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1. Introduction

In this paper we study functions f on R
n which possess the generalized partial derivatives

Drk
k f ≡ ∂rkf

∂xrk
k

(rk ∈ N). (1.1)

Our main goal is to obtain some norm estimates for the differences

Δrk
k (h)f(x) ≡

rk∑

j=0

(−1)rk−j
(
rk

j

)
f
(
x + jhek

)
(h ∈ R) (1.2)

(ek being the unit coordinate vector).
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The classic Sobolev embedding theorem asserts that for any function f in Sobolev
space W1

p(R
n) (1 ≤ p < n)

‖f‖q∗ ≤ C
n∑

k=1

∥∥∥∥
∂f

∂xk

∥∥∥∥
p

, q∗ =
np

n − p
. (1.3)

Sobolev proved this inequality in 1938 for p > 1. His method, based on integral
representations, did not work in the case p = 1. Only at the end of fifties Gagliardo and
Nirenberg gave simple proofs of inequality (1.3) for all 1 ≤ p < n. Inequality (1.3) has been
generalized in various directions (see [1–6] for details). It was proved that the left hand side
in (1.3) can be replaced by the stronger Lorentz norm, that is, there holds the inequality

‖f‖q∗,p ≤ C
n∑

k=1

∥∥∥∥
∂f

∂xk

∥∥∥∥
p

, 1 ≤ p < n. (1.4)

For p > 1 the result follows by interpolation (see [7, 8]). In the case p = 1 some geometric
inequalities were applied to prove (1.4) (see [9–13]).

The sharp estimates of the norms of differences for the functions in Sobolev spaces
have firstly been proved by Besov et al. [1, Volume 2, page 72]. For the spaceW1

p(R
n) (1 ≤ p <

n) Il’in’s result reads as follows: If n ∈ N, 1 < p < q < ∞ and α ≡ 1 − n(1/p − 1/q) > 0, then

n∑

k=1

(∫∞

0

[
h−α‖Δ1

k(h)f‖q
]p dh

h

)1/p

≤ C
n∑

k=1

∥∥∥∥
∂f

∂xk

∥∥∥∥
p

. (1.5)

Actually, this means that there holds the continuous embedding to the Besov space

W1
p(R

n) ↪→ Bα
p,q(R

n). (1.6)

It is easy to see that inequality (1.5) fails to hold for p = n = 1, but, it was proved in [14] that
(1.5) is true for p = 1 and n ≥ 2.

The generalization of the inequality (1.5) to the spacesWr1,...,rn
p was given in [12]. That

is

n∑

k=1

(∫∞

0

[
h−αk‖Δrk

k (h)f‖q,p
]p dh

h

)1/p

≤ C
n∑

k=1

‖Drk
k
f‖

p
, (1.7)

where 0 < 1/p − 1/q < r/n, r = n(
∑n

i=1 r
−1
i )−1, and αk = rk[1 − (r/n)(1/p − 1/q)]; the

inequality is valid if p > 1, n ≥ 1 or p = 1, n ≥ 2. Using (1.7), we get the following continuous
embedding:

Wr1,...,rn
p (Rn) ↪→ Bα1,...,αn

q,p (Rn). (1.8)

For p > 1 this embedding was proved by Besov et al. [1, Volume 2, page 72]. The main result
in [12] is the proof of (1.7) for p = 1, n ≥ 2.
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In [15], there was the sharp estimates of the type (1.7) when the derivatives Drk
k f

belong to different Lorentz spaces Lpk,sk . Before stating the theorem, we give some notations.
Let S0(Rn) be the class of all measurable and almost everywhere finite functions f on R

n such
that for each y > 0,

λf
(
y
)
=
∣∣{x ∈ R

n :
∣∣f(x)

∣∣ > y
}∣∣ < ∞. (1.9)

Let rk ∈ N and 1 ≤ pk, sk < ∞ for k = 1, . . . , n (n ≥ 2). Denote

r = n

(
n∑

k=1

1
rk

)−1
, p =

n

r

(
n∑

k=1

1
pkrk

)−1
,

s =
n

r

(
n∑

k=1

1
skrk

)−1
.

(1.10)

Now we state the main theorem in [15].

Theorem 1.1. Let n ≥ 2, rk ∈ N, 1 ≤ pk, sk < ∞, and sk = 1 if pk = 1. Let r, p, and s be the
numbers defined by (1.10). For every pj (1 ≤ j ≤ n) satisfying the condition

ρj ≡ r

n
+

1
pj

− 1
p
> 0, (1.11)

take arbitrary qj > pj such that

1
qj

>
1
p
− r

n
, (1.12)

and denote

Hj = 1 − 1
ρj

(
1
pj

− 1
qj

)
, αj = Hjrj ,

1
θj

=
1 −Hj

s
+
Hj

sj
, (1.13)

then for any function f ∈ S0(Rn) which has the weak derivatives Drk
k
f ∈ Lpk,sk(Rn) (k = 1, . . . , n)

there holds the inequality

(∫∞

0

[
h−αj

∥∥∥Δrj
j (h)f

∥∥∥
qj ,1

]θ dh
h

)1/θj

≤ C
n∑

k=1

‖Drk
k f‖pk,sk , (1.14)

where C is a constant that does not depend on f .

In many cases, the Lorentz space should be substituted by more general space, the
weighted Lorentz space. In this paper, we will generalize the above result when the weighted
Lorentz spaces Λpk,sk(w) take place of Lpk,sk , where w is a weight on R+ which satisfies some
special conditions.
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2. Auxiliary Proposition

Let M(X, μ) be the class of all measurable and almost everywhere finite functions on X. For
f ∈ M(X, μ), a nonincreasing rearrangement of f is a nonincreasing function f∗ on R+ ≡
(0,+∞), that is, equimeasurable with |f |. The rearrangement f∗ can be defined by the equality

f∗(t) = inf
{
λ : μf(λ) ≤ t

}
, 0 < t < ∞, (2.1)

where

μf(λ) = μ
{
x ∈ X :

∣∣f(x)
∣∣ > λ
}
, λ ≥ 0. (2.2)

If X = R
n, μ(E) = |E|, then the following relation holds [16, Chapter 2]:

sup
|E|=t

∫

E

∣∣f(x)
∣∣dx =

∫ t

0
f∗(u)du. (2.3)

Set

f∗∗(t) =
1
t

∫ t

0
f∗(s)ds. (2.4)

Assume that 0 < q, p < ∞. A function f ∈ M(X, μ) belongs to the Lorentz space Lq,p(X) if

‖f‖q,p =
(∫∞

0
(t1/qf∗(t))

p dt

t

)1/p

< ∞. (2.5)

For 0 < p < ∞, the space Lp,∞(X) is defined as the class of all f ∈ M(X, μ) such that

‖f‖p,∞ = sup
t>0

t1/pf∗(t) < ∞. (2.6)

We also let L∞,∞(X) = L∞(X). Let w be a weight in R+ (nonnegative locally integrable
functions in R+).

If (X, μ) = (R+, w(t)dt), we replace Lq,p(X)with Lq,p(w). For 0 < p, q < ∞, or 0 < p ≤ ∞
and q = ∞, the weighted Lorentz space Λp,q

Rn (w) = Λp,q(w) is defined in [9, Chapter 2] by

Λp,q(w) =
{
f ∈ M(Rn) : ‖f‖Λp,q(w) = ‖f∗‖Lp,q(w) < ∞

}
. (2.7)

If p = q, denote Λp(w) = Λp,p(w). It is well known that

Λp,q(1) = Lp,q(Rn), (2.8)
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and if 0 < p, q < ∞, then

Λp,q(w) = Λq(w̃), (2.9)

where

w̃(t) = Wq/p−1(t)w(t), W(t) =
∫ t

0
w(s)ds. (2.10)

In following part of this paper, we will always denote W(t) =
∫ t
0w(s)ds.

The weighted Lorentz spaces have close connection with weights of Bp, Bp,∞ for 0 <
p < ∞ (see [9, Chapter 1]). Let A be the Hardy operator as follows:

Af(t) =
1
t

∫ t

0
f(s)ds, t > 0. (2.11)

The space Lp

dec is the cone of all nonnegative nonincreasing functions in Lp. We denotew ∈ Bp

if

A : Lp

dec(w) −→ Lp(w) (2.12)

is bounded and denote w ∈ Bp,∞ if

A : Lp

dec(w) −→ Lp,∞(w) (2.13)

is bounded.

Lemma 2.1 (Generalized Hardy’s inequalities). Let ψ be nonnegative, measurable on (0,∞) and
suppose −∞ < λ < 1, 1 ≤ q ≤ ∞, and w is a weight in R+,W(∞) = ∞, then one has

{∫∞

0

(
W(t)λ

1
W(t)

∫ t

0
ψ(s)w(s)ds

)q
w(t)
W(t)

dt

}1/q

≤ 1
1 − λ

{∫∞

0

(
W(t)λψ(t)

)q w(t)
W(t)

dt

}1/q

,

{∫∞

0

(
W(t)1−λ

∫∞

t

ψ(s)
w(s)
W(s)

ds

)q w(t)
W(t)

dt

}1/q

≤ 1
1 − λ

{∫∞

0

(
W(t)1−λψ(t)

)q w(t)
W(t)

dt

}1/q

(2.14)

(with the obvious modification if q = ∞).

Proof. It is easy to obtain this result applying Hardy’s inequality [16].

Lemma 2.2. Let ψ ∈ Λp,s(w) (1 ≤ p, s < ∞) be a nonnegative nonincreasing function on R+, w be
a nonincreasing weight on R+ and there exists A > 0, such that

W(ξt) ≥ ξAW(t), ∀ξ > 1, ∀t > 0, (2.15)
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Then for δ > 0 there exists a continuously differentiable φ on R+ such that

(i) ψ(t) ≤ Cφ(t), t ∈ R+,

(ii) φ(t)W(t)1/p−δ decreases and φ(t)W(t)1/p+δ increases on R+,

(iii) ‖φ‖Λp,s(w) ≤ C‖ψ‖Λp,s(w),

where C is a constant depends only on p, δ, and A.

Proof. Without loss of generality, we may suppose that δ < 1/p. Set

φ1(t) = W(t)δ−1/p
∫∞

t/2
ψ(u)W(u)1/p−δ

w(u)
W(u)

du. (2.16)

Then φ1(t)W(t)1/p−δdecreases and

φ1(t) ≥ W(t)δ−1/p
∫ t

t/2
ψ(u)W(u)1/p−δ

w(u)
W(u)

du

≥ W(t)δ−1/pψ(t)
W(t)1/p−δ −W(t/2)1/p−δ

1/p − δ
.

(2.17)

Using the conditions which w satisfy, it gives

φ1(t) ≥ Cψ(t). (2.18)

Furthermore, noticing w is nonincreasing and applying Lemma 2.1, we get that

‖φ1‖Λp,s(w) =
{
2
∫∞

0

[
W(2h)δ

∫∞

h

W(u)1/p−δψ(u)
w(u)
W(u)

du

]s w(2h)
W(2h)

dh

}1/s

≤ 21/s+δ
{∫∞

0

[
W(h)δ

∫∞

h

W(u)1/p−δψ(u)
w(u)
W(u)

du

]s w(h)
W(h)

dh

}1/s

≤ C

(∫∞

0

(
W(h)1/pψ(h)

)s w(h)
W(h)

dh

)1/s

= C‖ψ‖Λp,s(w).

(2.19)

now set

φ(t) =
(
δ +

1
p

)
W(t)−1/p−δ

∫ t

0
φ1(u)W(u)δ+1/p

w(u)
W(u)

du. (2.20)

Then φ(t)W(t)1/p+δ increases on R+, and

φ(t) ≥ φ1(t) ≥ Cψ(t). (2.21)
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Furthermore,

φ(t)W(t)1/p−δ =
(
δ +

1
p

)
W(t)−2δ

∫ t

0
φ1(u)W(u)δ+1/p

w(u)
W(u)

du

= W(t)−2δ
∫ t

0
φ1(u)dW(u)δ+1/p

= W(t)−2δ
∫W(t)2δ

0
φ1(h(v))v(1/p−δ)/(2δ)dv,

(2.22)

where v = W(u)2δ, h(v) = u, that is, h(v) = W−1(v1/(2δ)). Since φ1(t)W(t)1/p−δ is decreasing
function on R+, thus φ1(h(v))v(1/p−δ)/(2δ) is decreasing and φ(t)W(t)1/p−δ is also decreasing
on R+.

Finally, using Lemma 2.1 and (2.19), we get (iii). The Lemma 2.2 is proved.

Let rk ∈ N and 1 < pk < ∞ for k = 1, . . . , n (n ≥ 2). Denote

r = n

⎛

⎝
n∑

j=1

1
rj

⎞

⎠
−1

, p =
n

r

⎛

⎝
n∑

j=1

1
pjrj

⎞

⎠
−1

,

γk = 1 − 1
rk

(
r

n
+

1
pk

− 1
p

)
.

(2.23)

Then γk > 0 and

n∑

k=1

γk = n − 1. (2.24)

To prove our main results we use the estimates of the rearrangement of a given
function in term of its derivatives Drk

k f (k = 1, . . . , n).
We will use the notations (2.23).

Lemma 2.3. Let rk ∈ N, 1 < pk < ∞, 1 ≤ sk < ∞ for k = 1, . . . , n (n ≥ 2) and w is continuous
weight on R+. Set

s =
n

r

⎛

⎝
n∑

j=1

1
sjrj

⎞

⎠
−1

. (2.25)

Let

0 < δ <
1
4
min
γj<1

(
1 − γj

)
, (2.26)
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and suppose that φk ∈ Λpk,sk(w) (k = 1, . . . , n) are positive continuously differentiable functions with
φ′
k
(t) < 0 on R+ such that φk(t)W(t)1/pk−δ decreases and φk(t)W(t)1/pk+δ increases on R+. Set for

u, t > 0,

ηk(u, t) =
(
W(t)
u

)rk

φk(t), (2.27)

σ(t) = sup

{
min
1≤k≤n

ηk(uk, t) :
n∏

k=1

uk = W(t)n−1, uk > 0

}
. (2.28)

Then

(i) there holds the inequality

(∫∞

0
W(t)s(1/p−r/n)−1σ(t)sw(t)dt

)1/s

≤ C′
n∏

k=1

‖φk‖r/(nrk)Λpk ,sk (w); (2.29)

(ii) there exist continuously differentiable functions uk(t) on R+ such that

n∏

k=1

uk(t) = W(t)n−1,

σ(t) = ηk(uk(t), t) (t ∈ R+, k = 1, . . . , n);

(2.30)

(iii) for any k such that

1
pk

>
1
p
− r

n
(2.31)

the function uk(t)W(t)δ−1 decreases on R+.

Proof. The proof is similar to [15, Lemma 2.2]. All the argument holds truewhenwe substitute
the weight w(t) in this lemma for w(t) = 1.

The Lebesgue measure of a measurable set A ⊂ R
k will be denoted by meskA.

For any Fσ − set E ⊂ R
n denote by Ej the orthogonal projection of E onto the coordinate

hyperplane xj = 0. By the Loomis-Whitney inequality [17, Chapter 4]

(mesnE)
n−1 ≤

n∏

j=1

mesn−1Ej. (2.32)
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Let f ∈ S0(Rn), t > 0, and let Et be a set of type Fσ and measure t such that |f(x)| ≥
f∗(t) for all x ∈ Et. Denote by λj(t) the (n − 1)-dimensional measure of the projection E

j
t (j =

1, . . . , n). By (2.32), we have that

n∏

j=1

λj(t) ≥ tn−1. (2.33)

Lemma 2.4. Let n ≥ 2, rk ∈ N (k = 1, . . . , n), w be nonincreasing, and w(t) → a when t → ∞
where a > 0. Function f ∈ S0(Rn) has weak derivatives Drk

k f ∈ Lloc(Rn) (k = 1, . . . , n). Then for all
0 < t < τ < ∞ and k = 1, . . . , n one has

f∗(t) ≤ K

[
f∗(τ) +

(τ
t

)rk
(

W(t)
λ′k(t)

)rk

(Drk
k
f)∗∗(τ)

]
, (2.34)

where
∏n

k=1λ
′
k(t) ≥ W(t)n−1 and K is a constant depending on r1, . . . , rn and a.

Proof. Let λ′
k
(t) = (1/ n

√
a)(W(t)/t)λk(t), then

n∏

k=1

λ′k(t) =
1
a

(
W(t)
t

)n n∏

k=1

λk(t). (2.35)

Due to the conditions of w and (2.33), we can get

n∏

k=1

λ′k(t) ≥ W(t)n−1. (2.36)

In [2, 12, 15], we have

f∗(t) ≤ K

[
f∗(τ) +

(
τ

λk(t)

)rk(
Drk

k
f
)∗∗(τ)

]
. (2.37)

So we immediately get (2.34).

Lemma 2.5. If w ∈ B1,∞, 1 < p0 < ∞ and 1 ≤ s0 < ∞, then v ≡ W(t)s0/p0−1w(t) ∈ Bs0 .

Proof. Let w ∈ B1,∞. Since B1,∞ ⊂ Bp0 , so by [9, Chapter 1] we get

∫ r

0

1

W(t)1/p0
dt ≤ C

r

W(r)1/p0
, ∀r > 0. (2.38)

Then

∫ r

0

1

V (t)1/s0
dt ≤ C

r

V (r)1/s0
, ∀r > 0, (2.39)
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where

V (t) =
∫ t

0
v(t)dt. (2.40)

So v ∈ Bs0 .

Lemma 2.6. Let n ≥ 2, rk ∈ N, 1 < pk < ∞, 1 ≤ sk < ∞ for k = 1, . . . , n. Assume that weight w on
R+ satisfies the following conditions:

(i) it is nonincreasing, continuous, and limt→∞w(t) = a, a > 0,

(ii) exists A > 0, such that

W(ξt) ≥ ξAW(t), ∀ξ > 1, ∀t > 0. (2.41)

Set

r = n

(
n∑

k=1

1
rk

)−1
, p =

n

r

(
n∑

k=1

1
pkrk

)−1
,

s =
n

r

(
n∑

k=1

1
skrk

)−1
.

(2.42)

Assume that a locally integrable function f ∈ S0(Rn) has weak derivatives Drk
k f ∈ Λpk,sk(w) (k =

1, . . . , n). Then for any ξ > 1

f∗(t) ≤ K
[
f∗(ξt) + ξrσ(t)

]
, (2.43)

where r = max rk, the constants K depends only on r1, . . . , rn, w, and

(∫∞

0
W(t)s(1/p−r/n)−1w(t)σ(t)sdt

)1/s

≤ C
n∏

k=1

‖Drk
k
f‖r/(nrk)Λpk ,sk (w). (2.44)

Proof. For every fixed k = 1, . . . , n we take

ψk(t) =
(
Drk

k f
)∗∗(t). (2.45)

Thanks to Lemma 2.5, and w ∈ B1,∞ (for w is nonincreasing), we know

v = W(t)sk/pk−1w(t) ∈ Bsk . (2.46)

Thus

‖ψk‖Λpk ,sk (w) =
∥∥(Drk

k f
)∗∗∥∥

Lsk (v) ≤ C
∥∥(Drk

k f
)∗∥∥

Lsk (v) = C
∥∥Drk

k f
∥∥
Λpk ,sk (w). (2.47)
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Next we apply Lemma 2.2 with δ defined as in Lemma 2.3. In this way we obtain the
functions which we denote by φk(t) (k = 1, . . . , n). Further, with these functions φk(t) we
define the function σ(t) by (2.28). By Lemma 2.3, we have the inequality (2.44). Using
Lemma 2.4 with τ = ξt, we obtain

f(t) ≤ K

[
f∗(ξt) + ξr

(
W(t)
λ′
k
(t)

)rk

φk

]
, (2.48)

where
∏n

k=1λ
′
k
(t) ≥ W(t)n−1. Taking into account (2.28), we get (2.43).

Corollary 2.7. Let 0 < θ ≤ 1, n ≥ 2, rk ∈ N, 1 < pk < ∞, 1 ≤ sk < ∞ for k = 1, . . . , n, and r, p, s
be the numbers defined by (2.42). Assume weight w on R+ satisfies the following conditions:

(i) it is nonincreasing, continuous, and limt→∞w(t) = a, a > 0,

(ii) there exist two constants η, β with β < 1 such that

W

(
t

ξ

)θ/η−1
w

(
t

ξ

)
≤ CξβW(t)θ/η−1w(t), ∀t > 0, ∀ξ > 1, (2.49)

and there holds

q̃ ≡ sup
{
η; ∃β < 1, (2.49) holds

}
> 1. (2.50)

Assume that a locally integrable function f ∈ S0(Rn) has weak derivatives Drk
k
f ∈ Λpk,sk(w) (k =

1, . . . , n) and f ∈ Λ1(w) + Λp0(w) for some p0 with 1 ≤ p0 < q̃ such that

1
p0

>
1
p
− r

n
. (2.51)

Let p0 < q < q̃ and

1
q
>

1
p
− r

n
. (2.52)

Then f ∈ Λq,θ(w) and

‖f‖Λq,θ(w) ≤ C

[
‖f‖Λ1(w)+Λp0 (w) +

n∏

k=1

‖Drk
k f‖

r/(nrk)
Λpk ,sk (w)

]
. (2.53)
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Proof. Let f = g + h, with g ∈ Λ1(w) and h ∈ Λp0(w). Applying Hölder’s inequality and
noticing W(∞) = ∞ and w is nonincreasing, we obtain

J1 ≡
∫∞

1
f∗θ(t)W(t)θ/q−1w(t)dt

≤
∫∞

1
g∗θ
(
t

2

)
W(t)θ/q−1w(t)dt +

∫∞

1
h∗θ
(
t

2

)
W(t)θ/q−1w(t)dt

≤ C

[(∫∞

1/2
g∗(t)w(t)dt

)θ

+
(∫∞

1/2
h∗p0(t)w(t)dt

)θ/p0
]
.

(2.54)

So

J1 ≤ C′‖f‖Λ1(w)+Λp0 (w). (2.55)

Let 0 < δ < 1. Using (2.43)with ξ > 1, which satisfies C1K
θξβ−1 ≤ 1/2 (C1, β are two constants

in (2.49) for η = q), combining (2.49), (2.52), and Hölder’s inequality, we get

Jδ ≡
∫∞

δ

f∗θ(t)W(t)θ/q−1w(t)dt

≤ J1 +Kθ

∫1

δ

f∗θ(ξt)W(t)θ/q−1w(t)dt +Kξr
∫1

δ

σ(t)θW(t)θ/q−1w(t)dt

≤ J1 +Kθ C1

ξ1−β

∫∞

δ

f∗θ(t)W(t)θ/q−1w(t)dt + C

∫1

δ

σ(t)θW(t)θ/q−1w(t)dt

≤ J1 +
1
2
Jδ + C′

(∫1

0
σ(t)sW(t)(1/p−r/n)s

w(t)
W(t)

)θ/s

.

(2.56)

By (2.55), Jδ < ∞. Furthermore, from (2.49), we can get

W(ξt) ≥ ξ(1−β)q/θW(t), ∀t > 0, ∀ξ > 1. (2.57)

Inequality (2.53) now follows from (2.44) and (2.55).

Remark 2.8. If w = a (a > 0) in Corollary 2.7, then it is easy to get q̃ = ∞.

Remark 2.9. Let rk ∈ N, 1 < pk < ∞, 1 ≤ sk < ∞ for k = 1, . . . , n (n ≥ 2). Let r, p, and s be
the numbers defined by (2.42). Assume that p < n/r, q∗ = np/(n − rp) and w satisfies the
conditions of Corollary 2.7 with q̃ > q∗. Then for any function f ∈ C∞(Rn) with compact
support we have

‖f‖Λq∗,s(w) ≤ C
n∏

k=1

‖Drk
k f‖

r/(nrk)
Λpk ,sk (w). (2.58)



Journal of Inequalities and Applications 13

This statement can be easily got from Lemma 2.6. Inequality (2.58) gives a generaliza-
tion of Remark 2.6 of [15] when pk > 1, k = 1, . . . , n because w = 1 satisfies the preceding
conditions.

Remark 2.10. Beyond constant weights, there are many weights satisfying conditions of
Corollary 2.7. For example,

(i) w = t−α + a,where 0 < α < θ, 0 < a < ∞,

(ii)

w =

⎧
⎨

⎩
t−α, if 0 < t < 1,

1, if t ≥ 1,
(2.59)

where 0 ≤ α < 1.

For weightw in (i) or (ii), it is easy to see the weighted Lorentz spaceΛp,q(w) for 0 < p, q < ∞
does not coincide with any Lorentz space Lr,s.

3. The Main Theorem

Theorem 3.1. Let n ≥ 2, rk ∈ N, 1 < pk < ∞, 1 ≤ sk < ∞ for k = 1, . . . , n. Let r, p, and s be the
numbers defined by (2.42). Suppose weight w on R+ satisfies the following conditions:

(i) it is nonincreasing, continuous, and limt→∞w(t) = a, a > 0,

(ii) there exist two constants η, β with β < 1 such that

W

(
t

ξ

)1/η−1
w

(
t

ξ

)
≤ CξβW(t)1/η−1w(t), ∀t > 0, ∀ξ > 1, (3.1)

and there holds

q̃ ≡ sup
{
η; ∃β < 1, (3.1) holds

}
> max

{
pi; i = 1, . . . , n

}
. (3.2)

For every pj (1 ≤ j ≤ n) satisfying the condition

ρj ≡ r

n
+

1
pj

− 1
p
> 0, (3.3)

take arbitrary qj such that pj < qj < q̃ and

1
qj

>
1
p
− r

n
(3.4)
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and denote

Hj = 1 − 1
ρj

(
1
pj

− 1
qj

)
, αj = Hjrj ,

1
θj

=
1 −Hj

s
+
Hj

sj
. (3.5)

Then for any function f ∈ S0(Rn) with the weak derivatives Drk
k
f ∈ Λpk,sk(w) (k = 1, . . . , n) there

holds the inequality

(∫∞

0

[
h−αj

∥∥∥Δrj
j (h)f

∥∥∥
Λqj ,1(w)

]θj dh
h

)1/θj

≤ C
n∑

k=1

∥∥Drk
k
f
∥∥
Λpk ,sk (w), (3.6)

where C is a constant that does not depend on f .

Proof. First we can get 0 < Hj < 1 by our conditions. denote

gk(x) =
∣∣Drk

k
f(x)
∣∣. (3.7)

Further, assume that j = 1 and set for h > 0

fh(x) =
∣∣Δr1

1 (h)f(x)
∣∣. (3.8)

For almost all x ∈ R
n we have [1, Volume 1, page 101]

fh(x) ≤
∫h

0
· · ·
∫h

0
g1(x + (u1 + · · · + ur1)e1)du1 · · ·dur1 . (3.9)

Thus,

f∗
h(t) ≤ hr1g∗∗

1 (t). (3.10)

Indeed, for any subset A ⊂ R
n with |A| = t

∫

A

fh(x)dx ≤ hr1 sup
B⊂Rn, |B|=t

∫

B

g1
(
y
)
dy = hr1tg∗∗

1 (t), (3.11)

(3.10) then follows.
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For pk > 1, w is nonincreasing (w ∈ B1,∞), we getW(t)sk/pk−1w(t) ∈ Bsk by Lemma 2.5.
Thus from (3.10)

‖fh‖Λp1 ,s1 (w) =
(∫∞

0
f∗s1
h (t)W(t)s1/p1−1w(t)dt

)1/s1

≤ hr1

(∫∞

0
g∗∗s1
1 (t)W(t)s1/p1−1w(t)dt

)1/s

≤ Chr1‖g1‖Λp1 ,s1 (w).

(3.12)

It follows fh ∈ Λp1,s1(w). Furthermore

‖Dr1
1 fh‖Λp1 ,s1 (w) ≤ C

(∫∞

0

((
Dr1

1 f
)∗
(

t

2r1

))s1

W(t)s1/p1−1w(t)dt
)1/s1

= C

(∫∞

0

((
Dr1

1 f
)∗(t)
)s1W(2r1t)s1/p1−1w(2r1t)dt

)1/s1
.

(3.13)

Then due to Hardy lemma [16, page 56]

‖Dr1
1 fh‖Λp1 ,s1 (w) ≤ C

(∫∞

0

((
Dr1

1 f
)∗(t)
)s1W(t)s1/p1−1w(t)dt

)1/s1

= C‖Dr1
1 f‖Λp1 ,s1 (w).

(3.14)

It follows Dr1
1 fh ∈ Λp1,s1(w). Analogically we get Drk

k
fh ∈ Λpk,sk(w). Thus by Corollary 2.7 we

have fh ∈ Λq1,1(w).
Denote for h > 0

J(h) ≡ ‖fh‖Λq1 ,1(w) =
∫∞

0
(fh)

∗(t)W(t)1/q1−1w(t)dt. (3.15)

Set ξ0 = (4KC1)
1/(−β+1) (C1, β are two constants in (3.1) for η = q1), and

Q(h) =
{
t > 0 : f∗

h(t) ≥ 2Kf∗
h(ξ0t)

}
, (3.16)

where K is the constant in Lemma 2.5. Then by (3.1)

∫

R+\Q(h)
f∗
h(t)W(t)1/q1−1w(t)dt ≤ 2K

∫

R+\Q(h)
f∗
h(ξ0t)W(t)1/q1−1w(t)dt

≤ 2K
∫∞

0
f∗
h(ξ0t)W(t)1/q1−1w(t)dt

≤ 2KC1

ξ
1−β
0

∫∞

0
f∗(t)W(t)1/q1−1w(t)dt.

(3.17)
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Therefore ,

J(h) ≤ 2
∫

Q(h)
f∗
h(t)W(t)1/q1−1w(t)dt ≡ 2J ′(h). (3.18)

Let

0 < δ <
1
4
min
γi<1

(
1 − γi

)
. (3.19)

Now for every k = 1, . . . , n by applying Lemma 2.2 with ψ(t) = g∗∗
k (t). We obtain φk(t) (k =

1, . . . , n) on R+ such that

φk(t)W(t)1/pk−δw(t) ↓, φk(t)W(t)1/pk+δw(t) ↑, (3.20)

g∗∗
k (t) ≤ Cφk(t), (3.21)

‖φk‖Λpk ,sk (w) ≤ C‖g∗∗
k ‖Λpk ,sk (w). (3.22)

For W(t)sk/pk−1w(t) ∈ Bsk , it follows that

‖g∗∗
k ‖Λpk ,sk (w) ≤ C‖gk‖Λpk ,sk (w). (3.23)

Thus

‖φk‖Λpk ,sk (w) ≤ C‖Drk
k
f‖Λpk ,sk (w). (3.24)

We will estimate f∗
h
(t) for fixed h > 0 and t ∈ Q(h). By Lemma 2.4, (3.21), we have that for

each t ∈ Q(h)

f∗
h(t) ≤ C

(
W(t)
λ′
k(t, h)

)rk

φk(t), (3.25)
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where
∏n

k=1λ
′
k(t, h) ≥ W(t)n−1.Applying Lemma 2.3, we obtain that there exist a nonnegative

function σ(t) and positive continuously differentiable functions uk(t) (k = 1, . . . , n) on R+

satisfying the following conditions:

f∗
h(t) ≤ Cσ(t), t ∈ Q(h), (3.26)

(∫∞

0
W(t)s(1/p−r/n)−1w(t)σ(t)sdt

)1/s

≤ C
n∏

k=1

‖Drk
k
f‖r/(nrk)Λpk ,sk (w), (3.27)

σ(t) =
(
W(t)
uk(t)

)rk

φk(t), (3.28)

n∏

k=1

uk(t) = W(t)n−1, (3.29)

u1(t)W(t)δ−1 decreases. (3.30)

Denote

β(t) =
W(t)
u1(t)

. (3.31)

We will prove that for any h > 0 and any t ∈ Q(h)

f∗
h(t) ≤ Chr1χ(t), (3.32)

where

χ(t) ≡ σ(t)β(t)−r1 = φ1(t) (see (3.28)). (3.33)

By (3.24)

‖χ‖Λp1 ,s1 (w) ≤ C‖Dr1
1 f‖Λp1 ,s1 (w). (3.34)

For h ≥ β(t) (t ∈ Q(h)) the inequality (3.32) follows directly from (3.26) and (3.33). If
0 < h < β(t), t ∈ Q(h), then (3.32) is the immediate consequence of (3.10), (3.21), and (3.33).

Now, taking into account (3.26) and (3.32), we obtain that for h > 0 and any t ∈ Q(h)

f∗
h(t) ≤ CΦ(t, h), (3.35)

where

Φ(t, h) = min
(
σ(t), hr1χ(t)

)
, (3.36)

and χ(t) is defined by (3.33).
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Further, we have (see (3.18))

J ′(h) ≤ C

∫∞

0
W(t)1/q1−1w(t)Φ(t, h)dt,

J ≡
∫∞

0
h−α1θ1−1J(h)θ1dh ≤ C

∫∞

0
h−α1θ1−1dh

(∫∞

0
W(t)1/q1−1w(t)Φ(t, h)dt

)θ1

.

(3.37)

By (3.30), the function β(t)W(t)−δ increases on R+. It follows easily that β−1 exists on
R+ and satisfies β−1(0) = 0, β−1(∞) = ∞, and

W
(
β−1(2z)

)

W
(
β−1(z)

) ≤ 21/δ. (3.38)

Furthermore, we have

J ≤ C

⎡

⎣
∫∞

0
h−α1θ1−1dh

(∫β−1(h)

0
W(t)1/q1−1w(t)Φ(t, h)dt

)θ1
⎤

⎦

+ C

⎡

⎣
∫∞

0
h−α1θ1−1dh

(∫∞

β−1(h)
W(t)1/q1−1w(t)Φ(t, h)dt

)θ1
⎤

⎦

≡ C(J1 + J2).

(3.39)

Using Minkowsi’s inequality, we obtain

J1/θ11 =

⎛

⎝
∫∞

0
h−α1θ1−1dh

( ∞∑

k=0

∫β−1(2−kh)

β−1(2−k−1h)
W(t)1/q1−1w(t)σ(t)dt

)θ1
⎞

⎠
1/θ1

≤
∞∑

k=0

⎡

⎣
∫∞

0
h−α1θ1−1dh

(∫β−1(2−kh)

β−1(2−k−1h)
W(t)1/q1−1w(t)σ(t)dt

)θ1
⎤

⎦
1/θ1

≤
∞∑

k=0

2−kα1

⎡

⎣
∫∞

0
z−α1θ1−1dz

(∫β−1(z)

β−1(z/2)
W(t)1/q1−1w(t)σ(t)dt

)θ1
⎤

⎦
1/θ1

.

(3.40)
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Further, using Hölder’s inequality and (3.38), we get when θ1 > 1 (the case θ1 = 1 is obvious)

∫β−1(z)

β−1(z/2)
W(t)1/q1−1w(t)σ(t)dt

≤
(∫β−1(z)

β−1(z/2)
W(t)θ1/q1−1w(t)σ(t)θ1dt

)1/θ1(∫β−1(z)

β−1(z/2)

w(t)
W(t)

dt

)1/θ′1

≤ C

(∫β−1(z)

0
W(t)θ1/q1−1w(t)σ(t)θ1dt

)1/θ1

.

(3.41)

Thus, by Fubini’s theorem and (3.33)

J1 ≤ C

∫∞

0
z−α1θ1−1dz

∫β−1(z)

0
W(t)θ1/q1−1w(t)σ(t)θ1dt

= C′
∫∞

0
W(t)θ1/q1−1w(t)σ(t)θ1β−α1θ1dt

= C′
∫∞

0
W(t)θ1/q1−1w(t)σ(t)(1−H1)θ1χ(t)H1θ1dt.

(3.42)

The same argument gives that

J2 ≤ C

∫∞

0
z(−α1+r1)θ1−1dz

∫∞

β−1(z)
W(t)θ1/q1−1w(t)χ(t)θ1dt

≤ C′
∫∞

0
W(t)θ1/q1−1w(t)β(t)(r1−α1)θ1χ(t)θ1dt.

(3.43)

By (3.33) the last integral is the same as one on the right side of (3.42). So, we have that

J ≤ C

∫∞

0
W(t)θ1/q1−1w(t)σ(t)(1−H1)θ1χ(t)H1θ1dt. (3.44)

Now we apply Hölder’s inequality with the exponents u = s1/H1θ1 and u′ = s1/(s1 −H1θ1).
Observe that

(1 −H1)θ1u′ = s,

(
θ1
q1

− s1
p1u

)
u′ = s

(
1
p
− r

n

)
. (3.45)
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Therefore, we get, applying (3.27) and (3.34)

J1/θ1 ≤ C

(∫∞

0
W(t)s(1/p−r/n)−1w(t)σ(t)sdt

)(1−H1)/s

‖Dr1
1 f‖

H1

Λp1 ,s1 (w)

≤ C

(
n∏

k=1

‖Drk
k f‖

r/(nrk)
Λpk ,sk (w)

)1−H1

‖Dr1
1 f‖

H1

Λp1 ,s1 (w).

(3.46)

Since

n∑

k=1

r

nrk
= 1, (3.47)

we get the inequality (3.6). The theorem is proved.

Let X = X(Rn) be a rearrangement invariant space (r.i. space), Y be an r.i. space over
R+ and s > 0. Set r = [s] + 1 ([s] = integral part of s). The Besov space Bs

X,Y ;j(R
n) is defined as

follows (see [18, 19]):

Bs
X,Y ;j(R

n) =

{
f ∈ M(Rn) : ‖f‖Bs

X,Y ;j
=

∥∥∥∥∥
t−s/nωX,j(f, t1/n)r

ΦY (t)

∥∥∥∥∥
Y

< ∞
}
, (3.48)

where

ωX,j(f, t)r = sup
|h|≤t

∥∥∥Δr
h,jf
∥∥∥
X

(t > 0), Δk+1
h,j f(x) = Δ1

h,j

(
Δk

h,j

)
f(x),

Δ1
h,jf(x) = f

(
x + hej

) − f(x),

(3.49)

and ΦY (t) denotes the fundamental function of Y : ΦY (t) = ‖χE‖Y , with E being any
measurable subset of R+ with |E| = t.

Then we have the following.

Corollary 3.2. Let n ≥ 2, r ∈ N, p > 1, 1 ≤ sk < ∞ for k = 1, . . . , n, and

s = n

(
n∑

k=1

1
sk

)−1
. (3.50)

Let the weight w be the same as that in Theorem 3.1. Take arbitrary q such that

p < q < q̃,
1
q
>

1
p
− 1
n
, (3.51)
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and denote

H = 1 − n

r

(
1
p
− 1
q

)
, α = Hr,

1
θj

=
1 −H

s
+
H

sj
. (3.52)

Then for any function f ∈ S0(Rn) which has the weak derivatives Dr
k
f ∈ Λp,sk(w) (k = 1, . . . , n)

there hold

f ∈ Bα

Λq,1(w), Lθj ;j
(Rn),

‖f‖Bα

Λq,1(w),L
θj ;j

≤ C
n∑

k=1

‖Dr
kf‖Λp,sk (w),

(3.53)

where C is a constant that does not depend on f .

Proof. We can easily obtain the similar result to Lemma 2.4 in [20] by substituting Λq,1(w) for
Lp,s(Rn) there. Now the corollary is obvious using the Hardy’s inequality and Theorem 3.1.

Remark 3.3. If there exists j (1 ≤ j ≤ n) with pj = sj = 1, whether Theorem 3.1 remains true is
still a question now.
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