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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms: let (G1, ∗) be a group and let (G2, �, d) be
a metric group with the metric d(·, ·). Given ε > 0, does there exist δ(ε) > 0 such that if a mapping
h : G1 → G2 satisfies the inequality

d
(
h(x ∗ y), h(x) � h(y)) < δ (1.1)

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d
(
h(x),H(x)

)
< ε (1.2)

for all x ∈ G1?
Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces.

Let X and Y be Banach spaces. Assume that f : X → Y satisfies

∥∥f(x + y) − f(x) − f(y)
∥∥ ≤ ε (1.3)
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for some ε ≥ 0 and all x, y ∈ X. Then there exists a unique additive mapping T : X → Y such that

∥
∥f(x) − T(x)

∥
∥ ≤ ε (1.4)

for all x ∈ X.
Aoki [3] and Th. M. Rassias [4] provided a generalization of the Hyers’ theorem

for additive and linear mappings, respectively, by allowing the Cauchy difference to be
unbounded.

Theorem 1.1 (Th. M. Rassias [4]). Let f : E → E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality

∥
∥f(x + y) − f(x) − f(y)

∥
∥ ≤ ε(‖x‖p + ‖y‖p) (1.5)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f
(
2nx

)

2n
(1.6)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥∥f(x) − L(x)
∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.7)

for all x ∈ E. If p < 0, then the inequality (1.5) holds for x, y /= 0 and (1.7) for x /= 0. Also, if for each
x ∈ E the mapping t �→ f(tx) is continuous in t ∈ R, then L is R- linear.

Theorem 1.2 (J. M. Rassias [5–7]). Let X be a real normed linear space and let Y be a real Banach
space. Assume that f : X → Y is a mapping for which there exist constants θ ≥ 0 and p, q ∈ R such
that r = p + q /= 1 and f satisfies the functional inequality

∥∥f(x + y) − f(x) − f(y)
∥∥ ≤ θ‖x‖p‖y‖q (1.8)

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

∥∥f(x) − L(x)
∥∥ ≤ θ

∣∣2r − 2
∣∣‖x‖

r (1.9)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation t → f(tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is linear.

In 1994, a generalization of Theorems 1.1 and 1.2 was obtained by Găvruţa [8], who
replaced the bounds ε(‖x‖p + ‖y‖p) and θ‖x‖p‖y‖q by a general control function ϕ(x, y).

The functional equation

f(x + y) + f(x − y) = 2f(x) + 2f(y) (1.10)
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is called a quadratic functional equation. Quadratic functional equations were used to
characterize inner product spaces [9–11]. In particular, every solution of the quadratic
equation (1.10) is said to be a quadratic mapping. It is well known that a mapping f between
real vector spaces is quadratic if and only if there exists a unique symmetric biadditive
mapping B such that f(x) = B(x, x) for all x (see [9, 12]). The biadditive mapping B is given
by

B(x, y) =
1
4
[
f(x + y) − f(x − y)

]
. (1.11)

The generalized Hyers-Ulam stability problem for the quadratic functional equation
(1.10) was proved by Skof for mappings f : E1 → E2, where E1 is a normed space and E2

is a Banach space (see [13]). Cholewa [14] noticed that the theorem of Skof is still true if the
relevant domain E1 is replaced by an Abelian group. J. M. Rassias [15] and Czerwik [16],
proved the stability of the quadratic functional equation (1.10). Grabiec [17] has generalized
these results mentioned above. J. M. Rassias [18] introduced and investigated the stability
problem of Ulam for the Euler-Lagrange quadratic mappings:

f
(
a1x1 + a2x2

)
+ f

(
a2x1 − a1x2

)
=
(
a2
1 + a2

2
)[
f
(
x1
)
+ f

(
x2
)]
. (1.12)

In addition, J. M. Rassias [19] generalized the Euler-Lagrange quadratic mapping (1.12)
and investigated its stability problem. The Euler-Lagrange quadratic mapping (1.12) has
provided a lot of influence in the development of general Euler-Lagrange quadratic equations
(mappings) which is now known as Euler-Lagrange-Rassias quadratic functional equations
(mappings).

Jun and Lee [20] proved the generalized Hyers-Ulam stability of a pexiderized
quadratic equation. The stability problems of several functional equations have been
extensively investigated by a number of authors and there are many interesting results
concerning this problem (see [8, 20–47]). We also refer the readers to the books [48–51].

Let E be a set. A function d : E × E → [0,∞] is called a generalized metric on E if d
satisfies

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) for all x, y ∈ E,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.

We recall the following theorem by Margolis and Diaz.

Theorem 1.3 (see [52]). Let (E, d) be a complete generalized metric space and let J : E → E be a
strictly contractive mapping with Lipschitz constant 0 < L < 1. Then for each given element x ∈ E,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.13)

for all nonnegative integers n or there exists a nonnegative integer n0 such that

(1) d
(
Jnx, Jn+1x

)
< ∞ for all n ≥ n0,

(2) the sequence {Jnx} converges to a fixed point y∗ of J ,
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(3) y∗ is the unique fixed point of J in the set Y = {y ∈ E : d(Jn0x, y) < ∞},

(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

Throughout this paper, we assume that r, s are nonzero rational numbers with r2 +
s2 /= 1, and that A is a unital Banach algebra with unit e, norm | · |, and A1 := {a ∈ A : |a| = 1}.
Assume that X is a normed left A-module and Y is a (unit linked) Banach left A-module. A
quadratic mapping T : X → Y is called A-quadratic if T(ax) = a2T(x) for all a ∈ A and all
x ∈ X.

In this paper, we investigate an A-quadratic mapping associated with the generalized
quadratic functional equation

f(rx + sy) = r2f(x) + s2f(y) +
rs

2
[
f(x + y) − f(x − y)

]
, (1.14)

and using the fixed point method (see [24, 25, 38, 53–55]), we prove the generalized Hyers-
Ulam stability ofA-quadratic mappings in BanachA-modules associated with the functional
equation (1.14). In 1996, Isac and Th. M. Rassias [56] were the first to provide applications
of stability theory of functional equations for the proof of new fixed point theorems with
applications.

For convenience, we use the following abbreviation for a given a ∈ A and a mapping
f : X → Y :

Daf(x, y) := f(rax + sy) − r2a2f(x) − s2f(y) − rs

2
[
f(ax + y) − f(ax − y)

]
(1.15)

for all x, y ∈ X.

2. Fixed Points and Stability of the Generalized Quadratic
Functional Equation (1.14)

Proposition 2.1. A mapping f : X → Y satisfies

D1f(x, y) = 0 (2.1)

for all x, y ∈ X if and only if f is quadratic.

Proof. Let f satisfy (2.1). Since r2 + s2 /= 1, letting x = y = 0 in (2.1), we get f(0) = 0. Letting
y = 0 in (2.1), we get

f(rx) = r2f(x) (2.2)

for all x ∈ X. It follows from (2.1) that D1f(x, y) +D1f(x,−y) = 0 for all x, y ∈ X.Hence

f(rx + sy) + f(rx − sy) = 2r2f(x) + s2
[
f(y) + f(−y)] (2.3)
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for all x, y ∈ X.We decompose f into the even part and the odd part by putting

fe(x) =
f(x) + f(−x)

2
, fo(x) =

f(x) − f(−x)
2

(2.4)

for all x ∈ X. It is clear that f(x) = fe(x) + fo(x) for all x ∈ X. It is easy to show that the
mappings fe and fo satisfy (2.2) and (2.3). Thus we have

fe(rx + sy) + fe(rx − sy) = 2r2fe(x) + 2s2fe(y), (2.5)

fo(rx + sy) + fo(rx − sy) = 2r2fo(x) (2.6)

for all x, y ∈ X. Letting x = 0 in (2.5), we get

fe(sy) = s2fe(y) (2.7)

for all y ∈ X. It follows from (2.2), (2.5), and (2.7) that

fe(rx + sy) + fe(rx − sy) = 2fe(rx) + 2fe(sy) (2.8)

for all x, y ∈ X. Therefore,

fe(x + y) + fe(x − y) = 2fe(x) + 2fe(y) (2.9)

for all x, y ∈ X. So fe is quadratic. We claim that fo ≡ 0. For this, it follows from (2.2) and
(2.6) that

fo(rx + sy) + fo(rx − sy) = 2fo(rx) (2.10)

for all x, y ∈ X. So

fo(x + y) + fo(x − y) = 2fo(x) (2.11)

for all x, y ∈ X. Letting y = x in (2.11), we get fo(2x) = 2fo(x) for all x ∈ X. So it follows from
(2.11) that

fo(x + y) + fo(x − y) = fo(2x) (2.12)

for all x, y ∈ X. Replacing x by (x + y)/2 and y by (x − y)/2 in (2.12), we infer that fo is
additive. To complete the proof we have two cases.

Case 1 (r = 1). Since fo is additive and satisfies (2.1), letting x = 0 and replacing fo by f in
(2.1), we get s2fo(y) = 0 for all y ∈ X. Since s /= 0, we get fo ≡ 0.
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Case 2 (r /= 1). Since fo is additive and satisfies (2.2), we have (r2 − r)fo(x) = 0 for all x ∈ X.
Since r /= 0, 1, we get fo ≡ 0.

Hence f = fe and this proves that f is quadratic.
Conversely, let f be quadratic. Then there exists a unique symmetric biadditive

mapping B : X ×X → Y such that f(x) = B(x, x) for all x ∈ X and

B(x, y) =
1
4
[
f(x + y) − f(x − y)

]
(2.13)

for all x, y ∈ X (see [9, 12]). Hence

f(rx + sy) = B(rx + sy, rx + sy)

= r2B(x, x) + s2B(y, y) + 2rsB(x, y)

= r2f(x) + s2f(y) +
rs

2
[
f(x + y) − f(x − y)

]
(2.14)

for all x, y ∈ X. Hence f satisfies (2.1).

Corollary 2.2. Let f : X → Y be a mapping satisfying

Daf(x, y) = 0 (2.15)

for all x, y ∈ X and all a ∈ A1. If for each x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then
f is A-quadratic.

Proof. Let a = e. By Proposition 2.1, f is quadratic. Thus f is Q-quadratic. Let α ∈ R and let
{rn}n be a sequence of rational numbers such that limn→∞rn = α. Since f is Q-quadratic and
the mapping t �→ f(tx) is continuous in t ∈ R for each x ∈ X, we have

f(αx) = lim
n→∞

f
(
rnx

)
= lim

n→∞
r2nf(x) = α2f(x) (2.16)

for all x ∈ X. So f is R-quadratic. Letting y = 0 in (2.15), we get

f(ax) = a2f(x) (2.17)

for all x ∈ X and all a ∈ A1. It is clear that (2.17) is also true for a = 0. For each element
a ∈ A (a/= 0), a = |a| · (a/|a|). Since f is R-quadratic and f(bx) = b2f(x) for all x ∈ X and all
b ∈ A1,we have

f(ax) = f

(
|a| · a

|a|x
)

= |a|2f
(

a

|a|x
)

= |a|2 · a2

|a|2 · f(x) = a2f(x) (2.18)

for all x ∈ X and all a ∈ A (a/= 0). So theR-quadratic mapping f : X → Y is alsoA-quadratic.
This completes the proof.



Journal of Inequalities and Applications 7

Now we prove the generalized Hyers-Ulam stability of A-quadratic mappings in
Banach A-modules.

Theorem 2.3. Let f : X → Y be a mapping with f(0) = 0 for which there exists a function
ϕ : X2 → [0,∞) such that

∥
∥Daf(x, y)

∥
∥ ≤ ϕ(x, y) (2.19)

for all x, y ∈ X and all a ∈ A1. Let 0 < L < 1 be a constant such that r2ϕ(x, y) ≤ Lϕ(rx, ry) for all
x, y ∈ X. If for each x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then there exists a unique
A-quadratic mapping Q : X → Y satisfying

∥
∥f(x) −Q(x)

∥
∥ ≤ L

r2(1 − L)
ϕ(x, 0) (2.20)

for all x ∈ X.

Proof. It follows from r2ϕ(x, y) ≤ Lϕ(rx, ry) that

lim
n→∞

r2nϕ

(
x

rn
,
y

rn

)
= 0 (2.21)

for all x, y ∈ X.
Letting y = 0 in (2.19), we get

∥∥f(rax) − r2a2f(x)
∥∥ ≤ ϕ(x, 0) (2.22)

for all x ∈ X and all a ∈ A1. Hence

∥∥∥∥f(ax) − r2a2f

(
x

r

)∥∥∥∥ ≤ ϕ

(
x

r
, 0
)

≤ L

r2
ϕ(x, 0) (2.23)

for all x ∈ X and all a ∈ A1. Let E := {g : X → Y | g(0) = 0}. We introduce a generalized
metric on E as follows:

d(g, h) := inf
{
C ∈ [0,∞] :

∥∥g(x) − h(x)
∥∥ ≤ Cϕ(x, 0) ∀x ∈ X

}
. (2.24)

It is easy to show that (E, d) is a generalized complete metric space [24].
Now we consider the mapping Λ : E → E defined by

(Λg)(x) = r2g

(
x

r

)
, ∀g ∈ E, x ∈ X. (2.25)
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Let g, h ∈ E and let C ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ C. From the definition
of d, we have

∥
∥g(x) − h(x)

∥
∥ ≤ Cϕ(x, 0) (2.26)

for all x ∈ X. By the assumption and the last inequality, we have

∥
∥(Λg)(x) − (Λh)(x)

∥
∥ = r2

∥
∥
∥
∥g

(
x

r

)
− h

(
x

r

)∥
∥
∥
∥ ≤ r2Cϕ

(
x

r
, 0
)

≤ CLϕ(x, 0) (2.27)

for all x ∈ X. So

d(Λg,Λh) ≤ Ld(g, h) (2.28)

for any g, h ∈ E. It follows from (2.23) (by letting a = e) that d(Λf, f) ≤ L/r2. According to
Theorem 1.3, the sequence {Λnf} converges to a fixed point Q of Λ, that is,

Q : X �−→ Y, Q(x) = lim
n→∞

(
Λnf

)
(x) = lim

n→∞
r2nf

(
x

rn

)
, (2.29)

and Q(rx) = r2Q(x) for all x ∈ X. Also Q is the unique fixed point of Λ in the set E∗ = {g ∈
E : d(f, g) < ∞} and

d(Q, f) ≤ 1
1 − L

d(Λf, f) ≤ L

r2(1 − L)
, (2.30)

that is, the inequality (2.20) holds true for all x ∈ X. It follows from the definition ofQ, (2.19),
and (2.21) that

∥∥DaQ(x, y)
∥∥ = lim

n→∞
r2n

∥∥∥∥Daf

(
x

rn
,
y

rn

)∥∥∥∥ ≤ lim
n→∞

r2nϕ

(
x

rn
,
y

rn

)
= 0 (2.31)

for all x, y ∈ X and all a ∈ A1. By Proposition 2.1 (by letting a = e), the mapping Q is
quadratic. Let L : Y → R be a continuous linear functional. For any x ∈ X, we consider the
mapping ψx : R → R defined by

ψx(t) := L
[
Q(tx)

]
. (2.32)

Since Q is quadratic and L is linear,

ψx(u + v) + ψx(u − v) = L
[
Q(ux + vx) +Q(ux − vx)

]

= L
[
2Q(ux) + 2Q(vx)

]

= 2ψx(u) + 2ψx(v)

(2.33)
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for all u, v ∈ R. So ψx is quadratic. Also ψx is measurable since it is the pointwise limit of the
sequence

ψn,x(t) := r2nL

[
f

(
tx

rn

)]
. (2.34)

It follows from [48, Corollary 10.2] that ψx(t) = t2ψx(1) for all t ∈ R. Then

L
[
Q(tx)

]
= ψx(t) = t2ψx(1) = t2L

[
Q(x)

]
= L

[
t2Q(x)

]
(2.35)

for all t ∈ R. Hence Q(tx) = t2Q(x) for all t ∈ R and all x ∈ X. By Corollary 2.2, the mapping
Q is A-quadratic.

Corollary 2.4. Let p > 0 and θ be nonnegative real numbers such that r2 < |r|p and let f : X → Y
be a mapping satisfying the inequality

∥∥Daf(x, y)
∥∥ ≤ θ

(‖x‖p + ‖y‖p) (2.36)

for all x, y ∈ X and all a ∈ A1. If for each x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then
there exists a unique A-quadratic mapping Q : X → Y such that

∥∥f(x) −Q(x)
∥∥ ≤ θ

|r|p − r2
‖x‖p (2.37)

for all x ∈ X.

Proof. Letting a = e and x = y = 0 in (2.36), we get f(0) = 0. Now, the proof follows from
Theorem 2.3 by taking

ϕ(x, y) := θ
(‖x‖p + ‖y‖p) (2.38)

for all x, y ∈ X. Then we can choose L = |r|2−p and we get the desired result.

Remark 2.5. Let f : X → Y be a mapping with f(0) = 0 for which there exists a function
Φ : X2 → [0,∞) such that

∥∥Daf(x, y)
∥∥ ≤ Φ(x, y) (2.39)

for all x, y ∈ X and all a ∈ A1. Let 0 < L < 1 be a constant such that Φ(rx, ry) ≤ r2LΦ(x, y)
for all x, y ∈ X. By a similar method to the proof of Theorem 2.3, one can show that if for each
x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then there exists a unique A-quadratic
mapping Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥ ≤ 1

r2(1 − L)
Φ(x, 0) (2.40)

for all x ∈ X.
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For the caseΦ(x, y) := δ+θ(‖x‖p+‖y‖p) (where δ, θ are nonnegative real numbers and
p > 0 with 1 < |r|p < r2), there exists a unique A-quadratic mapping Q : X → Y satisfying

∥
∥f(x) −Q(x)

∥
∥ ≤ δ

r2 − |r| p +
θ

r2 − |r|p ‖x‖
p (2.41)

for all x ∈ X.

Corollary 2.6. Let p, q > 0 and let θ be nonnegative real numbers such that r2 /= |r|p+q and let f :
X → Y be a mapping satisfying the inequality

∥
∥Daf(x, y)

∥
∥ ≤ θ‖x‖p‖y‖q (2.42)

for all x, y ∈ X and all a ∈ A1. If for each x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then
f is A-quadratic.

Theorem 2.7. Let f : X → Y be an even mapping for which there exists a function ϕ : X2 → [0,∞)
satisfying (2.19) and

lim
n→∞

4nϕ
(

x

2n
,
y

2n

)
= 0 (2.43)

for all x, y ∈ X and all a ∈ A1. Let 0 < L < 1 be a constant such that the mapping

x �−→ φ(x) := ϕ

(
x

r
,
x

s

)
+ ϕ

(
x

r
,
−x
s

)
+ 2ϕ

(
x

r
, 0
)
+ 2ϕ

(
0,

x

s

)
(2.44)

satisfying 4φ(x) ≤ Lφ(2x) for all x ∈ X. If for each x ∈ X the mapping t �→ f(tx) is continuous in
t ∈ R, then there exists a unique A-quadratic mapping Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥ ≤ L

4(1 − L)
φ(x) (2.45)

for all x ∈ X.

Proof. Since ϕ(0, 0) = 0, it follows from (2.19) that f(0) = 0 and

∥∥Daf(x, y) +Daf(x,−y) − 2Daf(x, 0) − 2Daf(0, y)
∥∥

≤ ϕ(x, y) + ϕ(x,−y) + 2ϕ(x, 0) + 2ϕ(0, y)
(2.46)

for all x, y ∈ X and all a ∈ A1. Therefore,

∥∥f(rax + sy) + f(rax − sy) − 2f(rax) − 2f(sy)
∥∥

≤ ϕ(x, y) + ϕ(x,−y) + 2ϕ(x, 0) + 2ϕ(0, y)
(2.47)
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for all x, y ∈ X and all a ∈ A1. Letting a = e and replacing x by x/r and y by y/s in (2.47),
we get

∥
∥f(x + y) + f(x − y) − 2f(x) − 2f(y)

∥
∥ ≤ Φ(x, y) (2.48)

for all x, y ∈ X, where

Φ(x, y) := ϕ

(
x

r
,
y

s

)
+ ϕ

(
x

r
,
−y
s

)
+ 2ϕ

(
x

r
, 0
)
+ 2ϕ

(
0,

y

s

)
. (2.49)

Letting y = x in (2.48), we get

∥∥f(2x) − 4f(x)
∥∥ ≤ φ(x) (2.50)

for all x ∈ X.Hence

∥∥∥∥4f
(
x

2

)
− f(x)

∥∥∥∥ ≤ φ

(
x

2

)
≤ L

4
φ(x) (2.51)

for all x ∈ X. Let E := {g : X → Y | g(0) = 0}. We introduce a generalized metric on E as
follows:

d(g, h) := inf
{
C ∈ [0,∞] :

∥∥g(x) − h(x)
∥∥ ≤ Cφ(x) ∀x ∈ X

}
. (2.52)

Now we consider the mapping Λ : E → E defined by

(Λg)(x) = 4g
(
x

2

)
, ∀g ∈ E, x ∈ X. (2.53)

Similar to the proof of Theorem 2.3, we deduce that the sequence {Λnf} converges to a fixed
point Q of Λ which is A-quadratic. Also Q is the unique fixed point of Λ in the set E∗ = {g ∈
E : d(f, g) < ∞} and satisfies (2.45).

Corollary 2.8. Let p > 2 and let θ be nonnegative real numbers and let f : X → Y be an even
mapping satisfying the inequality (2.36) for all x, y ∈ X and all a ∈ A1. If for each x ∈ X the mapping
t �→ f(tx) is continuous in t ∈ R, then there exists a unique A-quadratic mapping Q : X → Y such
that

∥∥f(x) −Q(x)
∥∥ ≤ 4θ

(| r|p + | s|p)
(
2p − 4

) |rs|p ‖x‖p (2.54)

for all x ∈ X.
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Proof. Letting a = e and x = y = 0 in (2.36), we get f(0) = 0. Now the proof follows from
Theorem 2.7 by taking

ϕ(x, y) := θ
(‖x‖p + ‖y‖p) (2.55)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired result.

Remark 2.9. Let f : X → Y be an evenmappingwith f(0) = 0 for which there exists a function
Φ : X2 → [0,∞) such that

lim
n→∞

1
4n

Φ
(
2nx, 2ny

)
= 0,

∥
∥Daf(x, y)

∥
∥ ≤ Φ(x, y) (2.56)

for all x, y ∈ X and all a ∈ A1. Let 0 < L < 1 be a constant such that the mapping

x �−→ φ(x) := Φ
(
x

r
,
x

s

)
+ Φ

(
x

r
,
−x
s

)
+ 2Φ

(
x

r
, 0
)
+ 2Φ

(
0,

x

s

)
(2.57)

satisfying φ(2x) ≤ 4Lφ(x) for all x ∈ X. By a similar method to the proof of Theorem 2.7, one
can show that if for each x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then there exists
a unique A-quadratic mapping Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥ ≤ 1

4(1 − L)
φ(x) (2.58)

for all x ∈ X.
For the case Φ(x, y) := δ + θ(‖x‖p + ‖y‖p) (where δ, θ are nonnegative real numbers

and 0 < p < 2), there exists a unique A-quadratic mapping Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥ ≤ 6δ

4 − 2p
+
4θ

( |r|p + |s|p)
(
4 − 2p

)|rs|p ‖x‖p (2.59)

for all x ∈ X.

Corollary 2.10. Let p, q > 0 and let θ be nonnegative real numbers such that p + q /= 2 and let
f : X → Y be an even mapping satisfying the inequality (2.42) for all x, y ∈ X and all a ∈ A1. If for
each x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then f is A-quadratic.

We may omit the evenness of the mapping f in Theorem 2.7.

Theorem 2.11. Let f : X → Y be a mapping for which there exists a function ϕ : X2 → [0,∞)
satisfying (2.19) and (2.43) for all x, y ∈ X and all a ∈ A1. Let 0 < L < 1 be a constant such that the
mapping

x �−→ φ(x) := ϕ

(
x

r
,
x

s

)
+ ϕ

(
x

r
,
−x
s

)
+ 2ϕ

(
x

r
, 0
)
+ 2ϕ

(
0,

x

s

)
(2.60)
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satisfying 4φ(x) ≤ Lφ(2x) for all x ∈ X. If for each x ∈ X the mapping t �→ f(tx) is continuous in
t ∈ R, then there exists a unique A-quadratic mapping Q : X → Y satisfying

∥
∥f(x) −Q(x)

∥
∥ ≤ L(4 − 3L)

8(1 − L)(2 − L)
[
φ(x) + φ(−x)] (2.61)

for all x ∈ X.

Proof. Since ϕ(0, 0) = 0, it follows from (2.19) that f(0) = 0. We decompose f into the even
part fe and the odd part fo. It follows from (2.19) that

∥
∥Dafe(x, y)

∥
∥ ≤ 1

2
[
ϕ(x, y) + ϕ(−x,−y)],

∥∥Dafo(x, y)
∥∥ ≤ 1

2
[
ϕ(x, y) + ϕ(−x,−y)]

(2.62)

for all x, y ∈ X and all a ∈ A1. By Theorem 2.7, there exists a unique A-quadratic mapping
Q : X → Y satisfying

∥∥fe(x) −Q(x)
∥∥ ≤ L

8(1 − L)
[
φ(x) + φ(−x)] (2.63)

for all x ∈ X. We get from (2.62) that

∥∥Dafo(x, y) +Dafo(x,−y) − 2Dafo(x, 0)
∥∥ ≤ Ψ(x, y) (2.64)

for all x, y ∈ X and all a ∈ A1, where

Ψ(x, y) :=
1
2
[
ϕ(x, y) + ϕ(−x,−y) + ϕ(x,−y) + ϕ(−x, y) + 2ϕ(x, 0) + 2ϕ(−x, 0)]. (2.65)

Hence

∥∥fo(x + y) + fo(x − y) − 2fo(x)
∥∥ ≤ Ψ

(
x

r
,
y

s

)
(2.66)

for all x, y ∈ X. Letting y = x in (2.66), we get

∥∥fo(2x) − 2fo(x)
∥∥ ≤ Ψ

(
x

r
,
x

s

)
(2.67)

for all x ∈ X. Therefore,

∥∥∥∥2fo
(
x

2

)
− fo(x)

∥∥∥∥ ≤ 1
2

[
φ

(
x

2

)
+ φ

(−x
2

)]
≤ L

8
[
φ(x) + φ(−x)] (2.68)



14 Journal of Inequalities and Applications

for all x ∈ X. Let E := {g : X → Y | g(0) = 0}. We introduce a generalized metric on E as
follows:

d(g, h) := inf
{
C ∈ [0,∞] :

∥
∥g(x) − h(x)

∥
∥ ≤ C

[
φ(x) + φ(−x)] ∀x ∈ X

}
. (2.69)

Now we consider the mapping Λ : E → E defined by

(Λg)(x) = 2g
(
x

2

)
, ∀g ∈ E, x ∈ X. (2.70)

Similar to the proof of Theorem 2.3, we deduce that the sequence {Λnfo} converges to a fixed
point T of Λ which is quadratic and

d
(
T, fo

) ≤ 2
2 − L

d
(
Λfo, fo

) ≤ 2L
16 − 8L

. (2.71)

Also T is odd since fo is odd. Therefore, T ≡ 0 since T is quadratic too. Now (2.61) follows
from (2.63) and (2.71).

Corollary 2.12. Let p > 2 and let θ be nonnegative real numbers and let f : X → Y be a mapping
satisfying the inequality (2.36) for all x, y ∈ X and all a ∈ A1. If for each x ∈ X the mapping
t �→ f(tx) is continuous in t ∈ R, then there exists a unique A-quadratic mapping Q : X → Y such
that

∥∥f(x) −Q(x)
∥∥ ≤ 8θ

(
2p − 3

)(|r|p + |s|p)
(
2p − 2

)(
2p − 4

)|rs|p ‖x‖p (2.72)

for all x ∈ X.

Proof. Letting a = e and x = y = 0 in (2.36), we get f(0) = 0. Now the proof follows from
Theorem 2.11 by taking

ϕ(x, y) := θ
(‖x‖p + ‖y‖p) (2.73)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired result.

Remark 2.13. Let f : X → Y be a mapping with f(0) = 0 for which there exists a function
Φ : X2 → [0,∞) such that

lim
n→∞

1
2n

Φ
(
2nx, 2ny

)
= 0,

∥∥Daf(x, y)
∥∥ ≤ Φ(x, y) (2.74)

for all x, y ∈ X and all a ∈ A1. Let 0 < L < 1/2 be a constant such that the mapping

x �−→ φ(x) := Φ
(
x

r
,
x

s

)
+ Φ

(
x

r
,
−x
s

)
+ 2Φ

(
x

r
, 0
)
+ 2Φ

(
0,

x

s

)
(2.75)
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satisfying φ(2x) ≤ 4Lφ(x) for all x ∈ X. By a similar method to the proof of Theorem 2.11,
one can show that if for each x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then there
exists a unique A-quadratic mapping Q : X → Y satisfying

∥
∥fe(x) −Q(x)

∥
∥ ≤ 1

8(1 − L)
[
φ(x) + φ(−x)],

∥
∥fo(x)

∥
∥ ≤ 1

4(1 − 2L)
[
φ(x) + φ(−x)]

(2.76)

for all x ∈ X. Hence

∥
∥f(x) −Q(x)

∥
∥ ≤ 3 − 4L

8(1 − L)(1 − 2L)
[
φ(x) + φ(−x)] (2.77)

for all x ∈ X.
For the case Φ(x, y) := δ + θ(‖x‖p + ‖y‖p) (where δ, θ are nonnegative real numbers

and 0 < p < 1), there exists a unique A-quadratic mapping Q : X → Y satisfying

∥∥f(x) −Q(x)
∥∥ ≤ 12δ

(
3 − 2p

)

(
2 − 2p

)(
4 − 2p

) +
8θ

(
3 − 2p

)(|r|p + |s|p)
(
2 − 2p

)(
4 − 2p

)|rs|p ‖x‖p (2.78)

for all x ∈ X.

For the case p = 2, we have the following counterexample which is a modification of
the example of Czerwik [16].

Example 2.14. Let φ : R → R be defined by

φ(x) :=

⎧
⎨

⎩

μx2 for |x| < 1,

μ for |x| ≥ 1,
(2.79)

where μ is a positive real number. Consider the function f : R → R by the formula

f(x) :=
∞∑

n=0

α−2nφ
(
αnx

)
, (2.80)

where α =
√
1 + r2 + s2 + |rs|. It is clear that f is continuous and bounded by (α2/(α2 − 1))μ

on R. We prove that

∣∣∣∣f(rx + sy) − r2f(x) − s2f(y) − rs

2
[
f(x + y) − f(x − y)

]
∣∣∣∣ ≤

α10

α2 − 1
μ
(
x2 + y2) (2.81)
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for all x, y ∈ R. To see this, if x2 + y2 = 0 or x2 + y2 ≥ α−4, then

∣
∣
∣
∣f(rx + sy) − r2f(x) − s2f(y) − rs

2
[
f(x + y) − f(x − y)

]
∣
∣
∣
∣

≤ α2μ
∞∑

n=0

α−2n ≤ α8

α2 − 1
μ
(
x2 + y2).

(2.82)

Now suppose that x2 + y2 < α−4. Then there exists a nonnegative integer k such that

α−4(k+2) ≤ x2 + y2 < α−4(k+1). (2.83)

Therefore,

α2k|x|, α2k|y|, α2k|rx + sy|, α2k|x ± y| ∈ (−1, 1). (2.84)

Hence

α2m|x|, α2m|y|, α2m|rx + sy|, α2m|x ± y| ∈ (−1, 1) (2.85)

for all m = 0, 1, . . . , 2k. From the definition of f and (2.83), we have

∣∣∣∣f(rx + sy) − r2f(x) − s2f(y) − rs

2
[
f(x + y) − f(x − y)

]
∣∣∣∣

≤ α2μ
∞∑

n=2k+1

α−2n ≤ α10

α2 − 1
μ
(
x2 + y2).

(2.86)

Therefore, f satisfies (2.81). Let Q : R → R be a quadratic function such that

∣∣f(x) −Q(x)
∣∣ ≤ βx2 (2.87)

for all x ∈ R. Then there exists a constant c ∈ R such that Q(x) = cx2 for all x ∈ R (see [57]).
So we have

∣∣f(x)
∣∣ ≤ (

β + |c|)x2 (2.88)

for all x ∈ R. Let m ∈ N with mμ > β + |c|. If x ∈ (0, α1−m), then αnx ∈ (0, 1) for all n =
0, 1, . . . , m − 1. So

f(x) ≥
m−1∑

n=0

α−2nφ
(
αnx

)
= mμx2 >

(
β + |c|)x2, (2.89)

which contradicts (2.88).
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Corollary 2.15. Let p, q > 0 and let θ be nonnegative real numbers such that p + q > 2 (p + q < 1)
and let f : X → Y be a mapping satisfying the inequality (2.42) for all x, y ∈ X and all a ∈ A1. If
for each x ∈ X the mapping t �→ f(tx) is continuous in t ∈ R, then f is A-quadratic.
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