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1. Main Result and Introduction

The following inequality is well known in literature as Ostrowski’s integral inequality.
Let f : [a,b] — Rbe continuous on [a, b] and differentiable on (a, b) whose derivative
f':(a,b) — Risbounded on (a,b), thatis, || f'||, = supte(ulb)|f’(t)| < oo. Then

b
‘f(x) e G

1 (x-(a+b)/2)’ :
< {1 * W}(b— )|l f 1. (1.1)

Moreover the constant 1/4 is the best possible. Because Ostrowski’s integral inequality
is useful in some fields, many generalizations, extensions, and variants of this inequality
have appeared in the literature; see [1-9] and the references given therein. The main aim
of this paper is to establish some new Ostrowski type inequalities involving higher-order
derivatives. The analysis used in the proof is elementary. The main result of this paper is the
following inequality.
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Theorem 1.1. Suppose

(1) f: [a,b] — Rto be continuous on [a,b];

(2) f : [a,b] — R to be nth order differentiable on (a,b) whose nth order derivative f M .
(a,b) — Ris bounded on (a,b), that is, || f™ ||, = sup,e | f™ ()] < o0;

(3) there exists xo € (a,b) such that f® (x) =0, k=1,2,...,n-1.

Then for any x € [a, b], we have

(n)
Il f (|t
n!

5 +b—a>"+(b—a)”}' (1.2)

2 n+1

b
‘f(x) e G

As applications of the inequality (1.2), we give more Ostrowski type inequalities.

2. The Proof of Theorem 1.1

In this section, we use the Taylor expansion to prove Theorem 1.1. Before the proof, we need
the following lemmas.

Lemma 2.1. Suppose a < x < band a <t < b, then we have

R (e +”;"‘)2 1)
Proof. When a < x < (a+b)/2, then
(x-H>< (x-b)* = <‘x-“T”"+b;—“>2. (2.2)
When (a +b)/2 < x <b, then
(x—t)2§(x—a)2=<‘x—a;b +b;“>2. (2.3)

From (2.2) and (2.3), we know that (2.1) holds. O
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Lemma 2.2. Suppose a <t < b, then for n > 1 we have
b-t"+(t-a)"<(b-a)". (2.4)
Proof. 1t is obvious that (2.4) is true for n = 1. When n > 2, let
gt)y=O-t)"+(t-a)", a<t<p, (2.5)
then

gt =n|t-a)"" - (b-t)""|. (2.6)

The only real root of g'(t) = 0ist = (a + b) /2. Notice

a+b b-a)" n
s(50) - < -0 - 5@ - 5000 @7)
Therefore we get the inequality (2.4). O

Now, we give the proof of Theorem 1.1.
Proof. Using the Taylor expansion of f(x) at xo gives

f™ (x0 +0(x — x0))

p (x-x0)", 0<0O0<1. (2.8)

f(x) = f(xo) +

Taking the integral on both sides of (2.8) with respect to variable x over [a, b], we have

1 b 1 b
mfuf(X)dx = f(JCO) + mfﬂf(n)(xO +0(x = x0)) (x — xo)"dx, (2.9)

where the parameter 6 is not a constant but depends on x. From (2.8) and (2.9) one gets

£ (x +0(x - x0))
- n!

(x = x0)"

b
£ - 5 [ Fodx
¢ (2.10)

1 b
- mj F (0 +0(x = x0)) (x = x0)"dlx.
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So we have

b
£ s [ Fxax

™ (x0 +6(x - x0))
n!

(x = x0)"

1 b
—mf £ (0 +6(x = x0)) (x = x0)"dlx

(m) —
< " (xo +j(x x0)) (x - x0)" (2.11)
LI

+ m[ﬂf (x0 + O0(x — x0)) (x — x0)"dx

£l i LN .
< p <|x—x0| +m>J‘a|x—xo| dx
_ ”f(n)”oo n 1 n+1 n+l
—T{<|X—XO| +m>[(b—XO) +(.X'0—[1) ]}

Using Lemmas 2.1 and 2.2 gives (1.2). Thus, we complete the proof. O

3. Some Applications

In this section, we show some applications of the inequality (1.2). In fact, we can use (1.2) to
derive some new Ostrowski type inequalities.

Theorem 3.1. Suppose

(1) f:[a,b] — R to be continuous on [a,b];

(2) f : [a,b] — R to be second order differentiable on (a,b) whose second derivative f" :
(a,b) — Ris bounded on (a,b), that is, || f"|| ,, = Supc,p | f" ()] < 0;

() f(a) = f(b).

Then for any x € [a, b], we have

b
‘f(x) s IACL
’ 3.1)

1y (x-(a+b)/2)* |x—(a+b)/2| 7
SE”f “oo(b_a)z{ z (ba_a)Z + a ba—a +ﬁ}

Proof. From Rolle’s mean value theorem, we know that there exists xo € (a,b) such that
f'(x0) = 0. Let n = 2 in the inequality (1.2), then we have (3.1). O
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Corollary 3.2. With the assumptions in Theorem 3.1, we have

1 (b 1, ., [ (x=(a+b)/2)* 13
f(.X') - mfaf(t)dt S E”f ”oo(b - a) {W + ﬁ . (32)
Proof. For any x € [a,b], we have
a+b| _b-a
BN -
Consequently, (3.1) gives
1 b
£ - 5 [ fina
1. of (x=(a+b)/2)> |x-(a+b)/2] 7
<7170 a b-a® = b-a +ﬁ}
, (3.4)
1, . 2| (x=(a+b)/2) b-a 7
<3170~ a) (b-a)? +2(b_a)+ﬁ}
1y o (x=(a+b)/2)* 13
= E”f ||oo(b a) W + ﬁ}
O
Corollary 3.3. With the assumptions in Theorem 3.1, we have
1 (b 1y x-(a+b)/2| 5
'f(x)—mfaf(t)dt <5If ||w(b—a)2{%+g}- (3.5)
Proof. For any x € [a,b], we have
a+b\? (b-a)?
<x ) > < T (3.6)
Substituting (3.6) into (3.1) gives (3.5). O

Theorem 3.4. Suppose

(1) f:[a,b] — R to be continuous on [a,b];

() f : [a,b] — R to be nth order differentiable on (a,b) whose nth order derivative f™ :
(a,b) — Ris bounded on (a,b), that is, || f ™| , = sup,c(, | f ™ (£)] < oo.
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Then for any xo € (a,b) and x € [a, b], we have

b
‘f(x) ~ya | s

1., a+b| b-a\" (b-a)"
ST {(‘x_ 2 | T2 ) " n+1} (3.7)
L - (a+b)/2)2\"2|f® (x0)] a+b| b-a\F?
+(b- a)< b >; 711 <x0— |+ 2) )
Proof. Let
— (k)(xo) k
x0)",
kZ:: 0 (3.8)
F(x) = f(x) = p(x).
Then we have
FO(x)=0, k=1,2,...,n-1,
(3.9)
F(x) = f(x).
Using inequality (1.2) to F(x) gives
1 b
F(x) — mJaF(t)dt
1 b
= ‘f(x) ~p(x) - mf (f(H -p®)dt (3.10)
£, a+b| b-a\" (b-a)"
ST {(‘x_ 2 |7 2>+n+1}'
Since
1 b
£ =p) - 52 | (P -pto)a
1 (* 1 (°
= Kf (x) - mfaf (t)dt> - (P(x) - mLPU)ﬂ”) (3.11)

b b
> 700 - s [ £0t] - [peo) - = [ ptna],
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we have

b
£ g [ fina

I a+b| b-a\" (b-a)"
© - 3.12
ST {Qx 2 | T2 ) | } (12)
1
+[p(x) - mLP(Udt -
Using Ostrowski’s integral inequality (1.1) one gets
(x) - L’[b (Hdt| < 1 + M w-a)|p| (3.13)
P b-a ap — 14 (b-a)? Plleo: '

Notice

1Pl = sup [p'(x)]
x€(a,b)

n—lf(k)(xo) -
~ (x— x)F
wetan| S k=1)! (3.14)
SO (o) a+b| b-a\F!
<> ([v-5 -
& (k- 1)
0

Substituting (3.13) and (3.14) into (3.12) gives (3.7).

It is easy to see that (3.7) is the generalization of (1.2). If we let xo = (a + b)/2 in (3.7)
and use (3.6), we get the following inequality.

Corollary 3.5. With the assumptions in Theorem 3.4, we have

b
‘f(x) - 5a | Fa

LA a+b| b-a\" (b-a)"
o0 _ 3.15
ST {Qx 2 ‘+ 2 ) | } (3:15)

n—1|f(k)((a+b)/2)| b-a k
P 2 < 2 >

k=1
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