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1. Introduction

In the recent paper [1], Petari¢ and Raji¢ proved the following inequality for n nonzero
vectors xi, k € {1,...,n} in the real or complex normed linear space (X, || - ||):
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and showed that this inequality implies the following refinement of the generalised triangle
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inequality obtained by Kato et al. in [2]:
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The inequality (1.2) can also be obtained as a particular case of Dragomir’s result established
in [3]:
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wherep >1and n > 2.

Notice that, in [3], a more general inequality for convex functions has been obtained
as well.

Recently, the following inequality which is more general than (1.1) was given by
Dragomir [4]:

n
= 2l = axl [l

=1

(1.4)

Zla;—aklllell}

The main aim of this paper is to establish further generalizations of these Pecari¢-Raji¢-
Dragomir-type inequalities (1.1), (1.2), (1.3), and (1.4) by providing upper and lower bounds
for the norm of a linear combination of elements in the normed linear space. Our results
provide new estimates on such type of inequalities.
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2. Main Results

Theorem 2.1. Let (X, || - ||) be a normed linear space over the real or complex number field K. If

ai,,.i, € Kand x;,, ;i € X foriy, ..., in€{1,...,n} withn >?2, then
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Proof. Observe that, for any fixed k; € {1,...,n},j=1,...,n, we have
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Taking the norm in (2.2) and utilizing the triangle inequality, we have
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which, on taking the minimum over k; € {1,...,n}, j = 1,...,n, produces the second

inequality in (2.1).
Next, by (2.2) we have obviously
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On utilizing the continuity property of the norm we also have
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which, on taking the maximum over k; € {1,...,n},j = 1,...,n, produces the first part of
(2.1) and the theorem is completely proved. O

Remark 2.2. (i) In case the multi-indices iy,...,i, and kj, ..., k, reduce to single indices j
and k, respectively, after suitable modifications, (2.1) reduces to inequality (1.4) obtained
by Dragomir in [4].
(ii) Furthermore, if x; € X'\ {0} for j € {1,...,n} and ay = 1/||xk||, k € {1,...,n} with
n > 2, the inequality reduces further to inequality (1.1) obtained by Pecari¢ and Raji¢ in [1].
(iii) Further to (ii), if n = 2, writing x1 = x and x, = -y, we have
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which holds for any nonzero vectors x,y € X.

The first inequality in (2.6) was obtained by Mercer in [5].
The second inequality in (2.6) has been obtained by Maligranda in [6]. It provides a
refinement of the Massera-Schiiffer inequality [7]:

H 2||x yll (2.7)
IIxII Iyl ~ max{iixll, ly[l}
which, in turn, is a refinement of the Dunkl-Williams inequality [8]:
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Theorem 2.3. Let (X, || - ||) be a normed linear space over the real or complex number field K. If
aj,..i, € Kand xj, ;i € X\ {0} for j1,...,ju € {1,...,n} withn > 2, then
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and letting ax, i, = 1/||xi,.k, || for ki=1,...,m;n > 2.

.....

A somewhat surprising consequence of Theorem 2.3 is the following version.

Theorem 2.4. Let (X, || - ||) be a normed linear space over the real or complex number field K. If
Xj,,..in € X\ {0} for ji,...,jn € {1,...,n} withn > 2, then
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This completes the proof.
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Remark 2.5. In case the multi-indices ji, ..., j, and ki, ..., k, reduce to single indices j and k,
respectively, after suitable modifications, (2.10) reduces to inequality (1.2) obtained in [2] by

Kato et al.
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Theorem 2.6. Let (X, || - ||) be a normed linear space over the real or complex number field K. If
Xj,,..jin € X\ {0} for ji,...,jn €{1,...,n} withn>2and p > 1, then

P
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This follows much in the line as the proofs of Theorem 2.1 and Theorem 2.4, and so it
is omitted here.

Remark 2.7. In case the multi-index ji,...,j, reduces to a single index j, after suitable
modifications, (2.17) reduces to inequality (1.3) obtained by Dragomir in [3].
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