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(−(1 − 2α)zf ′(z) + αz2f

′′
(z))/((1 − α)f(z) − αzf ′(z)) (α ∈ C − (0, 1]; R(α) ≥ 0), respectively, lie

in a region starlike with respect to 1 and symmetric with respect to the real axis. Also, certain
applications of the main results for a class of functions defined through Ruscheweyh derivatives
are obtained.
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1. Introduction

Let Σ denote the class of functions of the form

f(z) =
1
z
+

∞∑

k=0

akz
k, (1.1)

which are analytic and univalent in the punctured open unit disk

Δ∗ =
{
z ∈ C : 0 < |z| < 1

}
= Δ − {0}, (1.2)

where Δ is the open unit disk Δ = {z ∈ C : |z| < 1}.
A function f ∈ Σ is said to be meromorphic univalent starlike of order α if

−Rzf ′(z)
f(z)

> α (z ∈ Δ; 0 ≤ α < 1), (1.3)
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and the class of all such meromorphic univalent starlike functions in Δ∗ is denoted by
Σ∗(α).

Recently, Uralegaddi and Desai [1] studied the class Σ(α, β) of functions f ∈ Σ
satisfying the condition

∣∣∣∣∣
zf ′(z)/f(z) + 1

zf ′(z)/f(z) + 2α − 1

∣∣∣∣∣ ≤ β (z ∈ Δ; 0 ≤ α < 1; 0 < β ≤ 1). (1.4)

Kulkarni and Joshi [2] studied the class Σ(α, β, γ) of functions f ∈ Σ satisfying the condition

∣∣∣∣∣
zf ′(z)/f(z) + 1

2γ
(
zf ′(z)/f(z) + α

) − (
zf ′(z)/f(z) + 1

)

∣∣∣∣∣ ≤ β

(
z ∈ Δ; 0 ≤ α < 1; 0 < β ≤ 1;

1
2
< γ ≤ 1

)
.

(1.5)

Earlier, several authors [3–6] have studied similar subclasses of Σ∗(α).
Let S consist of functions f(z) = z +

∑∞
k=2 akz

k which are analytic and univalent in
Δ. Many researchers including [7–11] have obtained Fekete-Szegö inequality for analytic
functions f ∈ S.

In this paper, we obtain Fekete-Szegö-like inequalities for new classes of meromorphic
functions, which are defined in what follows. Also, we give applications of our results to
certain functions defined through Ruscheweyh derivatives.

Definition 1.1. Let φ(z) be an analytic function with positive real part on Δ with φ(0) = 1,
φ′(0) > 0, whichmaps the unit diskΔ onto a region starlikewith respect to 1, and is symmetric
with respect to the real axis. Let Σ∗(φ) be the class of functions f ∈ Σ for which

−zf
′(z)

f(z)
≺ φ(z) (z ∈ Δ), (1.6)

where ≺ denotes subordination between analytic functions.

The above-defined class Σ∗(φ) is the meromorphic analogue of the class S∗(φ),
introduced and studied by Ma and Minda [8], which consists of functions f ∈ S for which
zf ′(z)/f(z) ≺ φ(z), (z ∈ Δ).

More generally, under the same conditions as Definition 1.1, we add a parameter.

Definition 1.2. Let Σ∗
α(φ) be the class of functions f ∈ Σ for which

−(1 − 2α)zf ′(z) + αz2f ′′(z)
(1 − α)f(z) − αzf ′(z)

≺ φ(z)
(
z ∈ Δ; α ∈ C − (0, 1]; R(α) ≥ 0

)
. (1.7)
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Some of the interesting subclasses of Σ∗
α(φ) are

(1) Σ∗
0(φ) = Σ∗(φ),

(2) Σ∗
0((1 + (1 − 2α)z)/(1 − z)) = Σ∗(α), (0 ≤ α < 1),

(3) Σ∗
0((1+β(1−2αγ)z)/(1+β(1−2γ)z)) = Σ(α, β, γ), (0 ≤ α < 1, 0 < β ≤ 1, 1/2 ≤ γ ≤ 1)

studied by Kulkarni and Joshi [2],

(4) Σ∗
0((1 + Aw(z))/(1 + Bw(z))) = K1(A,B), (0 ≤ B < 1; − B < A < B) studied by

Karunakaran [12].

To prove our result, we need the following lemma.

Lemma 1.3 (see [13]). If p(z) = 1 + c1z + c2z
2 + c3z

3 + · · · is a function with positive real part in
Δ, then for any complex number μ,

∣∣c2 − μc21
∣∣ ≤ 2max

{
1, |1 − 2μ|}. (1.8)

2. Coefficient bounds

Bymaking use of Lemma 1.3, we prove the following bounds for the classes Σ∗(φ) and Σ∗
α(φ).

Theorem 2.1. Let φ(z) = 1+B1z+B2z
2 + · · · . If f(z) given by (1.1) belongs to Σ∗(φ), then for any

complex number μ,

(i)
∣∣a1 − μa2

0

∣∣ ≤
∣∣B1

∣∣

2
max

{
1,
∣∣∣∣
B2

B1
− (1 − 2μ)B1

∣∣∣∣
}
, B1 /= 0, (2.1)

(ii)
∣∣a1 − μa2

0

∣∣ ≤ 1, B1 = 0. (2.2)

The bounds are sharp.

Proof. If f(z) ∈ Σ∗(φ), then there is a Schwarz functionw(z), analytic in Δwithw(0) = 0 and
|w(z)| < 1 in Δ such that

−zf
′(z)

f(z)
= φ

(
w(z)

)
. (2.3)

Define the function p(z) by

p(z) =
1 +w(z)
1 −w(z)

= 1 + c1z + c2z
2 + · · · . (2.4)
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Since w(z) is a Schwarz function, we see that R(p(z)) > 0 and p(0) = 1. Therefore,

φ
(
w(z)

)
= φ

(
p(z) − 1
p(z) + 1

)

= φ

(
1
2

[
c1z +

(
c2 −

c21
2

)
z2 +

(
c3 +

c31
4

− c1c2

)
z3 + · · ·

])

= 1 +
1
2
B1c1z +

(
1
2
B1

(
c2 − 1

2
c21

)
+
1
4
B2c

2
1

)
z2 + · · · .

(2.5)

Now by substituting (2.5) in (2.3), we have

−zf
′(z)

f(z)
= 1 +

1
2
B1c1z +

(
1
2
B1

(
c2 − 1

2
c21

)
+
1
4
B2c

2
1

)
z2 + · · · . (2.6)

From this equation and (1.1), we obtain

a0 +
B1c1
2

= 0,

−a1 = a1 +
a0B1c1

2
+
B1c2
2

− B1c
2
1

4
+
B2c

2
1

4
.

(2.7)

Or equivalently,

a0 = −1
2
B1c1,

a1 = −1
2

[
1
2
B1c2 +

1
4
(
B2 − B1 − B2

1

)
c21

]
.

(2.8)

Therefore,

a1 − μa2
0 = −B1

4
{
c2 − vc21

}
, (2.9)

where

v =
1
2

[
1 − B2

B1
+ (1 − 2μ)B1

]
. (2.10)

Now, the result (2.1) follows by an application of Lemma 1.3. Also, if B1 = 0, then
a0 = 0 and a1 = (−1/8)B2c

2
1.

Since p(z) has positive real part, |c1| ≤ 2, so that |a1 − μa2
0| ≤ |B2|/2. Since φ(z) also has

positive real part, |B2| ≤ 2. Thus, |a1 − μa2
0| ≤ 1, proving (2.2).
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The bounds are sharp for the functions F1(z) and F2(z) defined by

−zF
′
1(z)

F1(z)
= φ

(
z2
)
, where F1(z) =

1 + z2

z
(
1 − z2

) ,

−zF
′
2(z)

F2(z)
= φ(z), where F2(z) =

1 + z

z(1 − z)
.

(2.11)

Clearly, the functions F1(z), F2(z) ∈ Σ.
Proceeding similarly, we now obtain the bounds for the class Σ∗

α(φ).

Theorem 2.2. Let φ(z) = 1+B1z+B2z
2 + · · · . If f(z) given by (1.1) belongs to Σ∗

α(φ), then for any
complex number μ,

(i)
∣∣a1 − μa2

0

∣∣ ≤
∣∣∣∣

B1

2(1 − 2α)

∣∣∣∣max
{
1,
∣∣∣∣
B2

B1
−
(
1 − 2(1 − 2α)

(1 − α)2
μ

)
B1

∣∣∣∣
}
, B1 /= 0, (2.12)

(ii)
∣∣a1 − μa2

0

∣∣ ≤
∣∣∣∣

1
(1 − 2α)

∣∣∣∣, B1 = 0. (2.13)

The bounds obtained are sharp.

Proof. If f(z) ∈ Σ∗
α(φ), then there is a Schwarz functionw(z), analytic in Δwithw(0) = 0 and

|w(z)| < 1 in Δ such that

−(1 − 2α)zf ′(z) + αz2f ′′(z)
(1 − α)f(z) − αzf ′(z)

= φ
(
w(z)

)
,

(
α ∈ C − (0, 1], R(α) ≥ 0

)
. (2.14)

Now using (2.5) and (1.1) in (2.14), and comparing the coefficients, we have

a0(1 − α) +
1
2
B1c1 = 0,

−a1(1 − 2α) = a1(1 − 2α) +
1
2
a0(1 − α)B1c1 +

1
2
B1c2 − 1

4
(
B1 − B2

)
c21;

(2.15)

or equivalently,

a0 = − 1
2(1 − α)

B1c1,

a1 = − 1
2(1 − 2α)

(
1
2
B1c2 +

1
4
(
B2 − B1 − B2

1

)
c21

)
.

(2.16)

Therefore,

a1 − μa2
0 = − B1

4(1 − 2α)
{
c2 − vc21

}
, (2.17)
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where

v =
1
2

[
1 − B2

B1
+

(
1 − 2(1 − 2α)

(1 − α)2
μ

)
B1

]
. (2.18)

Now, the result (2.12) follows by an application of Lemma 1.3. Also, if B1 = 0, then a0 = 0 and
a1 = (−1/8(1 − 2α))B2c

2
1.

Since p(z) has positive real part, |c1| ≤ 2, so that |a1 − μa2
0| ≤ |B2|/2(1 − 2α). Since φ(z)

also has positive real part, |B2| ≤ 2. Thus, |a1 − μa2
0| ≤ |1/(1 − 2α)|, proving (2.13).

The bounds are sharp for the functions F1(z) and F2(z) defined by

−(1 − 2α)zF ′
1(z) + αz2F ′′

1(z)
(1 − α)F1(z) − αzF ′

1(z)
= φ

(
z2
)
, where F1(z) =

1 + z2

z
(
1 − z2

) ,

−(1 − 2α)zF ′
2(z) + αz2F ′′

2(z)
(1 − α)F2(z) − αzF ′

2(z)
= φ(z), where F2(z) =

1 + z

z(1 − z)
.

(2.19)

Clearly F1(z), F2(z) ∈ Σ.

Remark 2.3. By putting α = 0 in (2.12) and (2.13), we get the results (2.1) and (2.2).

3. Applications to functions defined by Ruscheweyh derivatives

In this section, we introduce two classes Σ∗
λ
(φ) and Σ∗

α,λ
(φ) of meromorphic functions defined

by Ruscheweyh derivatives, and obtain coefficient bounds for functions in these classes.
Let f ∈ Σ be given by (2.1) and g ∈ Σ be given by

g(z) =
1
z
+

∞∑

k=0

bkz
k, (3.1)

then the Hadamard product of f and g is defined as

(f∗g)(z) = 1
z
+

∞∑

k=0

akbkz
k = (g∗f)(z). (3.2)

In terms of the Hadamard product of two functions, the analogue of the familiar Ruscheweyh
derivative [14] is defined as

Dλf(z) :=
1

z(1 − z)λ+1
∗f(z) (λ > −1; f ∈ Σ), (3.3)
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so that

Dλf(z) =
1
z

(
zλ+1f(z)

λ!

)(λ)

(λ > −1; f ∈ Σ), (3.4)

where, here and in what follows λ is an integer (> −1), that is, λ ∈ N0 = {0, 1, 2, . . .}.
It follows from (3.3) and (3.4) that

Dλf(z) =
1
z
+

∞∑

k=0

δ(λ, k)akz
k (f ∈ Σ), (3.5)

where f ∈ Σ is given by (1.1) and

δ(λ, k) :=
(
λ + k + 1
k + 1

)
. (3.6)

The above-defined operator Dλ for λ ∈ N0 = {0, 1, 2, . . .} was also studied by Cho [15]
and Padmanabhan [16]. For various developments involving the operator Dλ for functions
belonging to Σ, the reader may be referred to the recent works of Uralegaddi et al. [17–19]
and others [20–22].

Using (3.5), under the same conditions as Definition 1.1, we define the classes Σ∗
λ
(φ)

and Σ∗
α,λ(φ) as follows.

Definition 3.1. A function f ∈ Σ is in the class Σ∗
λ
(φ) if

−z
[
Dλf(z)

]′

Dλf(z)
≺ φ(z) (z ∈ Δ). (3.7)

Definition 3.2. A function f ∈ Σ is in the class Σ∗
α,λ

(φ) if

−(1 − 2α)z
[
Dλf(z)

]′ + αz2
[
Dλf(z)

]′′

(1 − α)
[
Dλf(z)

] − αz
[
Dλf(z)

]′ ≺ φ(z),
(
z ∈ Δ; α ∈ C − (0, 1]; R(α) ≥ 0

)
. (3.8)

For the classes Σ∗
λ(φ) and Σ∗

α,λ(φ), using methods similar to those in the proof of
Theorem 2.1, we obtain the following results.

Theorem 3.3. Let φ(z) = 1+B1z+B2z
2 + · · · . If f(z) given by (1.1) belongs to Σ∗

λ
(φ), then for any

complex number μ,

(i)
∣∣a1 − μa2

0

∣∣ ≤
∣∣∣∣∣

B1

(λ + 1)(λ + 2)

∣∣∣∣max
{
1,
∣∣∣∣
B2

B1
−
(
1 −

(
λ + 2
λ + 1

)
μ

)
B1

∣∣∣∣
}
, B1 /= 0, (3.9)

(ii)
∣∣a1 − μa2

0

∣∣ ≤
∣∣∣∣

2
(λ + 1)(λ + 2)

∣∣∣∣, B1 = 0. (3.10)

The bounds are sharp.
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Theorem 3.4. Let φ(z) = 1 + B1z + B2z
2 + · · · . If f(z) given by (1.1) belongs to Σ∗

α,λ(φ), then for
any complex number μ,

(i)
∣∣a1 − μa2

0

∣∣ ≤
∣∣∣∣∣

B1

(1 − 2α)(λ + 1)(λ + 2)

∣∣∣∣∣

×max

{
1,

∣∣∣∣∣
B2

B1
−
(
1 − (1 − 2α)

(1 − α)2

(
λ + 2
λ + 1

)
μ

)
B1

∣∣∣∣∣

}
, B1 /= 0,

(3.11)

(ii)
∣∣a1 − μa2

0

∣∣ ≤
∣∣∣∣

2
(1 − 2α)(λ + 1)(λ + 2)

∣∣∣∣, B1 = 0. (3.12)

The bounds are sharp.

Remark 3.5. For λ = 0 in (3.9), (3.11), we get the results (2.1) and (2.12), respectively. Also, for
α = λ = 0 in (3.11), we get the result (2.1).
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analytic functions,” Journal of Inequalities in Pure and Applied Mathematics, vol. 6, no. 3, article 71, pp.
1–6, 2005.

[11] K. Suchithra, B. A. Stephen, and S. Sivasubramanian, “A coefficient inequality for certain classes of
analytic functions of complex order,” Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no.
4, article 145, pp. 1–6, 2006.

[12] V. Karunakaran, “On a class of meromorphic starlike functions in the unit disc,” Mathematical
Chronicle, vol. 4, no. 2-3, pp. 112–121, 1976.

[13] F. R. Keogh and E. P. Merkes, “A coefficient inequality for certain classes of analytic functions,”
Proceedings of the American Mathematical Society, vol. 20, no. 1, pp. 8–12, 1969.



H. Silverman et al. 9

[14] S. Ruscheweyh, “New criteria for univalent functions,” Proceedings of the American Mathematical
Society, vol. 49, no. 1, pp. 109–115, 1975.

[15] N. E. Cho, “Argument estimates of certain meromorphic functions,” Communications of the Korean
Mathematical Society, vol. 15, no. 2, pp. 263–274, 2000.

[16] K. S. Padmanabhan, “On certain subclasses of meromorphic functions in the unit disk,” Indian Journal
of Pure and Applied Mathematics, vol. 30, no. 7, pp. 653–665, 1999.

[17] M. R. Ganigi and B. A. Uralegaddi, “New criteria for meromorphic univalent functions,” Bulletin
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