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1. Introduction and main result

Let C,R,Z,N, and N
+ be the sets of all complex numbers, real numbers, integers, nonnegative

integers, and positive integers, respectively. Let T be the unit circle realized as the interval
[0, 2π] with the points 0 and 2π identified, and as usual, let Lq := Lq[0, 2π] be the classical
Lebesgue integral space of 2π-periodic real-valued functions with the usual norm ‖·‖q, 1 ≤ q ≤
∞. Denote by ˜Wr

p the Sobolev space of functions x(·) on T such that the (r − 1)st derivative
x(r−1)(·) is absolutely continuous on T and x(r)(·) ∈ Lp, r ∈ N. The corresponding Sobolev class
is the set

Wr
p :=

{

˜Wr
p : ‖x(r)(·)‖p ≤ 1

}

. (1.1)

Tikhomirov [1] introduced the notion of Bernstein width of a centrally symmetric set C
in a normed space X. It is defined by the following formula:

bn(C,X) := sup
L

sup{λ ≥ 0 : L ∩ λBX ⊂ C}, (1.2)
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where BX is the unit ball of X and the outer supremum is taken over all subspaces L ⊂ X such
that dim L ≥ n + 1, n ∈ N.

In particular, Tikhomirov posed the problem of finding the exact value of bn(C;X), where
C = Wr

p and X = Lq, 1 ≤ p, q ≤ ∞. He also obtained the first results [1] for p = q = ∞ and
n = 2k − 1. Pinkus [2] found b2n−1(Wr

p ;L
q), where p = q = 1. Later, Magaril-Il’yaev [3] obtained

the exact value of b2n−1(Wr
p ;L

p), for 1 < p < ∞. The latest contribution to this fields is due to
Buslaev et al. [4]who found the exact values of b2n−1(Wr

p ;L
q) for all 1 < p ≤ q < ∞.

Let

Lr(D) = Dr + ar−1Dr−1 + · · · + a1D + a0, D =
d

dt
, (1.3)

be an arbitrary linear differential operator of order r with constant real coefficients
a0, a1, . . . , ar−1. Denote by pr the characteristic polynomial of Lr(D). The linear differential
operator Lr(D) will be called formal self-adjoint if pr(−t) = (−1)rpr(t), for each t ∈ C.

We define the function classes Wp(Lr) as follows:

Wp

(Lr

)

=
{

x(·) : xr−1 ∈ AC2π, ‖Lr(D)x(·)‖p ≤ 1
}

, (1.4)

where 1 ≤ p ≤ ∞.
In this paper, we will determine the exact values of Bernstein n-width of some classes of

periodic functions with formal self-adjoint linear differential operatorsWp(Lr), which include
the classical Sobolev class as its special case.

We define Qp to be the nonlinear transformation

(

Qpf
)

(t) :=
∣

∣f(t)
∣

∣

p−1signf(t). (1.5)

The maim result of this paper is the following.

Theorem 1.1. Assume that 1 < p < ∞. LetLr(D) be an arbitrary formal self-adjoint linear differential
operators given by (1.3). Then, there exists a numberN ∈ N

+ such that for every n ≥ N:

b2n−1
(

Wp(Lr

)

;Lp) = λ2n := λ2n
(

p, p,Lr

)

, (1.6)

where λ2n is that eigenvalue λ of the boundary value problem

Lr(D)y(t) = (−1)rλ−p(Qpx
)

(t),

y(t) =
(

QpLr(D)x
)

(t),

x(j)(0) = x(j)(2π), y(j)(0) = y(j)(2π), j = 0, 1, . . . , n − 1,

(1.7)

for which the corresponding eigenfunction x(·) = x2n(·) has only 2n simple zeros on T and is normalized
by the condition ‖Lr(D)x(·)‖p = 1.
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2. Proof of the theorem

First we introduce some notations and formulate auxiliary statements.
LetLr(D) be an arbitrary linear differential operator (1.3). Denote the 2π-periodic kernel

of Lr(D) by

KerLr(D) =
{

x(·) ∈ Cr(T) : Lr(D)x(t) ≡ 0
}

. (2.1)

Let μ (0 ≤ μ ≤ r) be the dimension of KerLr(D) and {ϕi, . . . , ϕμ} an arbitrary basis in KerLr(D).
Zc(f) denotes the number of zeros of f in a period, counting multiplicity, and Sc(f) is

the cyclic sign change count for a piecewise continuous, 2π-periodic function f [2]. Following,
(x(·), λ) is called the spectral pair of (1.7) if the function x(·) is normalized by the condition
‖Lr(D)x(·)‖p = 1. The set of all spectral pairs is denoted by SP(p, p,Lr). Define the spectral
classes SP2k(p, p,Lr) as

SP2k(p, p,Lr) =
{(

x(·), λ) ∈ SP
(

p, p,Lr) : Sc

(

x(·)) = 2k
}

. (2.2)

Let x̂2n(·) denotes the solution of the extremal problem as follows:

∫π/2n

0
|X(t)|pdt −→ sup,

∫π/2n

0
|Lr(D)X(t)|pdt ≤ 1,

x(k)
((

π

2n
+ (−1)k+1 π

2n

)

/2
)

= 0, k = 0, 1, . . . , n − 1,

(2.3)

and the function x2n(·) is such that x2n(t) = −x2n(t − π/n) for all t ∈ T:

x2n(t) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x̂2n(t), 0 ≤ t ≤ π

2n
,

x̂2n

(

π

n
− t

)

,
π

2n
< t ≤ π

n
.

(2.4)

Let us extend periodically the function x2n(t) onto R, and normalize the obtained function as
it is required in the definition of spectral pairs. From what has been done above, we get a
function x2n(t) belongs to SP2n(p, p,Lr). Furthermore, by [5], which any other function from
SP2n(p, p,Lr) differs from x2n(·) only in the sign and in a shift of its argument, and there exists a
numberN ∈ N

+ such that for every n ≥ N, all zeros of x2n(·) are simple, equidistant with a step
equal to π/n, and Sc(x2n) = Sc(Lr(D)x2n) = 2n. We denote the set of zeros (= sign variations)
of Lr(D)x2n on the period by Q2n = (τ1, . . . , τ2n). Let

Gr(t) =
1
2π

∑

k/∈Λ

eikt

pr(ik)
, (2.5)

where Λ = {k ∈ Z : pr(ik) = 0} and i is the imaginary unit.
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The 2π-periodic G-splines are defined as elements of the linear space

S
(

Q2n, Gr

)

= span
{

ϕ1(t), . . . , ϕμ(t), Gr

(

t − τ1
)

, . . . , Gr

(

t − τ2n
)}

. (2.6)

As was proved in [6], if n ≥ N, then dim S(Q2n, Gr) = 2n.
We assume (shifting x(·) if necessary) that Lr(D)x̂2n(·) is positive on (−π,π + π/n). Let

L2n := L2n(r, p, p) denote the space of functions of the form

x(t) =
μ
∑

j=1

ajϕj(t) +
1
π

∫

T

Gr(t − τ)

(

2n
∑

i=1

biyi(τ)

)

dτ, (2.7)

where a1, . . . , aμ, b1, . . . , b2n ∈ R,
∑2n

i=1bi = 0, yi(·) = χi(·)Lr(D)x2n(· − (i − 1)π/n), and χi(·)
is the characteristic function of the interval Δi := [−π + (i − 1)π/n,−π + iπ/n], 1 ≤ i ≤ 2n.
Obviously, dim L2n = 2n and L2n ⊂ Wp(Lr).

Let us now consider exact estimate of Bernstein n-width. This was introduced in [1]. We
reformulate the definition for a linear operator P mapping X to Y .

Definition 2.1 (see [2, page 149]). Let P ∈ L(X,Y ). Then the Bernstein n-width is defined by

bn(P(X), Y ) = sup
Xn+1

inf
Px∈Xn+1
Px /= 0

‖Px‖Y
‖x‖X , (2.8)

where Xn+1 is any subspace of span {Px : x ∈ X} of dimension ≥ n + 1.

2.1. Lower estimate of Bernstein n-width

Consider the extremal problem

‖x(·)‖pp
‖Lr(D)x(·)‖pp

−→ inf, x(·) ∈ L2n, (2.9)

and denote the value of this problem by αp. Let us show that α ≥ λn, this will imply the desired
lower bound for b2n−1. Let x(·) ∈ L2n, then

‖Lr(D)x(·)‖pp =
2n
∑

i=1

∫

Δi

∣

∣

∣

∣

∣

2n
∑

i=1

biyi(t)

∣

∣

∣

∣

∣

p

dt =
2n
∑

i=1

∫

Δi

|bi|p|Lr(D)xn(t)|pdt = 1
2n

2n
∑

i=1

|bi|p, (2.10)

and by setting

zi(·) := 1
π

∫

T

Gr(· − τ)yi(τ)dτ, i = 1, 2, . . . , 2n, (2.11)

we reduce problem (2.9) to the form

‖∑μ

j=1ajϕj(·) +
∑2n

i=1bizi(·)‖
p
p

(1/2n)
∑2n

i=1|bi|p
−→ inf, a1, . . . , aμ, b1, . . . , b2n ∈ R. (2.12)
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This is a smooth finite-dimensional problem. It has a solution (a1, . . . aμ, b1, . . . , b2n), and,
moreover, (b1, . . . , b2n)/= 0. According to the Lagrange multiplier rule, there exists a η ∈ R

such that the derivatives of the function (a1, . . . , aμ, b1, . . . , b2n)→ g(a1, . . . , aμ, b1, . . . , b2n) +
η(b1 + b2 + · · · + b2n) (where g(·) is the function being minimized in(2.12)) with respect to
a1, . . . , aμ, b1, . . . , b2n at the point (a1, . . . aμ, b1, . . . , b2n) are equal to zero. This leads to the
relations

∫

T

ϕj(t)
(

Qpx
)

(t)dt = 0, j = 1, . . . , μ, (2.13)

∫

T

zi(t)
(

Qpx
)

(t)dt =
αp

2n
Qpbi, i = 1, . . . , 2n, (2.14)

where x(·) = ∑μ

j=1ajϕj(t) +
∑2n

i=1bizi(·).
We remark that g(a1, . . . , aμ, b1, . . . , b2n) = g(da1, . . . , daμ, db1, . . . , db2n) for any d /= 0,

and hence the vector (d a1, . . . , d aμ, d b1, . . . , d b2n) is also a solution of (2.12). Thus, it can be
assumed that |bi| ≤ 1, i = 1, . . . , 2n, and bi0 = (−1)i0+1 for some i0, 1 ≤ i0 ≤ 2n.

Let

x̃2n(t) =
μ
∑

j=1

a	
jϕj(t) +

2n
∑

i=1

(−1)i+1zi(t), (2.15)

and x̃2n satisfies (1.7). Let a	 = (a	
1, . . . , a

	
2n) and b	 = (1,−1, . . . , 1,−1) ∈ R

2n. It follows from the
definitions of x̃2n(·) and x(·) that

Lr(D)x̃2n(t) − Lr(D)x(t) =
2n
∑

i=1
i /= i0

(

(−1)i+1 − bi
)

χi(t)Lr(D)x2n

(

t − (i − 1)π
n

)

, (2.16)

and hence Sc(Lr(D)x̃2n(·),Lr(D)x(·)) has at most 2n−2 sign changes. Then, by Rolle’s theorem,
Sc(Lr(D)x̃2n(·)−Lr(D)x(·)) ≤ 2n− 2. For any a, b ∈ R, sign(a+ b) = sign(Qpa+Qpb), therefore

Sc

(

(Qpx̃2n
)

(·) − (

Qpx)(·)
) ≤ 2n − 2. (2.17)

In addition, since x̃2n is 2π-periodic solution of the linear differential equation
Lr(D)y(t) = (−1)rλ−p(Qpx)(t), and ϕj(t) ∈ KerLr(D). Then, by [7, page 94], we have

∫

T

ϕj(t)
(

Qpx̃
)

(t)dt = 0, j = 1, . . . , μ. (2.18)

If we now multiply both sides of (2.15) by (Qpx̃2n)(t), and integrate over the interval
Δi, 1 ≤ i ≤ 2n, we get

∫

Δi

zi(t)
(

Qpx̃2n
)

(t)dt = (−1)i+1
∫

Δi

|x̃2n(t)|pdt = (−1)i+1λ
p

2n

2n
. (2.19)

Due to
∫

T
zi(t)

(

Qpx̃2n
)

(t)dt =
∫

Δi
zi(t)

(

Qpx̃2n
)

(t)dt. Therefore, we have

∫

T

zi(t)
(

Qpx̃2n
)

(t)dt = (−1)i+1λ
p

2n

2n
, i = 1, . . . , 2n. (2.20)
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Changing the order of integration and using (2.14) and (2.20), we get that

∫

Δi

Lr(D)x2n

(

t − (i − 1)π
n

)(

1
π

∫

T

Gr(t − τ)
((

Qpx̃2n
)

(τ) − (

Qpx
)

(τ
))

dτ

)

dt

=
∫

T

zi(t)
((

Qpx̃2n
)

(t) − (

Qpx)(t)
)

dt =
1
2n

(

(−1)i+1λp2n − αpQpbi
)

.

(2.21)

Denote by f(·) the factor multiply Lr(D)x2n(t − (i − 1)π/n) in the integral in the left-hand side
of this equality. If we assume that λ2n > α, then we arrive at the relations

sign
∫

Δi

Lr(D)x2n

(

t − (i − 1)π
n

)

f(·)dt = (−1)i+1, i = 1, . . . , 2n. (2.22)

Suppose for definiteness that Lr(D)x2n(t − (i − 1)π/n) > 0 interior to Δi, i = 1, . . . , 2n.
Then it follows from (2.22) that there are points ti ∈ Δi such that signf(ti) = (−1)i+1, i =
1, . . . , 2n, that is, Sc(f(·)) ≥ 2n − 1. But f(·) is periodic, and hence Sc(f(·)) ≥ 2n, therefore,
Sc(Lr(D)f(·)) ≥ 2n. Further, Lr(D)f(·) =

(

Qpx̃2n
)

(t) − (Qpx)(t), that is, Sc((Qpx̃2n)(t) −
(

Qpx)(t)
) ≥ 2n.

We have arrived at a contradiction to (2.17), and hence λ2n ≤ α. Thus b2n−1(Wp(Lr);Lp) ≥
λ2n.

2.2. Upper estimate of Bernstein n-width

Assume the contrary: b2n−1(Wp(Lr);Lp) > λ2n, (1 < p < ∞). Then, by definition, there exists a
linearly independent system of 2n functions L2n := span

{

f1, . . . , f2n
} ⊂ Lp and number γ > λ2n

such that L2n ∩ γS(Lp) ⊆ Lr(D), or equivalently,

min
x(·)∈L2n

‖x(·)‖p
‖Lr(D)x(·)‖p ≥ γ > λ2n. (2.23)

Let us assign a vector c ∈ R
2n to each function x(·) ∈ L2n by the following rule:

x(·) −→ c = (c1, . . . , c2n) ∈ R
2n, where x(·) =

2n
∑

j=1

cjfj(·). (2.24)

Then (2.23) acquires the form

min
c∈R2n\{0}

‖∑2n
j=1cjfj(·)‖p

‖∑2n
j=1cjLr(D)fj(·)‖p

≥ γ > λ2n. (2.25)

Let c0 = 0. Consider the sphere S2n−1 in the space R2n with radius 2π , that is,

S2n−1 :=

{

c : c = (c1, . . . , c2n) ∈ R
2n, ‖c‖ =

2n
∑

j=1

|cj | = 2π

}

. (2.26)
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To every vector c ∈ R
2n we assign function u(t, c) defined by

u(t, c) =

⎧

⎨

⎩

(2π)−1/psign cj , for t ∈ (

tk−1, tk
)

, k = 1, . . . , 2n,

0, for t = tk, k = 1, . . . , 2n − 1,
(2.27)

where t0 = 0, tk =
∑k

i=1|ci|, k = 1, . . . , 2n, and the extended 2π-periodically onto R.
An analog of the Buslaev iteration process [8] is constructed in the following way: the

function x(t, c) is found as a periodic solution of the linear differential equation Lr(D)x0 =
u, then the periodic functions {xk(t, c)}k∈N+ are successively determined from the differential
equations

Lr(D)xk(t) =
(

Qp′yk

)

(t),

Lr(D)yk(t) = (−1)rμ−p
k−1

(

Qp′xk−1
)

(t),
(2.28)

where p′ = p/(p − 1), and the constants {μk : k = 0, . . . , } are uniquely determined by the
conditions

‖Lr(D)xk‖p = 1,
(

Qpxk

)

(t) ⊥ KerLr(D),
(

Qp′yk

)

(t) ⊥ KerLr(D). (2.29)

By analogy with the reasoning in [8], we can prove the following assertions:

(i) the iteration procedure (2.28)-(2.29) is well de fined, the sequences {μk}k∈N is
monotone nondecreasing and converge to an eigenvalue λ(c) > 0 of the problem (1.7),

(ii) the sequence {xk(·, c)}k∈N has a subsequence that is convergent to an eigenfunction
x(·, c) of the problem (1.7), with λ(c) = ‖x(·, c)‖p,

(iii) for any k ∈ N there exists a ĉ ∈ S2n−1 such that xk(·, ĉ) has at least 2n zeros
(Zc(xk(·, ĉ)) ≥ 2n) on T,

(iv) in the set of spectral pairs (λ(c), x(·, c)), there exists a pair (λ(ĉ), x(·, ĉ)) such that
Sc(x(·, ĉ) = 2N ≥ 2n.

Items (i) and (ii) can be proved in the same way as [8, Sections 6 and 10]. Item (iii)
follows from the Borsuk theorem [9], which states that there exists a ĉ ∈ S2n−1 such that
Zc(xk(·, ĉ)) ≥ 2n−1, but since the function xk(·, ĉ) is periodic, we actually haveZc(xk(·, ĉ)) ≥ 2n.
Finally, item (iv), by (ii) and (iii), which Zc(x(·, ĉ)) ≥ 2n. In view of x(·, ĉ) zeros are simple,
therefore, Sc(x(·, ĉ)) ≥ 2n.

Since spectral pairs of (1.7) are unique and the Kolmogorov width d2n(Wp(Lr);Lq) =
λ2n(p, q,Lr) for p ≥ q [5], when n ≥ N, it follows that

λ(ĉ) = λ2N = d2N
(

Wp

(Lr

)

;Lp) ≤ d2n
(

Wp

(Lr

)

;Lp) = λ2n. (2.30)

Therefore, by virtue of items (i), (ii), and (2.30), we obtain

min
c∈R2n\{0}

‖∑2n
j=1cjfj(·)‖p

‖∑2n
j=1cjLr(D)fj(·)‖p

≤
‖∑2n

j=1ĉjfj(·)‖p
‖∑2n

j=1ĉjLr(D)fj(·)‖p
≤ ‖xk(·, ĉ)‖p
‖Lr(D)xk(·, ĉ)‖p ≤ λ(ĉ) = λ2N ≤ λ2n,

(2.31)

which contradicts (2.25). Hence b2n−1(Wp(Lr);Lp) ≤ λ2n. Thus, the upper bound is proved.
This completes the proof of the theorem.
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