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We consider the perturbed half-linear Euler differential equation (Φ(x′))′ + [γ/tp + c(t)]Φ(x) = 0,
Φ(x) := |x|p−2x, p > 1, with the subcritical coefficient γ < γp := ((p − 1)/p)p. We establish a
Bargmann-type necessary condition for the existence of a nontrivial solution of this equation with
at least (n + 1) zero points in (0,∞).
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1. Introduction

The classical Bargmann inequality [1] originates from the nonrelativistic quantummechanics
and gives an upper bound for the number of bound states produced by a radially
symmetric potential in the two-body system. In the subsequent papers, various proofs and
reformulations of this inequality have been presented, we refer to [2, Chapter XIII], and to
[3–5] for some details.

In the language of singular differential operators, Bargmann’s inequality concerns the
one-dimensional Schrödinger operator

τ
(
y
)
:= y′′ +

[
γ

t2
+ c(t)

]
y, γ <

1
4
, t ∈ (0,∞). (1.1)

It states that if the Friedrichs realization of τ has at least n negative eigenvalues below
theessential spectrum (what is equivalent to the existence of a nontrivial solution of
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the equation τ(y) = 0 having at least (n + 1) zeros in (0,∞)), then

∫∞

0
tc+(t)dt > n

√
1 − 4γ, (1.2)

where c+(t) = max{c(t), 0}.
This inequality can be seen as follows. The Euler differential equation

x′′ +
γ

t2
x = 0 (1.3)

with the subcritical coefficient γ < 1/4 is disconjugate in (0,∞), that is, any nontrivial solution
of (1.3) has at most one zero in this interval. Hence, if the equation τ(y) = 0, with τ given by
(1.1), has a solution with at least (n + 1) positive zeros, the perturbation function c must be
“sufficiently positive” in view of the Sturmian comparison theorem. Inequality (1.2) specifies
exactly what “sufficient positiveness” means.

In this paper, we treat a similar problem in the scope of the theory of half-linear
differential equations:

(
r(t)Φ

(
x′))′ + c(t)Φ(x) = 0, Φ(x) := |x|p−2x, p > 1. (1.4)

In physical sciences, there are known phenomena which can be described by differential
equations with the so-called p-Laplacian Δpu := div (‖∇u‖p−2∇u), see, for example, [6]. If
the potential in such an equation is radially symmetric, this equation can be reduced to a
half-linear equation of the form (1.4).

There are many results of the linear oscillation theory, which concern the Sturm-
Liouville differential equation:

(
r(t)x′)′ + c(t)x = 0, (1.5)

which has been extended to (1.4). In particular, the linear Sturmian theory holds almost
verbatim for (1.4), see, for example, [7, 8]. We will recall elements of the half-linear
oscillation theory in the next section. Ourmain result concerns the perturbed half-linear Euler
differential equation

(
Φ
(
x′)) +

[ γ
tp

+ c(t)
]
Φ(x) = 0, t ∈ (0,∞), (1.6)

where c is a continuous function, and shows that if γ is the so-called subcritical coefficient,
that is, γ < γp := (p/(p − 1))p, and there exists a solution of (1.6) with at least (n + 1) zeros
in (0,∞), then the integral

∫∞
0 t

p−1c+(t)dt satisfies an inequality which reduces to (1.2) in the
linear case p = 2.

2. Preliminaries

In this short section, we present some elements of the half-linear oscillation theory which we
need in the proof of our main result. As we have mentioned in the previous section, the linear
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and half-linear oscillation theories are in many aspects very similar, so (1.4) can be classified
as oscillatory or nonoscillatory as in the linear case.

If x is a solution of (1.4) such that x(t)/= 0 is some interval I, then w := rΦ(x′/x) is
a solution of the Riccati-type differential equation

w′ + c(t) +
(
p − 1

)
r1−q|w|q = 0, q :=

p

p − 1
. (2.1)

If (1.4) is nonoscillatory, that is, (2.1) possesses a solution which exists on some interval
[T,∞), among all such solutions of (2.1), there exists the minimal one w̃, minimal in the sense
that any other solution w of (2.1) which exists on some interval [tw,∞) satisfies w(t) > w̃(t)
in this interval, see [9, 10] for details.

In our treatment, the so-called half-linear Euler differential equation

(
Φ
(
x′))′ +

γ

tp
Φ(x) = 0 (2.2)

appears. If we look for a solution of this equation in the form x(t) = tλ, then λ is a root of the
algebraic equation

|λ|p −Φ(λ) +
γ

p − 1
= 0. (2.3)

By a simple calculation (see, e.g., [8, Section 1.3]), one finds that (2.3) has a real root if and
only if γ is less than or equal to the so-called critical constant γp := ((p − 1)/p)p, and hence
(2.2) is nonoscillatory if and only if γ ≤ γp. In this case, the associated Riccati equation is of
the form

w′ +
γ

tp
+
(
p − 1

)|w|q = 0, (2.4)

and its minimal solution is w̃(t) = Φ(λ1)t1−p, where λ1 is the smaller of (the two real) roots of
(2.3). If v(t) = tp−1w, then v is a solution of the equation

v′ =
p − 1
t

− p − 1
t

|v|q − γ

t
, (2.5)

and ṽ(t) ≡ Φ(λ1) is the minimal solution of this equation. A detailed study of half-linear Euler
equation and of its perturbations can be found in [11].

3. Bargmann’s Type Inequality

In this section, we present our main results, the half-linear version of Bargmann’s inequality.
We are motivated by the work in [4] where a short proof of this inequality based on the
Riccati technique is presented. Here we show that this method, properly modified, can also
be applied to (1.6).
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Theorem 3.1. Suppose that (1.6) with γ < γp = ((p − 1)/p)p has a nontrivial solution with at least
(n + 1) zeros in (0,∞). Then

∫∞

0
tp−1c+(t)dt > nk

(
γ, q

)
, (3.1)

where k(γ, q) is the absolute value of the difference of the real roots of

Fγ(λ) := |λ|q − λ +
(
q − 1

)
γ = 0 (3.2)

and q = p/(p − 1) is the conjugate number to p. Moreover, the constant k(γ, q) is strict in the sense
that for every ε > 0, there exists a continuous function c such that (1.6) possesses a solution with
(n + 1) zeros in (0,∞) and

∫∞

0
tp−1c+(t)dt ≤ nk

(
γ, q

)
+ ε. (3.3)

Proof. Let x be a solution of (1.6) with (n + 1) zeros in (0,∞), denote these zeros by t0 < t1 <
· · · < tn, and let v(t) = tp−1Φ(x′/x). Then by a direct computation we see that v is a solution
of the Riccati-type differential equation

v′ =
p − 1
t

v − γ

t
− (

p − 1
)|v|q − tp−1c(t)

= −(p − 1
)
Fγ(v) − tp−1c(t), t ∈ (ti, ti+1), i = 0, . . . , n − 1,

(3.4)

v(ti−) = −∞, v(ti+) = ∞. (3.5)

Let λ1 < λ2 be the roots of (3.2). Such pair of roots exists and it is unique since the function
Fγ(λ) is convex, Fγ(±∞) = ∞, F ′

γ(1/Φ(q)) = 0, and Fγ(1/Φ(q)) = (γ − γp)/(p − 1) < 0.
According to (3.5), there exist ξi, ηi ∈ (ti, ti+1) such that v(ξi) = λ2, v(ηi) = λ1, and λ1 < v(t) <
λ2 for t ∈ (ξi, ηi), which means that Fγ(v(t)) < 0 for t ∈ (ξi, ηi). Then, we have

∫∞

0
tp−1c+(t)dt ≥

n∑

i=0

∫ηi

ξi

tp−1c+(t)dt ≥
n∑

i=0

∫ηi

ξi

tp−1c(t)dt

=
n∑

i=1

∫ηi

ξi

[−v′(t) − (
p − 1

)
Fγ(v(t))

]
dt >

n∑

i=1

v(t)

∣∣∣∣∣

ξi

ηi

=
n∑

i=1

[
v(ξi) − v

(
ηi
)]

= n(λ2 − λ1) = nk
(
γ, q

)
.

(3.6)
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Now we prove that the constant k(γ, q) is exact. Let ε > 0 be arbitrary and αi, βi, Ti be
sequences of positive real numbers constructed in the following way. Let t0 ∈ (0,∞) be
arbitrary and consider the differential equation

(
Φ
(
x′))′ +

γ

tp
Φ(x) = 0. (3.7)

Denote by x0 its nontrivial solution satisfying x0(t0) = 0, x′
0(t0) = 1 (such solution exists and

it is unique, see, e.g., [8, Section 1.1]) and let v0 := tp−1Φ(x′
0/x0). Since lim

t→∞
v0(t) = v2, see [8,

page 39], there exists T1 > t0 such that v0(T1).
Now, let

α1 :=
γp − γ

T1
, β1 :=

εT1

4n
(
γp − γ

) , (3.8)

and define for t ∈ [T1, T1 + β1] the function

ĉ1(t) :=
1

β1tp−1

[
k
(
γ, q

)
+

ε

4n
+ α1

]
. (3.9)

Consider the solution v of the equation

v′ = −(p − 1
) |v|q

t
+
(
p − 1

)v
t
− γ

t
− tp−1ĉ1(t), t ∈ [

T1,T1 + β1
]
, (3.10)

given by the initial conditions v(T1) = v0(T1). Then for t ∈ [T1,T1 + β1]

v′ = −p − 1
t

[
|v|q − v +

γp

p − 1

]
+
γp − γ

t
− tp−1ĉ1(t)

≤ γp − γ

t
− 1
βi

(
k
(
γ, q

)
+

ε

4n

)
− γp − γ

T1

≤ − 1
βi

(
k
(
γ, q

)
+

ε

4n

)
.

(3.11)

Hence,

v
(
T1 + β1

)
= v(T1) +

∫T1+β1

T1

v′(t)dt < v2 +
ε

4n
−
(
k
(
γ, q

)
+

ε

4n

)

= v2 − (v2 − v1) = v1.

(3.12)

Now consider again (3.7) and the associated Riccati-type differential equation

v′ = − γ

tp
+
(
p − 1

)
v − (

p − 1
)|v|q (3.13)



6 Journal of Inequalities and Applications

(which is related to (3.7) by the substitution v = tp−1Φ(x′/x) ). This equation has a constant
solution v = v1 and this solution is the minimal one (see the end of Section 2). This means
that any solution of (3.13) which starts with the initial condition v(T1 + β1) < v1 blows down
to −∞ at a finite time t1 > T1 + β1, which is a zero point of the associated solution x of (3.7).
Now, let

c̃1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, t ∈ [t0,T1],

ĉ1(t), t ∈ [
T1,T1 + β1

]
,

0, t ∈ [
T1 + β1, t1

]
.

(3.14)

In summary, we have constructed a solution of the equation

(
Φ
(
x′))′ +

[ γ
tp

+ c̃1(t)
]
Φ(x) = 0 (3.15)

for which x(t0) = 0 = x(t1) and

∫ t1

t0

tp−1c̃1(t)dt =
∫T1+β1

T1

tp−1ĉ1(t)dt

= k
(
γ, q

)
+

ε

4n
+ α1β1

= k
(
γ, q

)
+

ε

4n
+

ε

4n

= k
(
γ, q

)
+

ε

2n
.

(3.16)

The construction of Ti, βi, αi, ĉi(t) and c̃i(t), i = 2, . . . , n, is now analogical. As a result we
obtain the function c̃ : (0,∞) → [0,∞) defined as c̃(t) = 0 for t ∈ (0, t0] and t ∈ [tn,∞), and
c̃(t) = c̃i(t) for t ∈ [ti−1, ti], for which

∫∞

0
tp−1c̃(t)dt = nk

(
γ, q

)
+
ε

2
, (3.17)

and the equation

(
Φ
(
x′))′ +

[ γ
tp

+ c̃(t)
]
Φ(x) = 0 (3.18)

has a solution with zeros at t = ti, i = 0, . . . , n.
Finally, we change the discontinuous function c̃(t) to a continuous one c(t) ≥ c̃(t)

such that
∫ tn
t0
tp−1[c(t) − c̃(t)]dt < ε/2. Such a modification is an easy technical construction

which can be described explicitly, but for us is only important its existence. According to
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the Sturmian comparison theorem, the equation (Φ(x′))′ + [γ/tp + c(t)]Φ(x) = 0 possesses a
nontrivial solution with at least (n + 1) zeros and

∫∞

0
tp−1c(t)dt ≤ nk

(
γ, q

)
+ ε, (3.19)

which we needed to prove.

Remark 3.2. If p = 2, then Fγ(λ) = λ2 − λ + γ and the roots of (3.2) are

λ1,2 =
1
2

(
1 ±

√
1 − 4γ

)
. (3.20)

Hence, k(γ, 2) = |λ1 − λ2| =
√
1 − 4γ and (3.1) reduces to (1.2).
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