1 − x̃n‖ = 0. (3.50)

Since J is uniformly norm-to-norm continuous on bounded subsets of E,we have

lim
n→∞

‖Jxn+1 − Jyn‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = lim
n→∞

‖Jxn+1 − Jx̃n‖ = 0. (3.51)

Note that

‖JSx̃n − Jyn‖ = ‖JSx̃n − (αnJx0 + (1 − αn)JSx̃n)‖
= αn‖Jx0 − JSx̃n‖.

(3.52)

Therefore, from αn → 0 we have

lim
n→∞

‖JSx̃n − Jyn‖ = 0. (3.53)

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗, we obtain

lim
n→∞

‖Sx̃n − yn‖ = 0. (3.54)

It follows that

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn‖ + ‖yn − Sx̃n‖ + ‖Sx̃n − Sxn‖. (3.55)

Since S is uniformly continuous, it follows from (3.50) and (3.54) that xn − Sxn → 0.
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Finally, let us show that {xn} converges strongly to ΠF(S)x0, which is a solution of the
VI(T − f, C) (1.1). Indeed, assume that {xni} is a subsequence of {xn} such that xni ⇀ x̃ ∈ E.
Then x̃ ∈ F̂(S) = F(S). Next let us show that x̃ = ΠF(S)x0 and convergence is strong. Put
x = ΠF(S)x0. From xn+1 = ΠCn∩Qnx0 and x ∈ F(S) ⊂ Cn ∩ Qn, we have φ(xn+1, x0) ≤ φ(x, x0).
Now from weakly lower semicontinuity of the norm, we derive

φ(x̃, x0) = ‖x̃‖2 − 2〈x̃, Jx0〉 + ‖x0‖2

≤ lim inf
i→∞

(
‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2

)

= lim inf
i→∞

φ(xni , x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(x, x0).

(3.56)

It follows from the definition ofΠF(S)x0 that x̃ = x and hence limi→∞φ(xni , x0) = φ(x, x0). So,
we have limi→∞‖xni‖ = ‖x‖. Utilizing the Kadec-Klee property of E, we conclude that {xni}
converges strongly toΠF(S)x0. Since {xni} is an arbitrarily weakly convergent subsequence of
{xn}, we know that {xn} converges strongly to x = ΠF(S)x0. Now observe that from (3.1), we
have for each n ≥ 0

〈y − x̃n, Jxn − Jx̃n − λn
(
Tx̃n − f

)〉 ≤ 0 ∀y ∈ C. (3.57)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, from xn − x̃n → 0,
we infer that Jxn − Jx̃n → 0. Noticing that xn → x and T : C → E∗ is a continuous mapping,
we obtain that x̃n → x and Tx̃n → Tx. Observe that

∣∣〈y − x̃n, Jxn − Jx̃n − λn
(
Tx̃n − f

)〉 − 〈
y − x,−λ(T x − f

)〉∣∣

=
∣∣〈y − x̃n, Jxn − Jx̃n

〉
+
〈
y − x̃n,−λn

(
Tx̃n − f

)〉 − 〈
y − x,−λ(T x − f

)〉∣∣

≤ ∣∣〈y − x̃n, Jxn − Jx̃n〉
∣∣ + ∣∣〈y − x̃n,−λn

(
Tx̃n − f

)〉 − 〈
y − x,−λ(T x − f

)〉∣∣

=
∣∣〈y − x̃n, Jxn − Jx̃n〉

∣∣ + ∣∣〈y − x̃n −
(
y − x

)
,−λn

(
Tx̃n − f

)〉

+
〈
y − x,−λn

(
Tx̃n − f

) − (−λ(T x − f
))〉∣∣

≤ ∥∥y − x̃n

∥∥‖Jxn − Jx̃n‖ + ‖x̃n − x‖∥∥λn
(
Tx̃n − f

)∥∥

+
∥∥y − x

∥∥∥∥λn
(
Tx̃n − f

) − λ
(
T x − f

)∥∥

≤ ∥∥y − x̃n

∥∥‖Jxn − Jx̃n‖ + ‖x̃n − x‖∥∥λn
(
Tx̃n − f

)∥∥

+
∥∥y − x

∥∥[λn‖Tx̃n − T x‖ + |λn − λ|∥∥T x − f
∥∥],

(3.58)

It follows from λn → λ ∈ (0,∞) that

lim
n→∞

〈
y − x̃n, Jxn − Jx̃n − λn

(
Tx̃n − f

)〉
= 〈y − x,−λ(T x − f

)〉. (3.59)
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Letting n → ∞ we conclude from (3.34) that

〈y − x, T x − f〉 ≥ 0 ∀y ∈ C. (3.60)

This shows that x = ΠF(S)x0 is a solution of the VI(T−f, C) (1.1). This completes the proof.

Corollary 3.4 ([11, Theorem2.2]). Let E be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of E, and let S : C → C be a relatively nonexpansive
mapping. Assume that {αn}∞n=0 is a sequence in (0, 1) such that limn→∞αn = 0. Define a sequence
{xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1 − αn)JSxn),

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ(v, x0) + (1 − αn)φ(v, xn)
}
,

Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠCn∩Qnx0,

(3.61)

where J is the single-valued duality mapping on E. If F(S) is nonempty, then {xn} converges strongly
to ΠF(S)x0.

Proof. In Theorem 3.3, we know from (3.42) and Lemma 2.3 that

〈
y − x̃n, Jxn − Jx̃n − λn

(
Tx̃n − f

)〉 ≤ 0, ∀y ∈ C, (3.62)

is equivalent to x̃n = ΠC(J−1(Jxn − λn(Tx̃n − f))). Now, put Tx = f for all x ∈ C. Then we
have

x̃n = ΠC

(
J−1

(
Jxn −

(
Tx̃n − f

)))

= ΠC

(
J−1

(
Jxn −

(
f − f

)))

= xn,

(3.63)

for all n. Thus algorithm (3.42) reduces to algorithm (3.61). Thus under the lack of the
uniform continuity of S, it follows from (3.55) that xn − Sxn → 0. By the careful analysis
of the proof of Theorem 3.3, we can obtain the desired result.
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