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1. Introduction and preliminaries

If p > 1, (1/p) + (1/q) = 1, f(x), g(x) ≥ 0, f ∈ Lp(0,∞), and g ∈ Lq(0,∞), such that 0 <
(
∫∞
0 fp(x)dx)1/p < ∞ and 0 < (

∫∞
0 gq(y)dy)1/p < ∞, then we have

∫∫∞

0

f(x)g(y)
x + y

dx dy <
π

sin(π/p)

(∫∞

0
fp(x)dx

)1/p(∫∞

0
gq(y)dy

)1/p

, (1.1)

where the constant factor π/(sin(π/p)) is the best possible. Equation (1.1) is the famous
Hardy-Hilbert inequality proved by Hardy et al. [1].

Let K(x, y) = 1/(x + y), (Tf)(y) :=
∫∞
0 K(x, y)f(x)dx, and ‖f‖p := {∫∞0 |f(x)|pdx}1/p (or

(Tg)(x) :=
∫∞
0 K(x, y)g(y)dy and ‖g‖q := {∫∞0 |g(y)|qdy}1/q). Yang [2] rewrote (1.1) as

(Tf, g) <
π

sin(π/p)
‖f‖p‖g‖q, (1.2)

where T : Lr(0,∞)→Lr(0,∞) (r = p, q) is an integral operator, (Tf, g) =
∫∞
0 (

∫∞
0 K(x,

y)f(x)dx)g(y)dy =
∫∫∞

0 K(x, y)f(x)g(y)dx dy = (Tg, f) is the formal inner product of Tf
and g, ‖f‖p (or ‖g‖q) is the norm of function f in Lp(0,∞) (or function g in Lq(0,∞)).
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If K(x, y) is a real measurable function and satisfies K(ux, uy) = u−λK(x, y) (λ > 0, u >
0) for (x, y) ∈ (0,∞) × (0,∞), then K(x, y) is called a homogeneous function of −λ-degree.
Hence, K(x, y) = 1/(x + y) in (1.2) is called a homogeneous kernel function of the integral
operator T and inequality (1.1) is called an inequality with the homogeneous kernel of −1-
degree also.

Recently, inequality (1.1) has been extended by introducing some parameters [3–6]. A
reverse Hilbert-Pachpatte inequality was first proved by Zhao and Debnath [7]. Zhong and
Yang [8, 9] gave some reverse inequalities concerning some extensions of (1.1). About the
Hilbert-type integral inequalities with a symmetric homogeneous kernel, Krnić and Pečarić
have researched [10]. Zhong and Yang found the conditions for the multiple Hilbert-type
integral inequalities with a symmetric kernel [11]. Xie got a Hilbert-type integral inequality
with an unsymmetrical homogeneous kernel of −3-degree [12]. Xie’s work, as we will see in
Remark 3.3, is a special situation of our results for λ = 3 and s = r = 2.

By introducing an integral operator T , a norm ‖f‖p,ω with a weight function and
two pairs of conjugate exponents (p, q), (r, s) in this paper, we find some conditions under
which the Hilbert-type integral inequalities with a homogeneous kernel of −λ-degree and
their reverse forms and equivalent forms hold, here the homogeneous kernels K(x, y) can be
unsymmetrical. We also prove that the constant factors in these inequalities are all the best
possible. As applications of the theorems, some new inequalities with a homogeneous kernel
and their other two forms are given.

For these purposes, we introduce some notations as follows.
If p > 1, (1/p) + (1/q) = 1 and r > 1, (1/r) + (1/s) = 1, a norm of f with the weight

function ω(x) is defined by

‖f‖p,ω :=
{∫∞

0
ω(x)|f(x)|pdx

}1/p

, (1.3)

where f(x), ω(x) ≥ 0 are measurable in (0,∞). If ‖f‖p,ω < ∞, then it is marked by f ∈ L
p
ω(R+)

(for 0 < p < 1 or q < 0, we still use the formal mark (1.3) in the following).
Supposing that K(x, y) ≥ 0 is a measurable function in (0,∞) × (0,∞) and defining an

integral operator T , for f, g ≥ 0,

(Tf)(y) :=
∫∞

0
K(x, y)f(x)dx

(
y ∈ (0,∞)

)
, (1.4)

(Tg)(x) :=
∫∞

0
K(x, y)g(y)dy

(
x ∈ (0,∞)

)
, (1.5)

then we have the formal inner as follows:

(Tf, g) = (Tg, f) =
∫∫∞

0
K(x, y)f(x)g(y)dx dy. (1.6)

Lemma 1.1 (cf. [13]). Assume that p > 0, (1/p) + (1/q) = 1, F, G ≥ 0, and F ∈ Lp(E), G ∈ Lq(E).
One has the following Hölder inequalities:

(1) if p > 1, then
∫

E

F(t)G(t)dt ≤
(∫

E

Fp(t)dt
)1/p(∫

E

Gq(t)dt
)1/p

, (1.7)
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(2) if 0 < p < 1, then

∫

E

F(t)G(t)dt ≥
(∫

E

Fp(t)dt
)1/p(∫

E

Gq(t)dt
)1/p

, (1.8)

where the equalities hold if and only if there exist real numbers A and B (A2 + B2 /= 0), such
that AFp(t) = BGq(t)a.e. in E.

Lemma 1.2. If s > 1, (1/r) + (1/s) = 1, p > 0, p /= 1, (1/p) + (1/q) = 1, λ > 0, setting that
K(x, y) (≥ 0) is a homogeneous kernel function of −λ-degree, and defining that

ω1(λ, s, x) :=
∫∞

0
K(x, y)

xλ/r

y1−(λ/s)dy, (1.9)

ω2(λ, r, y) :=
∫∞

0
K(x, y)

yλ/s

x1−(λ/r)dx, (1.10)

Cλ(s) :=
∫∞

0
K(1, u)u(λ/s)−1du, (1.11)

then one has

ω1(λ, s, x) = ω2(λ, r, y) = Cλ(s). (1.12)

Proof. By the −λ homogeneity of the kernel K(x, y), for x > 0, and setting u = y/x, we have

ω1(λ, s, x) =
∫∞

0
K

(
x, x

y

x

)
x(λ/r)+1

(
x(y/x)

)1−(λ/s)d
y

x
=
∫∞

0
K(1, u)u(λ/s)−1du = Cλ(s), (1.13)

and for y > 0, letting x = y/u, by dx = −(y/u2)du, it is easy to find that

ω2(λ, r, y) =
∫∞

0
K

(
y

u
, y

)
yλ/s

(
y/u2)

y1−(λ/r)u(λ/r)−1du =
∫∞

0
K(1, u)u(λ/s)−1du, (1.14)

equation (1.12) is valid. The lemma is proved.

Lemma 1.3. If s > 1, (1/r) + (1/s) = 1, p > 0, p /= 1, (1/p) + (1/q) = 1, λ > 0, suppose that
K(x, y)(≥ 0) is a measurable homogeneous kernel function of −λ-degree. Defining that, for n ∈ N,

In =
∫∞

1
x−1−(1/n)

[∫∞

1
K(x, y)

x(λ/r)+(1/nq)

y1−(λ/s)+(1/nq)dy
]
dx, (1.15)

one has

In = n

[∫1

0
K(1, u)u(λ/s)−1+(1/np)du +

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du

]
. (1.16)
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Proof. By the −λ homogeneity of the kernel K(x, y), for x > 1 and setting u = y/x, we have

∫∞

1
K(x, y)

x(λ/r)+(1/nq)

y1−(λ/s)+(1/nq)dy =
∫1

1/x
K(1, u)u(λ/s)−1−(1/nq)du +

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du.

(1.17)

It follows that

In = n

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du +

∫∞

1
x−1−(1/n)dx

∫1

1/x
K(1, u)u(λ/s)−1−(1/nq)du. (1.18)

By the nonnegative measurability of K(x, y) and using Tonelli theorem [14], we have

∫∞

1
x−1−(1/n)dx

∫1

(1/x)
K(1, u)u(λ/s)−1−(1/nq)du

=
∫1

0
K(1, u)u(λ/s)−1−(1/nq)du

∫∞

(1/u)
x−1−(1/n)dx = n

∫1

0
K(1, u)u(λ/s)−1+(1/np)du.

(1.19)

In view of (1.18) and (1.19), we have (1.16). The lemma is proved.

2. Main results

Theorem 2.1. Supposing p > 1, (1/p) + (1/q) = 1, s > 1, (1/r) + (1/s) = 1, λ > 0, f, g ≥ 0, letting
ω(x) = xp(1−(λ/r))−1, �(y) = yq(1−(λ/s))−1, h(y) = y(pλ/s)−1, and setting T is a integral operator
defined by (1.4) (or (1.5)), if the following conditions are satisfied:

(1) K(x, y) ≥ 0 is a measurable homogeneous kernel function of −λ-degree,
(2) the weight coefficient Cλ(s) =

∫∞
0 K(1, u)u(λ/s)−1du is a positive number depending only on

the parameters λ, s, then one has

If f ∈ L
p
ω(R+), g ∈ L

q
�(R+), and ‖f‖p,ω, ‖g‖q,� > 0, then

(Tf, g) =
∫∫∞

0
K(x, y)f(x)g(y)dx dy < Cλ(s)‖f‖p,ω‖g‖q,� , (2.1)

if f ∈ L
p
ω(R+) and ‖f‖p,ω > 0, then Tf ∈ L

p

h
(R+) and

‖Tf‖p,h =
{∫∞

0
y(pλ/s)−1

(∫∞

0
K(x, y)f(x)dx

)p

dy

}1/p

< Cλ(s)‖f‖p,ω, (2.2)

where the same constant factor Cλ(s) in (2.1) and (2.2) is the best possible. Inequalities (2.1)
and (2.2)are equivalent.
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Proof. (1) By p > 1 and the nonnegative measurability of K(x, y), we can use Hölder’s
inequality (1.10) and Tonelli theorem in the following:

(Tf, g) =
∫∫∞

0

[
K(1/p)(x, y)f(x)

x(1/q)(1−(λ/r))

y(1/p)(1−(λ/s))

][
K1/q(x, y)g(y)

y(1/p)(1−(λ/s))

x(1/q)(1−(λ/r))

]
dx dy

≤
{∫∫∞

0
K(x, y)

x(p−1)(1−(λ/r))

y1−(λ/s) fp(x)dy dx

}1/p

×
{∫∫∞

0
K(x, y)

y(q−1)(1−(λ/s))

x1−(λ/r) gq(y)dx dy

}1/q

=
{∫∞

0
ω1(λ, s, x)xp(1−(λ/r))−1fp(x)dx

}1/p{∫∞

0
ω2(λ, r, y)yq(1−(λ/s))−1gq(y)dy

}1/q

,

(2.3)

where ω1(λ, s, x), ω2(λ, r, y) are defined by (1.9) and (1.10), respectively. Using (1.12) and
condition (2), we have

(Tf, g) ≤ Cλ(s)‖f‖p,ω‖g‖q,� . (2.4)

If (2.3) takes the form of equality, then by Lemma 1.1, there exist real numbers A and B
(A2 + B2 /= 0), such that

A
x(p−1)(1−(λ/r))

y1−(λ/s) fp(x) = B
y(q−1)(1−(λ/s))

x1−(λ/r) gq(y), a.e. in (0,∞) × (0,∞). (2.5)

It follows that there exists a constant D, such that

Axp(1−(λ/r))fp(x) = Byq(1−(λ/s))gq(y) = D, a.e. in (0,∞) × (0,∞). (2.6)

Assume, without lose of generality, that A/= 0, then we have

xp(1−(λ/r))−1fp(x) =
D

Ax
, a.e. in (0,∞), (2.7)

which contradicts with the facts that f ∈ L
p
ω(R+) and ‖f‖p,ω > 0. Hence, (2.3) takes the form of

strict inequality. So does (2.4). Then, we obtain (2.1).
Supposing there exists a number 0 < C ≤ Cλ(s), such that (2.1) is still valid when Cλ(s)

is replaced by C, then for n ∈ N, we have

(Tfn, gn) < C

{∫∞

0
xp(1−(λ/r))−1fp

n (x)dx
}1/p{∫∞

0
yq(1−(λ/s))−1gq

n(y)dy
}1/q

= C

∫∞

1
x−1−(1/n)dx = nC,

(2.8)
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where

fn(x) =

⎧
⎨

⎩

x−(1−(λ/r))−(1/np), x ∈ (1,∞),

0, x ∈ (0, 1],

gn(y) =

⎧
⎨

⎩

y−(1−(λ/s))−(1/np), y ∈ (1,∞),

0, y ∈ (0, 1].

(2.9)

But by (1.15) and (1.16), we have

(Tfn, gn) =
∫∫∞

0
K(x, y)fn(x)gn(y)dx dy

= In = n

[∫1

0
K(1, u)u(λ/s)−1+(1/np)du +

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du

]
.

(2.10)

In view of (2.8), we have

∫1

0
K(1, u)u(λ/s)−1+(1/np)du +

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du ≤ C. (2.11)

Then by Fatou lemma [14], we have

Cλ(s) =
∫∞

0
K(1, u)u(λ/s)−1du

=
∫1

0
lim
n→∞

K(1, u)u(λ/s)−1+(1/np)du +
∫∞

1
lim
n→∞

K(1, u)u(λ/s)−1−(1/nq)du

≤ lim
n→∞

[∫1

0
K(1, u)u(λ/s)−1+(1/np)du +

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du

]
≤ C.

(2.12)

Hence, the constant factor C = Cλ(s) is the best possible.
(2) Setting g(y) = y(pλ/s)−1(

∫∞
0 K(x, y)f(x)dx)p−1 (y ∈ (0,∞)), then we have g(y) ≥ 0.

Using the notation (1.3), by Hölder’s inequality (1.10) (as in (2.3)), we have

‖Tf‖p
p,h

= ‖g‖qq,� =
∫∞

0
yq(1−(λ/s))−1gq(y)dy

=
∫∞

0
y(pλ/s)−1

(∫∞

0
K(x, y)f(x)dx

)p

dy = (Tf, g) ≤ Cλ(s)‖f‖p,ω‖g‖q,� ,
(2.13)

which is equivalent to

‖Tf‖p
p,h

= ‖g‖qq,� ≤ C
p

λ
(s)‖f‖pp,ω. (2.14)

In view of f ∈ L
p
ω(R+), ‖f‖p,ω > 0, and condition (2), it follows that Tf ∈ L

p

h
(R+), g ∈ L

q
�(R+),

and ‖g‖q,� > 0. Using (2.1), we can find that inequality (2.13) takes the form of strict inequality.
So does (2.14). Hence, we obtain (2.2).
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On the other hand, if inequality (2.2) holds, then by using Hölder’s inequality (1.10)
again, we find

(Tf, g) =
∫∫∞

0
K(x, y)f(x)g(y)dx dy

=
∫∞

0

[
y(λ/s)−(1/p)

∫∞

0
K(x, y)f(x)dx

][
y(1/p)−(λ/s)g(y)

]
dy

≤
{∫∞

0
y(pλ/s)−1

(∫∞

0
K(x, y)f(x)dx

)p

dy

}(1/p){∫∞

0
yq(1−(λ/s))−1gq(y)dy

}1/q

.

(2.15)

By (2.2), we have (2.1). It follows that (2.2) is equivalent to (2.1). If the constant factor Cλ(s) in
(2.2) is not the best possible, then by (2.15), we can get a contradiction that the constant factor
Cλ(s) in (2.1) is not the best possible. The theorem is proved.

Theorem 2.2. Let 0 < p < 1 (q < 0), (1/p) + (1/q) = 1, r > 1, (1/r) + (1/s) = 1, λ > 0. Assume
that f, g ≥ 0, ω(x), �(y), h(y), and the integral operator T are all defined as in Theorem 2.1. Setting
φ(x) = x(qλ/r)−1 if

(1) K(x, y) is a nonnegative measurable homogeneous kernel function of −λ-degree,
(2) the weight coefficient Cλ(s) =

∫∞
0 K(1, u)u(λ/s)−1du is a positive number depending only on

the parameters λ, s, then one has the following cases:

if f ∈ L
p
ω(R+), g ∈ L

q
�(R+), and ‖f‖p,ω, ‖g‖q,� > 0, then

(Tf, g) =
∫∫∞

0
K(x, y)f(x)g(y)dx dy > Cλ(s)‖f‖p,ω‖g‖q,� , (2.16)

if f ∈ L
p
ω(R+) and ‖f‖p,ω > 0, then

‖Tf‖p,h =
{∫∞

0
y(pλ/s)−1

(∫∞

0
K(x, y)f(x)dx

)p

dy

}1/p

> Cλ(s)‖f‖p,ω, (2.17)

if g ∈ L
q
�(R+) and ‖g‖q,� > 0, then Tg ∈ L

q

φ
(R+), and

‖Tg‖q
q,φ

=
∫∞

0
x(qλ/r)−1

(∫∞

0
K(x, y)g(y)dy

)q

dx < C
q

λ
(s)‖g‖qq,� , (2.18)

where the constant factorsCλ(s) andC
q

λ
(s) in (2.16) (or in (2.17)) and in (2.18), respectively,

are both the best possible. Inequalities (2.17) and (2.18) are both equivalent to inequality
(2.16).

Proof. (1) Since 0 < p < 1, we can use the reverse Hölder inequality (1.11). Using the
combination as in (2.3) and using the notations (1.9) and (1.10), we have

(Tf, g) =
∫∫∞

0

[
K1/p(x, y)f(x)

x(1/q)(1−(λ/r))

y(1/p)(1−(λ/s))

][
K1/q(x, y)g(y)

y(1/p)(1−(λ/s))

x(1/q)(1−(λ/r))

]
dx dy

≥
{∫∞

0
ω1(λ, s, x)xp(1−(λ/r))−1fp(x)dx

}1/p{∫∞

0
ω2(λ, r, y)yq(1−(λ/s))−1gq(y)dy

}1/q

.

(2.19)



8 Journal of Inequalities and Applications

By (1.12), condition (2), and notation (1.3), we have

(Tf, g) ≥ Cλ(s)‖f‖p,ω‖g‖q,� . (2.20)

If (2.19) takes the form of equality. Then by using the conclusions of (2.5)–(2.7), we still can
get a result which contradicts the conditions of f ∈ L

p
ω(R+) and ‖f‖p,ω > 0 (or g ∈ L

q
�(R+) and

‖g‖q,� > 0). It means that (2.19) takes the form of strict inequality. So does (2.20). The form
(2.16) is valid.

If there exists a positive number C ≥ Cλ(s), such that (2.16) is still valid when Cλ(s) is
replaced by C, then for n ∈ N, setting fn(x) and gn(y) as (2.9), we have

(Tfn, gn) > C‖fn‖p,ω‖gn‖q,� = C

∫∞

1
x−1−(1/n)dx = nC. (2.21)

But by (1.16), we have

(
Tfn, gn

)
=
∫∫∞

0
k(x, y)fn(x)gn(y)dx dy

= In = n

[∫1

0
K(1, u)u(λ/s)−1+(1/nq)du +

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du

]
.

(2.22)

In view of (2.21), we have

C <

∫1

0
K(1, u)u(λ/s)−1+(1/np)du +

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du. (2.23)

Also by the nonnegative measurability of K(x, y), we can use Fatou lemma and obtain

C ≤ lim
n→∞

[∫1

0
K(1, u)u(λ/s)−1+(1/np)du +

∫∞

1
K(1, u)u(λ/s)−1−(1/nq)du

]

=
∫1

0
lim
n→∞

K(1, u)u(λ/s)−1+(1/np)du +
∫∞

1
lim
n→∞

K(1, u)u(λ/s)−1−(1/nq)du = Cλ(s).

(2.24)

Hence, the constant factor C = Cλ(s) is the best possible.
(2) Setting g(y) = y(pλ/s)−1(

∫∞
0 K(x, y)f(x)dx)p−1 (y ∈ (0,∞)), we have g(y) ≥ 0. By the

notation (1.3) and in view of (2.19), we have

‖Tf‖p
p,h

= ‖g‖qq,� =
∫∞

0
yq(1−(λ/s))−1gq(y)dy

=
∫∞

0
y(pλ/s)−1

(∫∞

0
K(x, y)f(x)dx

)p

dy = (Tf, g) ≥ Cλ(s)‖f‖p,ω‖g‖q,� ,
(2.25)

‖Tf‖p
p,h

= ‖g‖qq,� ≥ C
p

λ
(s)‖f‖pp,ω. (2.26)

If ‖Tf‖p
p,h

= ‖g‖qq,� = ∞, then by f ∈ L
p
ω(R+), (2.25) takes the form of strict inequality, so does

(2.26). That is what (2.17) holds. If Tf ∈ L
p

h
(R+) (g ∈ L

q
�(R+)), it tells us that the conditions of
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(2.16) are satisfied. Then by using (2.16), it follows that both (2.25) and (2.26) keep the forms
of strict inequality and (2.17) holds.

On the other hand, if (2.17) is valid, then by using the reverse Hölder inequality (1.11)
again, we have

(Tf, g) =
∫∞

0
y(λ/s)−(1/p)

[∫∞

0
K(x, y)f(x)dx

][
y(1/p)−(λ/s)g(y)

]
dy

≥
{∫∞

0
y(pλ/s)−1

[∫∞

0
K(x, y)f(x)dx

]p
dy

}1/p{∫∞

0
yq(1−(λ/s))−1gq(y)dy

}1/q

.

(2.27)

By (2.17), we have (2.16). It means that (2.17) is equivalent to (2.16).
(3) Firstly, setting f(x) = x(qλ/r)−1(

∫∞
0 K(x, y)g(y)dy)q−1 (x ∈ (0,∞)), then we have

f(x) ≥ 0. Using the notation (1.3) and in view of (2.19), (2.20), we have

‖Tg‖q
q,φ

= ‖f‖pp,ω =
∫∞

0
xp(1−(λ/r))−1fp(x)dx

=
∫∞

0
x(qλ/r)−1

(∫∞

0
K(x, y)g(y)dy

)q

dy = (Tg, f) ≥ Cλ(s)‖f‖p,ω‖g‖q,� .
(2.28)

It follows that

‖Tg‖q,φ = ‖f‖p/qp,ω =
{∫∞

0
xp(1−(λ/r))−1fp(x)dx

}1/q

≥ Cλ(s)‖g‖q,� , (2.29)

and by q < 0 (because of 0 < p < 1), we have

0 < ‖Tg‖q
q,φ

= ‖f‖pp,ω =
∫∞

0
x(qλ/r)−1

(∫∞

0
K(x, y)g(y)dy

)q

dy ≤ C
q

λ
(s)‖g‖qq,� < ∞. (2.30)

It follows that Tg ∈ L
q

φ
(R+), f ∈ L

p
ω(R+). Also by (2.16), we find that (2.28) and (2.30) are strict

inequalities. Thus, inequality (2.18) holds.
Secondly, if (2.18) is valid, then by using the reverse Hölder inequality (1.11) again, in

view of

(Tf, g) =
∫∫∞

0
K(x, y)f(x)g(y)dx dy

=
∫∞

0

[
x(1/q)−(λ/r)f(x)

][
x(λ/r)−(1/q)

∫∞

0
K(x, y)g(y)dy

]
dx

≥
{∫∞

0
xp(1−(λ/r))−1fp(x)dx

}1/p{∫∞

0
x(qλ/r)−1

[∫∞

0
K(x, y)g(y)dy

]q
dx

}1/q

,

(2.31)

by (2.18) and q < 0, we can easily find that (2.16) holds, and (2.18) is equivalent to (2.16).
If the constant factor Cλ(s) (or C

q

λ
(s)) in (2.17) (or in (2.18)) is not the best possible, then

by (2.27) (or (2.31)), we can get a contradiction that the constant factor Cλ(s) in (2.16) is not
the best possible. The theorem is proved.
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3. Some particular cases

Corollary 3.1. Let p > 0, (1/p) + (1/q) = 1, r > 1, (1/r) + (1/s) = 1, λ > 0, ω(x) =
xp(1−(λ/r))−1, �(y) = yq(1−λ/s)−1 and f, g ≥ 0, then one has the following cases: if p > 1, f ∈
L
p
ω(R+), g ∈ L

q
�(R+), and ‖f‖p,ω, ‖g‖q,� > 0, then

∫∫∞

0

xλf(x)g(y)
(
xλ + yλ

)
max

{
xλ, yλ

}dx dy < Cλ(s)‖f‖p,ω‖g‖q,� , (3.1)

if p > 1, f ∈ L
p
ω(R+), and ‖f‖p,ω > 0, then

∫∞

0
y(pλ/s)−1

(∫∞

0

xλf(x)
(
xλ + yλ

)
max

{
xλ, yλ

}dx
)p

dy < C
p

λ
(s)‖f‖pp,ω, (3.2)

if 0 < p < 1, f ∈ L
p
ω(R+), g ∈ L

q
�(R+), and ‖f‖p,ω, ‖g‖q,� > 0, then

∫∫∞

0

xλf(x)g(y)
(
xλ + yλ

)
max

{
xλ, yλ

}dx dy > Cλ(s)‖f‖p,ω‖g‖q,� , (3.3)

if 0 < p < 1, f ∈ L
p
ω(R+), and ‖f‖p,ω > 0, then

∫∞

0
y(pλ/s)−1

(∫∞

0

xλf(x)
(
xλ + yλ

)
max

{
xλ, yλ

}dx
)p

dy > C
p

λ
(s)‖f‖pp,ω, (3.4)

if 0 < p < 1, g ∈ L
q
�(R+), and ‖g‖q,� > 0, then

∫∞

0
x(qλ/r)−1

(∫∞

0

xλg(y)
(
xλ + yλ

)
max

{
xλ, yλ

}dy
)q

dx < C
q

λ
(s)‖g‖qq,� , (3.5)

where the constant factors Cλ(s) = (2/λ)
∑∞

k=0((−1)k(k+1))/((k+(1/r)+1)(k+(1/s))), C
p

λ
(s) and

C
q

λ
(s) are all the best possible. Inequality (3.2) is equivalent to (3.1), and inequalities (3.4) and (3.5)

are both equivalent to (3.3).

Proof. Let K(x, y) = xλ/((xλ + yλ)max{xλ, yλ}), then K(x, y) is a nonnegative measurable
homogeneous kernel function of −λ-degree in (0,∞) × (0,∞). In view of Theorems 2.1 and
2.2, we only need to show that

Cλ(s) =
∫∞

0
k(1, u)u(λ/s)−1du (3.6)

is a positive number depending only on the parameters λ, s.
Setting t = uλ, we have

Cλ(s) =
∫∞

0
k(1, u)u(λ/s)−1du =

∫∞

0

u(λ/s)−1
(
1 + uλ

)
max

{
1, uλ

}du

=
1
λ

[∫1

0

t(1/s)−1

1 + t
dt +

∫∞

1

t(1/s)−1

(1 + t)t
dt

]
=

1
λ

(
H1 +H2

)
.

(3.7)
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By a = (1/s) > 0, we find thatH1 =
∫1
0 (t

(1/s)−1/(1+ t))dt is a Eulerian integral [15] and we have

H1 =
∞∑

k=0

(−1)k
k + (1/s)

. (3.8)

Also letting v = 1/t inH2, we also have

H2 =
∫1

0

v(1/r)

1 + v
dv =

∞∑

k=0

(−1)k
k + (1/r) + 1

. (3.9)

In view of (3.8) and (3.9), we have Cλ(s) = (2/λ)
∑∞

k=0((−1)k(k+1))/((k+(1/r)+1)(k+(1/s))).
It shows that Cλ(s) is a positive number. By Theorems 2.1 and 2.2, Corollary 3.1 is proved.

Corollary 3.2. Suppose that p > 0, (1/p) + (1/q) = 1, r > 1, (1/r) + (1/s) = 1, λ > 0, ω(x) =
xp(1−(λ/r))−1, �(y) = yq(1−(λ/s))−1, and f, g ≥ 0. One has the following cases:if p > 1, f ∈ L

p
ω(R+), g ∈

L
q
�(R+), and ‖f‖p,ω, ‖g‖q,� > 0, then

∫∫∞

0

xλf(x)g(y)
(
x2λ + y2λ

)
+
∣∣x2λ − y2λ

∣∣dx dy < Cλ(s)‖f‖p,ω‖g‖q,� ; (3.10)

if p > 1, f ∈ L
p
ω(R+), and ‖f‖p,ω > 0, then

∫∞

0
y(pλ/s)−1

(∫∞

0

xλf(x)
(
x2λ + y2λ

)
+
∣∣x2λ − y2λ

∣∣dx
)p

dy < C
p

λ
(s)‖f‖pp,ω; (3.11)

if 0 < p < 1, f ∈ L
p
ω(R+), g ∈ L

q
�(R+), and ‖f‖p,ω, ‖g‖q,� > 0, then

∫∫∞

0

xλf(x)g(y)
(
x2λ + y2λ

)
+
∣∣x2λ − y2λ

∣∣dx dy > Cλ(s)‖f‖p,ω‖g‖q,� ; (3.12)

if 0 < p < 1, f ∈ L
p
ω(R+), and ‖f‖p,ω > 0, then

∫∞

0
y(pλ/s)−1

(∫∞

0

xλf(x)
(
x2λ + y2λ

)
+
∣∣x2λ − y2λ

∣∣dx
)p

dy > C
p

λ
(s)‖f‖pp,ω; (3.13)

if 0 < p < 1, g ∈ L
q
�(R+), and ‖g‖q,� > 0, then

∫∞

0
x(qλ/r)−1

(∫∞

0

xλg(y)
(
x2λ + y2λ

)
+
∣∣x2λ − y2λ

∣∣dy
)q

dx < C
q

λ
(s)‖g‖qq,� , (3.14)

where the constant factor Cλ(s) = (sr)/(λ(r +1)), Cp

λ
(s) and Cq

λ
(s) are all the best possible. Inequality

(3.11) is equivalent to (3.10) and inequalities (3.13) and (3.14) are both equivalent to (3.12).
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Proof. SettingK(x, y) = xλ/((x2λ +y2λ) + |x2λ −y2λ|), thenK(x, y) is a nonnegative measurable
homogeneous kernel function of −λ-degree in (0,∞)×(0,∞). As in Corollary 3.1, we only need
to show that Cλ(s) is a positive number depending only on the parameters λ, s.

Setting t = u2λ, for p > 0, p /= 1, we have

Cλ(s) =
∫∞

0
K(1, u)u(λ/s)−1du =

∫∞

0

u(λ/s)−1
(
1 + u2λ

)
+
∣∣1 − u2λ

∣∣du

=
1
2λ

∫∞

0

t(1/2s)−1

1 + t + |1 − t|dt =
1
4λ

[∫1

0
t(1/2s)−1dt +

∫∞

1
t(1/2s)−2dt

]
=

sr

λ(r + 1)
.

(3.15)

It shows that Cλ(s) = sr/(λ(r + 1)) is a positive number. Corollary 3.2 is proved.

Remark 3.3. (1) The homogeneous kernel functionsK(x, y) appearing in Corollaries 3.1 and 3.2
are just two especial examples. We can give more other examples.

(2)We can extend Theorems 2.1 and 2.2 to higher-dimensional space Rn
+ × R

n
+ easily.

(3) Letting λ = 3, r = s = 2 in the forms (2.1), (2.2), (2.16), and (2.17), and setting
K(x, y) = 1/((x + a2y)(x + b2y)(x + c2y)), then we can get Xie’s results [12] at once. So Xie’s
work is a special case of our Theorems 2.1 and 2.2.
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[1] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, UK,
2nd edition, 1952.

[2] B. Yang, “On the norm of an integral operator and applications,” Journal of Mathematical Analysis and
Applications, vol. 321, no. 1, pp. 182–192, 2006.
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