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1. Introduction

In 1940, Ulam [1] raised the following question. Under what conditions does there exist an
additive mapping near an approximately additive mapping?
In 1941, Hyers [2] proved that if f : V—X is a mapping satisfying

|f(x+y)-fx)- f(y)| <6 (1.1)

for all x,y € V, where V and X are Banach spaces and 6 is a given positive number, then there
exists a unique additive mapping T : V—X such that

| f(x) =T <6 (1.2)

for all x € V. In 1978, Rassias [3] gave a significant generalization of Hyers’ result. Rassias [4]
during the 27th International Symposium on Functional Equations, that took place in Bielsko-
Biala, Poland, in 1990, asked the question whether such a theorem can also be proved for a
more general setting. Gadja [5] following Rassias’s approach [3] gave an affirmative solution
to the question. Recently, Gdvruta [6] obtained a further generalization of Rassias’ theorem,
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the so-called generalized Hyers-Ulam-Rassias stability (see also [4, 7-10]). Jun et al. [11-13]
also obtained the Hyers-Ulam-Rassias stability of the Pexider equation of f(x +y) = g(x) +
h(y). Quadratic functional equation was used to characterize inner product spaces [14]. Several
other functional equations were also to characterize inner product spaces. A square norm on
an inner product space satisfies the important parallelogram equality

I+ yI? + lle = ylI? = 2(llxl? + Ny 11%). (1.3)

The functional equation

fx+y)+ fx-y)=2f(x) +2f(y) (1.4)

is related to a symmetric biadditive function [14]. It is natural that each equation is called a
quadratic functional equation. A stability problem for the quadratic functional equation was
proved by Skof [15] for a function f : V—X, where V is a normed space and X a Banach space.
Cholewa [16] noticed that the theorem of Skof is still true if the relevant domain V is replaced
by an Abelian group. Czerwik [17] proved the Hyers-Ulam-Rassias stability of the quadratic
functional equation. Jun and Lee [13, 18-22] proved the Hyers-Ulam-Rassias stability of the
Pexiderized quadratic equation

fx+y)+g(x-y) =2h(x) +2k(y). (1.5)

Now, we introduce the following new Pexider type functional equation:

filx+y+2) + folx -y + filz %) - filx—y-2) - f(x+y)  folx +2) =0, (L)
which is mixed of a quadratic and an additive functional equations. In this paper, we establish
the generalized Hyers-Ulam-Rassias stability for (1.6) on the punctured domain V' \ {0} and
obtain its general solution from the stability results. Throughout this paper, let V and X be a
normed space and a Banach space, respectively. For convenience, we employ the operators as
follows: for a given function ¢ : V\ {0} xV\{0}xV\{0}—[0, ), let ¢’, ¢, ¢, : (V\ {0} )*—[0, o0),
M, M',M,, M, : V\ {0}—]0, o0) be functions defined by
1
¢ (x,y,z2) = 5 [p(x,y,2) +p(-x,y,2)],
1
ge(x,y,2) = 3[0(xy,2) + 9(-x,~y,-2)],

) 1
Pe(x,y,2) = 7 lo(x,y,2) +p(=x,y,2) + p(=x, -y, -2) + ¢(x,~y,~2)],

/x 3x x X X X X
M(x) :=9"<§'7"§>+2‘P (?5"5)*9"(5 > (1.7)
) /X x 3x X XX X X
M'(x) = ¢ <§/ E'_?> +2¢ (E’E'_§> +@ (E/EI
/x 3x x ) x X x
M) ""’<E’7’_§>+2"’<2 2’ 2) "’<2’2’
, x
M) =0 (3,

forall x,y,z €V \ {0}.
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2. Generalized Hyers-Ulam-Rassias stability
We need the following lemma to prove our main results.

Lemma 2.1. Let a be a positive real number. Let @ : V' \ {0}—[0, co) be a map such that

D(x) := i a11+1(I)(2’x) < YxeV\ {0}

=0

—

or
(x) : Zalq)<211><oo VxeV\ {0}

Suppose that the function f : V—X satisfies the inequality

2x)

< D(x)

T a

[re0-1

forall x € V' \ {0} and f(0) = 0. Then, there exists exactly one function F : V—X satisfying
|f(x) - F(x)|| <®(x) YxeV\{0}, aF(x)=F2x) VxeV.
Proof. First we assume that @ satisfies

(D(le)

0'e]
Z al+1

1=0

forall x € V'\ {0}. Replacing x by 2"x and dividing it by a” in (2.3), we have
“ f (2"x> _f@"x)

an+1

_0@")
an+1

foralln € Nand x € V'\ {0}. Induction argument implies that

on n-1 d(28
Jro0-£82] < 5,220
s5=0
forallm e Nand x € V' \ {0}. Hence
f@x) f@"x)| & P(2°x)
“ at  am < ;1 st

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

for all positive integers m > n and x € V \ {0}. This shows that {f(2"x)/a"} is a Cauchy
sequence for x € V'\ {0} and thus converges. Therefore, we can define F : V—X such that

271
li ¥ if x#0,

F(x) = { noe
0, if x =0

(2.9)
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for all x € V. From (2.7) and the definition of F, we obtain
|f(x) - F(x)| < D(x), aF(x) = F(2x) (2.10)

forall x € V'\ {0}. Now, let F' : V' \ {0}—X be another mapping satisfying the above inequality
and equality. Then, it follows that

2m F(2™m
IFe - P < |2 (amx>— (amx)

' f(2:x) ) P’(ZZx)

+ '

5 (2.11)
PCICE)
am

which tends to zero by the definition of @ as m—oo for all x € V. So we can conclude that
F(x) = F'(x) for all x € V. This proves the uniqueness of F.
Next we assume that @ satisfies

D al®<%> <o (2.12)
=0

"+1in (2.3), we have

for all x € V' \ {0}. Replacing x by 27"1x and multiplying it by a
” anf(z—nx> _ an+1f(2—n—1x> ” < anq)(z—n—lx) (213)

foralln € Nand x € V'\ {0}. Induction argument implies that

n-1
|f(x)-a"f27x)|| < D, a*®(2 ") (2.14)
s=0

foralln e Nand x € V' \ {0}. Hence
m-1
|a"f(27"x) —a” f(27"x)|| < D, a*®(27 'x) (2.15)

for all positive integers m > n and x € V \ {0}. This shows that {a"f(27"x)} is a Cauchy
sequence for x € V' \ {0} and thus converges. Therefore we can define F : V—X such that

o0 (2.16)
0 if x=0

lim a"f(27"x) if x#0,
. { f@m)
for all x € V. From (2.14) and the definition of F, we obtain
If(x) - F(x)| <®(x),  aF(x)=F(2x) (217)

forall x € V'\ {0}.
The uniqueness of F is proved similarly as the first case. This completes the proof. =~ [

We establish the stability results for the even functions in Theorems 2.2 and 2.3.



Kil-Woung Jun et al. 5

Theorem 2.2. Let ¢ : V '\ {0} x V'\ {0} x V' \ {0}—[0, o0) be a function such that

~ 1
P(x,y,z) = Z 4l+1(p(21x, 2ly, 212) < o0 (a)

=0

—

holds for all x,y,z € V' \ {0}. If the even functions f1, fa, f3, fa, f5, fo : V—X satisfy the inequality

|filx+y+2)+ falx—y) + falx —2) — falx —y —2) - fs(x +y) — fe(x + 2)|| < p(x, Y, 2)
(2.18)

forall x,y,z € V \ {0}, then there exists exactly one quadratic function Q : V—X satisfying the
inequalities

I, /x3 (XX _
||f1<x)—f1<o>—Q<x>IlSz[""<2’2x' x>+(p<2,2, xi] (2.19)
2

+ M(Zx) + M(x) +¢ < g
120 - £20) - Qe < M) + ¢/ (.55 ) +9/(
120 - £:0 - Q@ < M+ (3.5 ) + o (3. 57 ).

1% 3 ,
Ifs0) - £50 - @l < 5 |¢ (5,55 -7) + ¢/ (5.5, -

+ %M(Zx) + M(x) + ‘P(Z‘C' g,—g) + (p'(%, %, ;),
I£50) - £50) - Qo < M) + ¢/ (5,755 ) +o/(

3

I5s) - £s0) - Q@ < M@ + 9/ (5.5,-5) + 0 (£5.5)

forall x € V' \ {0}, where

M(x) : i 1 M(2'x), M’ (x) =i

2, g M'(2'x) (2.21)

forall x € V '\ {0}. Moreover, the function Q is given by

Q(x) = lim

n—oo

# (2.22)

forall x € Vand for k =1,2,3,4,5,6.
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Proof. Replace x by —x in (2.18) to obtain

|filx—y—2)+ falx +y) + falx + 2) - falx +y + 2) = fs(x - y) - fo(x - 2)|| <p(-x,y,2)
(2.23)

forall x,y,z € V \ {0}. From (2.18) and (2.23), we get

|(fr+ fa)(x+y+2)+ (fat f5)(x—y) + (f3 + fo) (x — 2)
(it fo)(x—y-2) = (fa+ f5)(x+y) = (fs+ fo) (x +2)|| S p(-x,,2) + p(x,y, 2)

(2.24)
forall x,y,z € V' \ {0}. Let the functions F, G, H : V—X be defined by
F(x) = [fl(x) + fa(x) = f1(0) = f1(0)],
G(x) = [ fa(x) + f5(x) = f2(0) = £5(0)], (2.25)

H(x) = [fS(x)+f6(x) f3(0) = f6(0)]
for all x,y,z € V. Then, it follows from (2.24) that

|F(x+y+2z)+Gx-y)+H(x-z)-F(x-y-2z)-G(x+y) -H(x+z)|| <¢'(x,y,2)
(2.26)

forall x,y,z € V '\ {0}, where ¢'(x,y,z) = (1/2)[p(x,y,z) + ¢(-x,y,z)]. Replace y and z by x
and —x in (2.26) to get

|H(2x) - G2x)|| < ¢'(x, x,—x) (2.27)

forall x e V' \ {0}.
Replacing y, z by x in (2.26) and using (2.27), we get

|F(3x) — F(x) —2G(2x)|| < ¢'(x,x,x) + ¢'(x, x, —x) (2.28)
for all x € V'\ {0}. Replacing x, y, z by x, 3x, —x in (2.26) and using (2.27), one obtains
|F(3x) — F(x) — G(4x) + 2G(2x)|| < ¢'(x,3x, —x) + ¢'(x, x, —x) (2.29)
forall x € V'\ {0}. From (2.28) and the above inequality, we have
|G(4x) - 4G (2x) || < ¢'(x, 3x, —x) + 2¢'(x, x, —x) + ¢'(x, x, x) (2.30)
forall x € V'\ {0}. Replacing x by x/2 and dividing it by 4 in the above inequality, we get

G(2x) < M(x)

< (2.31)

-
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forall x € V'\ {0}. By Lemma 2.1, there exists lim, .. (G(2"x) /4") for all x € V satisfying

< M(x) (2.32)

. G(2™"x)
- m 2

forall x € V' \ {0}, where

M(x) : g %M(le) (2.33)

By the similar method in obtaining inequality (2.32), we get

” H2"x)||  —,
H(x) - %gn o < M'(x) (2.34)
forall x € V' \ {0}, where

M (x) = 411+ -M'(2'x). (2.35)

1=0
From (2.27), we have

G(2"x) ~lim H(2"x)

rlll—]?; 4 n—oo 47 (236)
for all x € V. From (2.36), we can define a map Q : V—X by
G(2"
0x) = lim &4 4nx) (2.37)
for all x € V. It follows from (2.26), (2.32), and (2.37) that
1 3 x 1
| F(x) - Qx)|| < E”F(x) +G(x) + H<§x> -G(2x) - H<§> + E”G(x) - Q)|
1 3 1
+ |[F(x) + G(x) + H<§x> - H<§x> + §||G(2x) - Q2x)|| (2.38)

g%(p’<32c 2x x>+ M(2x)+2(p<2 5 >+M(x)

for all x € V'\ {0}. Replacing x by 2"x, dividing it by 4" in the above inequality and taking the
limit in the resulted inequality as n—oo, we have

li F(Z" )

n—

=Q(x) (2.39)
for all x € V. Using (2.26), (2.36), (2.37), and (2.39), we obtain

Qx+y+2)+Qx-y) +Q(z-x)-Qx -y -2)-Qx+y) -Qx+2) =0 (2.40)
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forall x,y,z € V'\ {0}. Replacing x and z by x/2 in (2.40) and using the fact Q(0) = 0, we have
x x
Qe+ +Q(3-v) - -Q(3+v)-Qw =0 (41)
forall x,y € V. Replace x and z by x/2 and —x/2 in (2.40) to have

x x
aw+a(3-v)+ew-Qu-n-(3+v) -0 42)
for all x, y € V. Subtracting (2.41) from (2.42) and using the evenness of Q, we lead to

Qx+y) +Qx-y) -2Q(x) -2Q(y) =0, (243)

forallx,y e V.
On the other hand, it follows from (2.18) and (2.23) that

|(fi=fa)(x+y+2)+ (fa=f5)(x—y) + (f5— fo) (x — 2)

+H(fi-fo)(x—y-2)+ (fa-fs)(x+y) + (fs = fo) (—x +2)|| < p(=x,y,2) + 9(x, Y, 2)
(2.44)

forall x,y,z € V' \ {0}. Let the functions F’, G, H' : V—X be defined by

F@=3A@-A@]  C@=3[h@-£@]  HE@ =50~ fx)] 245)

forallx,y,ze V.
From (2.44), we have

Fx+y+z)+G(x-y)+H(x-z)+F(x-y-2z)+G(x+vy)+ H (x+2)|| <¢'(x,v,2)
Y y Y y Xy

(2.46)
forall x,y,z € V \ {0}. Replace y, z by x in (2.46) to get
|F'(3x) + F'(x) + G'(2x) + G'(0) + H'(2x) + H'(0)| < ¢'(x, x, x) (2.47)
forall x,y,z € V \ {0}. Replace x, y, z by x, 3x, —x in (2.46) to get
|F'(3x) + F'(x) + G'(2x) + G'(4x) + H'(2x) + H'(0) || < ¢'(x, 3x, —x) (2.48)
forall x,y,z € V \ {0}. From (2.47) and the above inequality, we have
|G (4x) = G'(0)|| < ¢'(x, 3x, —x) + ¢’ (x, x, x) (2.49)

forall x e V'\ {0}.
Replace x, y, z by x, x, =3x in (2.46) to get

|| F'(3x) + F'(x) + G'(2x) + G'(0) + H'(2x) + H' (4x) || < ¢/ (x, x, ~3x) (2.50)
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forall x,y,z € V '\ {0}. From (2.47) and the above inequality, we get
|H'(4x) - H'(0) || < ¢'(x, x, -3x) + ¢'(x, x, x) (2.51)
for all x € V'\ {0}. It follows from (2.46) that
|F'(4x) — F'(0)|| < ||F'(0) + G'(0) + H'(3x) + F'(2x) + G'(2x) + H'(x) ||
+ || F'(4x) + G'(0) + H'(x) + F'(2x) + G'(2x) + H'(3x) || (2.52)
< @' (x,x,-2x) + ¢'(x, x,2x)
for all x € V'\ {0}. By the definitions of F, G, H, F', G/, H', we have
f1(x) = f1(0) - Q(x) = F(x) + F'(x) - F'(0) - Q(x),
fa(x) = £2(0) - Q(x) = G(x) + G'(x) - F'(0) - Q(x),
f3(x) = f3(0) - Q(x) = H(x) + H'(x) - H'(0) - Q(x),
fa(x) = £4(0) - Q(x) = F(x) - F'(x) + F'(0) - Q(x),
f5(x) = f5(0) - Q(x) = G(x) - G'(x) + G'(0) - Q(x),

fo(x) = f6(0) = Q(x) = H(x) - H'(x) + H'(0) - Q(x)
forall x € V' \ {0}. Hence by using (2.32), (2.34), (2.36), (2.37), (2.38), (2.49), (2.51), and (2.52),
the inequalities in (2.19) can be shown. The uniqueness of Q follows from Lemma 2.1. Ol

(2.53)

Theorem 2.3. Let ¢ : V' \ {0} x V' \ {0} x V'\ {0}—[0, o) be a function such that

~ s x Yy oz :
p(x,y,2) = 41(P< ; _+_+> < (a)
g{; 21417 2l+17 Dl+1

holds for all x,y,z € V \ {0}. If the even functions f1, f2, f3, fa, f5, fo : V—X satisfy inequality
(2.18) for all x,y,z € V \ {0}, then there exists exactly one quadratic function Q : V—X satisfying
inequalities (2.19) for all x € V' \ {0}, where

AL — < 1 X A 1A xl
M(x) := g(; 4 M<2l+1 ) M (x) := Z 4'M <2z+1 > (2.54)
Moreover, the function Q is given by
Q(x) = lim 4 (fi(27"x) - fi(0)) (2.55)

forall x € Vand for k =1,2,3,4,5,6.

Proof. The proof is similar to that of Theorem 2.2. O

Applying Theorems 2.2 and 2.3, we get the following corollary in the sense of Rassias
inequality.
Corollary 2.4. Let p#2 and € > 0. If the even functions f; : V—=X,i=1,2,...,6, satisfy

[filx+y+2)+ falx —y) + falx —2) - falx —y - 2) = fs(x +y) = felx + 2) |
< e(llxP + [yl +[1zI1)

forall x,y,z € V \ {0}.

(2.56)
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Then there exist exactly one quadmtic function Q : V—X satisfying

F+11)(2P+2) 7+3° 4
If1(x) = £1(0) - Q)| < _1 ( 22P|2)p<_ Y ). e +4—,,]-s-||x||*’,

(37 +11)(2P +2) 7+37 4 p
TR +4_p].g.l|x||,
[ 3P +11 3 +5

forall x € V'\ {0} and j = 2,3,5,6. Moreover, the function Q is given by

211
Q(x) = nwfk( - fp<2

lim 4°(f,,(27"x) - £u(0) ifp>2
forallx e V\ {0}and k =1,2,3,4,5,6

Lfax) - £200) - Q)| < [1+

&|lx]l”

Proof. Apply Theorem 2.2 for p < 2 and Theorem 2.3 for p > 2.
We establish Theorems 2.5 and 2.6 for the odd functions.

Theorem 2.5. Let ¢ : V' \ {0} x V' \ {0} x V'\ {0}—[0, o) be a function such that

e}

. 1
¢(x,y,z) = Z ﬁtp(le,?y,le) <
holds for all x,y,z € V' \ {0}. If the odd functlons fi, f2, f3, far f5, fo : V=X satisfy

(2.57)

(2.58)

(b)

|filx+y+2)+ falx—y) + fas(x —2) - fulx —y—z) — fs(x +y) - fo(x + 2)|| < p(x, ¥y, 2)

(2.59)

forall x,y,z € V \ {0}, then there exist exactly three additive functions A, A1, Ay : V—X satisfying

1A - 4@ + A + Al <9/ (3575 ) w9 (353)

|
N\IH
|m
=
~—
+
<)
N
NI R
I\{IR
N[ &R
~—

26 - AG) - A2 ()] < W' + ¢'(
X
"2

=R N
R
N &R
N

+
=
VRS
N[ R
~—
+
<)
VRS
I\{IR
I\-‘:IR
=
~—
+
/‘\

Nllk
|
Nilk
&
N

| f5(x) = A(x) + A1 ()| < M(x) + ¢

S
N R
N[ R

IH
w
“{|><
|
N[ R
~
+
<)
N )

N—

| fo(x) = A(x) + Ax(x)|| < M'(x) + ¢ (

N{lk
ES
N———
+
<)
VS

SE
NI R
N1 R
N———

(2.60)

(2.61)
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forall x € V' \ {0}, where

M(x) = % T M%),  M'(x):= % M (2'x),

¢ (x,y,z Z oL ¢ (2'x, 2ly, 2lz)
1=0
Moreover, the functions A, Ay, Ay are given by

hi@'x) + fu(2"x)

2n+1

Ax) = lim

Ai(x) = 111 & (an>2n+{5 <2nx> (2.63)

As(x) = hm f3 (2”x)2n+1f o(2')

forallx € V.

Proof. Replace x by —x in (2.59) to obtain

| -filx—y-2)- falx+y) - falx +2) + fulx + y + 2) + fs(x —y) + fo(x — 2)|| < @(-x,y, 2)
(2.64)

forall x,y,z € V '\ {0}. Let the functions F,G, H : V—X be defined by
F@ =3[0+ @], G0 =3[h)+ ], HE@ = [0+ fo)] (265
forall x,y,z € V. From (2.59) and (2.64), we get

|F(x+y+z)+Gx-y)+H(x-z)-F(x-y-2z)-G(x+y) -H(x+z)|| <¢'(x,y,2)

(2.66)
forall x,y,z € V' \ {0}. From (2.66), we have
| H@2x) - G@x)|| < ¢/ (x, x,-x), (2.67)
for all x € V' \ {0}. It follows from (2.66) and (2.67) that
|G(4x) —2G(2x) | = || - F(3x) - F(x) + G(2x) + G(4x) - H2x) |
+|[2H(2x) - 2G2x) || + |[F(3x) + F(x) - G2x) - H2x)||  (2.68)

<¢'(x,x,x) +2¢'(x, x, —x) + ¢'(x,3x, —x)
for all x € V'\ {0}. Replacing x by x/2 and dividing it by 2 in the above inequality, we obtain

G(2x) < M(x)

-2

”G( x) — (2.69)
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forall x € V' \ {0}. Applying Lemma 2.1, we obtain

G(2" —
”G(x) _ lim (an> H < M(x) (2.70)
for all x € V'\ {0}. Similarly we have
. H(2"x) —,
”H(x) — lim o < M'(x) (2.71)

forall x € V'\ {0}. From (2.67), we get

Gex) . H(x)

2.72
n—oo 2 n—oo on ( )
for all x € V and we can define a function A : V—X by
. G(2"x) . H(2"x)
AR = I = @73)
for all x € V'\ {0}. It follows from (2.66) and (2.70) that
X X X 3x
IFe0 -l =[re -1 (3) +#(3) -(3) - # ()]
3x X X X x x
| Ce) - (3)-0(G) (D) [roG) -24(B)| e

X X X X X X —~/ X
< / - = ] - - = 2 -
—"’<4’4’ 2) +"’<4’4’2> " M(z)

forall x € V'\ {0}. Replacing x by 2"x, dividing it by 2" in the above inequality and taking the
limit in the resulted inequality as n—oo, we obtain

. F(2"x)
lim = A(x) (2.75)

n—oo on -

forall x € V' \ {0}. From (2.73) and (2.75), we have
Ax+y+z)+Alx-y)+Alx-z)-Alx-y-2z)-Alx+y) - A(x+2) =0 (2.76)
forall x,y,z € V \ {0}. Replace y and z by 2y and x in (2.76) to obtain
AQx+2y) + A(x -2y) + AQQy) - A(x +2y) - A(2x) =0 (2.77)
forall x,y,z € V'\ {0}. Replace y and z by -2y and x in (2.76) to get

AQx -2y) + A(x +2y) - AQQy) - A(x - 2y) - AQ2x) = 0 (2.78)
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for all x,y € V '\ {0}. Since A(0) = 0 and A(2x) = 2A(x), using the above two equalities, we
have

Alx-y)+Alx+y) - A(2x) =0 (2.79)

for all x,y € V. Hence, A is an additive function.
Let the functions F',G', H' : V—X be defined by

F@=3[A0- (0], C@=3[a@- @], HE@ =3[ fo] @80)
forall x,y,z € V. From (2.59) and (2.64), we have

|Fx+y+z)+G(x-y)+H(x-z)+F(x-y-2z)+G(x+y) + H(x+2)|| < ¢'(x,y,2)

(2.81)
forall x,y,z € V' \ {0}. It follows from (2.81) that
“G’(x) - G'(sz) < %“F(%’“) - F<’2ﬁ> ~G'(x) +G'(2x) + H'(x)
+ %”F(%") —F’<§> +G'(x) + H' (%) (2.82)

<1,x3x_x +1,xxx
=2%\22772)"2%\2'2'2

forall x € V'\ {0}. Applying Lemma 2.1, we obtain an odd function A; : V—X defined by

. G(2"x)
and the inequality
x 3x x X x x
! _ <o (2 22 2 ~fX X X .
|G’ () Al(x)”_‘/’<2/ 5 2>+<p<2,2,2> (2.84)
holds for all x € V'\ {0}. Similarly we have an odd function A, : V—X defined by
. H'(2"x)
for all x € V and the inequality
L /x x 3x /X x X
I - a0l <9 (555 ) +7(5.5/3) (286)

forall x € V'\ {0}. Replace x, y, z by x, x, —x in (2.81) to get

|2F'(x) + G'(2x) + H'2x) || < ¢'(x, x, —x) (2.87)
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for all x € V'\ {0}. Replacing x by 2"'x and dividing it by 2" in the above inequality, we obtain

2F' (2" 'x) + G'(2"x) + H'(2" '(2"x, 2" x, 2"
[ r o) v ) 2 o
21 2"
for all x € V'\ {0}. Taking the limit in the above inequality as n—oo, we have
. F'(2"x)
lim = —Aq(x) - Ax(x) (2.89)
for all x € V' \ {0}. It follows from (2.81) that
F'(2 1
“F’(x) _Feo| —||F’(2x) +G(0) - H'<f> ~F(x) +G'(x) + H<3—x> |
2 2 2 2
]‘ ! U ! X ! ! ! 3x
+§HF(x)+G(x)—H(§>+F(O)+G(O)+H<7>” (2.90)
SIEIRES)
- 2 (p 2/ 2/ ‘p 2/ 2/
forall x € V'\ {0}. Applying Lemma 2.1 and (2.89), we have
! X X X X
|F'(x) + A1(x) + Ao (x)|| < @ <§,§,x> +@ <§,§,—x> (2.91)
forall x € V'\ {0}. From (2.81), (2.83), (2.85), and (2.89), we have
—Aix+y+z)-Ax+y+z)+ Ai(x-y)+ A(x-z) - A1(x -y - 2) (2.92)

-A(x-y-z)+Ai(x+y)+Ax(x+2)=0
forall x,y,z € V \ {0}. Replace y and z by 2y and x in (2.92) to get

-A1(2x +2y) = Ar(2x + 2y) + A1(x - 2y) + A1(2y) + A2(2y) + Ax(2x) + A1(x +2y) =0
(2.93)

forall x,y € V'\ {0}. Replace y and z by x and 2y in (2.92) to get

-A1(2x +2y) — Ax(2x + 2y) + Ax(x - 2y) + A1(2y) + A2(2y) + A1(2x) + Ax(x +2y) =0
(2.94)

forall x,y € V' \ {0}. From the above two equalities, we get
(A1 - Az)(x - Zy) - (Al - Az)(Zx) + (A1 - A2)(x + Zy) =0 (295)
forall x,y € V'\ {0}. Since A(0) =0, we have

(Al - Az)(x — Zy) - (Al - Az)(z.X') + (A1 — Az)(x + 2y) =0 (296)
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for all x,y € V. Hence A; — A; is additive, that is,
(A1 = Az) (x +y) = (A1 - Az) (%) + (A1 - A2) (y) (2.97)
for all x,y € V. Replace z by —y in (2.92) to obtain
—A1(x) = Ar(x) + Ai1(x —y) + As(x +y) — A1(x) — Ax(x) + Ai(x +y) + Ap(x—y) =0 (2.98)
forall x,y € V'\ {0}. Since A; — A, is additive, we have

Ar(2x) = Aa(x +y) — Aa(x —y) = A1(2x) - Ai(x +y) — A1(x — ) (2.99)
forall x,y € V'\ {0}. From this and (2.98), we get
-A1(4x) +2A1(x - y) +2A1(x+y) =0 (2.100)
forall x,y € V' \ {0}. From this and A;(0) = 0, we have
Ai(x+y) = Ai(x) + A1(y) (2.101)

for all x,y € V. Since A1 and A; — A; are additive, A, is additive.
From (2.74), (2.91), and the definitions of F, F’, we have

| f1(x) = A(x) + Aq(x) + Az () || < ||F(x) = A(x)|| + || F'(x) + A1 (x) + Ax(x) ||
X X X X X X —/ X
s <4 3’ 2) iR <Z’ Z’E) +2M<§> (2.102)
L [x x /X x
~#(357)+0(37)

for all x € V'\ {0}. The rest of inequalities in (2.60) can be shown by the similar method. O

Theorem 2.6. Let ¢ : V '\ {0} x V'\ {0} x V' \ {0}—[0, o0) be a function such that

~ 1 X z !
(p(x, Y.z Z 2 <21+1 2l+1 21+1> <o (b )

holds for all x,y,z € V'\ {0}. If the odd functions fi, f2, f3, f, f5, fo : V—X satisfy inequalities (2.59)
forall x,y,z € V \ {0}, then there exist exactly three additive functions A, A1, Ay : V—X satisfying
the inequalities (2.60) for all x € V'\ {0}, where

M(x) := 221M<2M> M'(x) = ZZ’M'<21+1>
_, . (XY oz
¢'(x,y,z) = %21(‘0 <2l+1’ﬁ’ﬁ>'

Moreover, the functions A, A, A, are given by

- (1) (5) (-
o=t (5(5)-5(2) (-
- (5(5) - 5(5) (-

(2.103)

N =

< - %>> (2.104)

N =

N N S
+
P

N =

forallx € V.
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Proof. The proof is similar to that of Theorem 2.5. O

Applying Theorems 2.5 and 2.6, we get the following corollary in the sense of Rassias
inequality.

Corollary 2.7. Let p #1. If the odd functions f; : V—X,i=1,2,...,6, satisfy
Ifix+y+2) + folx—y) + filx—2) - falx—y —2) - fs(x+y) — folx +2)|

(2.105)
< e(llxlI” +llyllP + ll=IP)
forall x,y,z €V \ {0}.
Then there exist exactly three additive functions A, Ay, Ay : V—X satisfying
2 2(3P +11) +4-2P +2:47 )
/1) = f1(0) = A(x) + As(x) + A ()| < +@+ v 7] e[|,
2(37 +8)
| f2(x) = £2(0) = A(x) = Ar(x)|| < M-E-IIXII”,
37 +8
1f3(0) = f3(0) = Ax) - mxm_gm+;ﬂmm
2.106
2(3P +11) +4:2P + 247 » ( )
1 fa(x) = f(0) = Ax) = Au(x) - muW<—+@ ¥ 7] e,
37 +8
|mu>ﬁm>Aw+mxm_$@%%wmm
37 +8
[l £6(x) = f6(0) - mw+muw_§@1%¢mw
forall x € V' \ {0}. Moreover, the functions A, Ay, Ay are given by
(i S1(27%) + f3(2") ~ ﬁg 2'x) = fao(=2"%) ip<l,
A(x) =14 e 2
)16 (5 (3o
o f2(27%) — f5(2") - JZE 2"x) + f5( - Z"x) Fp<i
Ai(x) =4 e 2 (2.107)
e () A2 H2)or(-2) s
(i £3(2"%) = fo6(2") ~ J;ig 2'x) + fo(~2"%) ip<l,
Ar(x) =% S 2
i (0(3)#(3)5(-5)4(-3)). 90

forallx € V.
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Proof. Apply Theorem 2.5 for p < 1 and Theorem 2.6 for p > 1. O

We establish the following theorem for the general case from Theorems 2.2 and 2.5.

Theorem 2.8. Let ¢ : V' \ {0} x V '\ {0} x V' \ {0}—[0, o0) be a function that satisfies conditions (a)
and (b). Suppose that the functions f; : V—X,i=1,2,...,6, satisfy the inequality

[filx+y+2)+ falx—y) + fs(x = 2) - falx —y —2) = fs(x +y) = fo(x + 2)|| < p(x, y, 2)
(2.108)

forall x,y,z € V \ {0}. Then there exist exactly one quadratic function Q : V—X and exactly three
additive functions A, A1, Az : V—X satisfying

1160 = £1(0) = Q(x) = A(x) + A1 (x) + Ax ()|
11 ,/x 3 (X X
=2 [¢e(§,§x, ‘x) : ‘f’e(ifzf‘x)

+%Me(2x) + M, (x) +2M, G) + ¢;<

120) = £20) - Q) - A) - Ar(0)|
< Me(x) + <p2<§, %—E) + %G, %
15() = £50) - Q) - A®) - A2
<M r(35-5) (3 33) (355 )1 i(333):
14) = £10) = Q) = AG®) -~ Ar(x) - Az
<3l (3 5n) v (35 )

+%Me(2x) + M, (x) + 2M, <’2—“> + ¢;<

Lo+ (535 XY g (XXX
>+Me(x)+(Pe<2/ 2/ 2>+()0€<2’2’2>’

1R

[|f5(x) = f5(0) = Q(x) — A(x) + Ar (x) |
— ,(x 3x X (X X X — L, (x 3x Xx L, [x x x
<M vor(gg) v ) M n(353) (35 3)
|| fo(x) = f6(0) = Q(x) — A(x) + Az (x) |

— x x 3x X X x — x x 3x X x X
< M, . T AT T . AR MI 7 PYAYARCE 7 PYACYARY
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forall x € V' \ {0}, where

— & 1 — & 1
M,(x) = IZ(; i Me (2'x),  M.(x):= IZ(; M (2'x),
— &1 — &1
M, = Z 2l+1 M. (le)’ Me = Z 2l+1 M. (le), (2'110)

—
Il
(e}

! = 1 !
PL(x,y,z) = Z S ¢ (2'x,2'y,2'2)

=0

—

forall x € V'\ {0}. Moreover, the function Q is given by

fe(2"x) + fi (= 2"x)

Q) = lim, T (2.111)
fori=1,2,3,4,5,6 and the functions A, Ay, A, are given by
on on _ —on _ _on
A(x) = Tim 21ZX) + f4(2'%) 2{12 x) = fi( = 2"%)
2"x) — f5(2"x) — fo(—2" _on
A1(x) = lim f(2"x) - f5(2"x) ZJEE x) + f5( x), (2.112)

f3(2"x) = fo(2"x) — f3(=2"x) + fo(—2"x)

2n+2

Ar(x) = lim

forall, x e V.

Proof. From (2.108), we obtain

[fitox=y =2+ flox s y) + folox 2) = falx vy + D= fsx-p) - fol-x =)

2.113)
<o(-x,-y,-z)

forall x,y,z € V'\ {0}. From (2.108) and this inequality, one gets

||fle(x+y+z) +f2e(x_y) +f38(x_z)_f4e(x_y_z) _fSe(x+y) _fée(x+z)|| < ‘Pe(x/ylz)/

||flo(x+y+z) +fzo(X—]/) +f3o(X—Z)—f4o(X—]/—Z) —f50(x+]/) _f6o(x+z)” < (Pe(x/ylz)
(2.114)

for all x,y,z € V \ {0}, where fi.(x) = (fx(x) + fi(=x))/2, fro(x) = (fx(x) — fr(=x))/2 for
all x € V\ {0}, k = 1,2,3,4,5,6. Since fi. is an even function, fi, is an odd function, and
fk = fke + fko, we can apply Theorems 2.2 and 2.5 to get the desired result. O

We establish the following theorem for the general case from Theorems 2.2 and 2.6.

Theorem 2.9. Let ¢ : V \ {0} x V '\ {0} x V '\ {0}—[0, 00) be a function that satisfies conditions
(@) and (b)). If the functions fi, fa, f3, f1, fs, fo : V—X satisfy inequalities (2.108) for all x,y,z €
V' \ {0}, then there exist exactly one quadratic function Q : V—X and exactly three additive functions
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A, Ay, Ay : V=X satisfying the inequalities in Theorem 2.8 for all x € V' \ {0}, where M,, M, are as
in Theorem 2.8 and

M, (x) : Zzl < > M), (x) : ZZZM'<21+1>

_ (2.115)
Py z
(P; (x’ Y,z ZO <21+1 21+1 21+1 >

forall x € V'\ {0}. Moreover, the function Q is given by (2.111) and the functions A, A1, A, are given

by
- (0 (F) A(F) A(5) A(F)) e
s () 1) A DA D)
e = im 22 ((5) < (50) <5 3) (- )

forallx € V.

We establish the following theorem for the general case from Theorems 2.3 and 2.6.

Theorem 2.10. Let ¢ : V \ {0} x V' \ {0} x V' \ {0}—[0, o0) be a function that satisfies conditions
(@) and (V). If the functions fi, fa, f3, fa, f5, fo : V—X satisfy inequalities (2.108) for all x,y,z €
V'\ {0}, then there exist exactly one quadratic function Q : V—X and exactly three additive functions
A, A1, Ay : V=X satisfying the inequalities in Theorem 2.8 for all x € V'\ {0}, where Mg, ﬁ’e, @, are
as in Theorem 2.9 and

M. (x) = gzﬂMe(zl’il), M. (x) = Z4’M’ (21+1> (2.118)

forall x € V'\ {0}. Moreover, the function Q is given by
Q(x) = lim 24" (£ (27"x) + fi(=27"x) = 2£¢(0)) (2.119)

fori=1,2,3,4,5,6 and the functions A, A1, Ay are given by (2.116) forall x € V.

Corollary 2.11. Let p#1,2 and € > 0. Suppose that the functions f; : V—X,i=1,2,...,6, satisfy

[filx+y+2)+ falx —y) + f3(x = 2) = falx —y —2) = fs(x +y) = fo(x + 2) |

< e(lIxlP + N1yl +11z11”)

(2.120)

forall x,y,z € V \ {0}.
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Then there exist exactly one quadratic function Q : V—X and three additive functions
A, A1, Ay : V=X satisfying

[|f1(x) = £1(0) = Q(x) — A(x) + A1(x) + A2 (x) |

(37 +11)(2P +2) 11+37 . 8 2(3P+11) +4:2P +24F
+1+—=+
2:2r|2r — 4| 2:2P 4p 4r|2v - 2|

& [lx]l”,

(3P+11)+3P+5 2(37 +8)
2v|2r —4| 47 2r|2r -2

1f2(x) - £2(0) - Q(x) - A(x) - Ai ()] < ]-e-nxn”,

(3 +11) 3r+5 2(37+8)
20|2r —4| 47 2r|2r -2

1) = £3(0) - Q(x) - A(x) - Ar ()] < ]-e-nxn*’,

(2.121)
|| fs(x) = f4(0) — Q(x) — A(x) — A1(x) — Az(x)||
F+1)(F+2) 11+3 8 2(3+11) +420+ 24P el
- 2:2r|2r — 4| 2.2P 4p 4r|2r - 2|

(3F’+11)+3P+5 2(37 +8)
2v|2r — 4 4r 2v|2r - 2|

1f5(x) = £5(0) — Q(x) - A(x) + A (%)]| < ]-s-nxnf’,

3 +11 P 2(37 +8
(37 +11) JFH5 (37 + >]-£-||x||’“
2v|2r —4| 4P 2r|2r - 2|

forall x € V '\ {0}. Moreover, the function Q is given by (2.111) for p < 2 and (2.119) for p > 2 and
the functions A, Ay, Ay (k =1,2,3) are given by (2.112) for p < 1 and (2.116) for p > 1.

|| fo(x) = f6(0) = Q(x) — A(x) + Ax(x) || <

Corollary 2.12. Let € > 0 be a fixed real number. Suppose that the functions f; : V—X,i=1,2,...,6,
satisfy

lfiltx+y+z)+ folx—y)+ fa(x—2) - fulx -y —2) — fs(x+y) - fo(x +2)|| <e  (2.122)

forall x,y,ze€ V \ {0}.
Then there exist exactly one quadratic function Q : V—X and three additive functions
A, A1, Ay : V=X satisfying

1f1(x) = £1(0) — Q(x) — A(x) + Ar(x) + Ax(x) || < 17,
1f2(x) = £2(0) - Q(x) = Ax) - Ay (x)]| < %
1) - £2(0) - Q(x) — A(x) - Aa(x)]| < %
(2.123)
|| fa(x) = fa(0) = Q(x) — A(x) — A1(x) — A2 (x)|| < 17,

I1fs(x) = £5(0) = Q(x) = Ax) + Ay (x)]| < %

o) = F0) - Q) = AG) + Ao@)]| e
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forall x € V'\ {0}. Moreover, the function Q is given by (2.111) fori =1,2,3,4,5,6 and the functions
A, A1, Ay are given by (2.112) forall x € V.

Now we obtain the general solution of (1.6) from Corollary 2.12.

Corollary 2.13. Suppose that the functions f; : V—X,i=1,2,...,6, satisfy

filx+y+2)+ falx—y)+ fa(x—2) - falx—y—2) - fs(x+y) — fe(x+2) =0 (2.124)

forall x,y,z €V \ {0}.
Then there exist exactly one quadratic function Q : V—X and three additive functions
A, Ay, Ay : V=X satisfying

fi(x) = Q(x) + A(x) — A1(x) — Aa(x) + f1(0),
f2(x) = Q(x) + A(x) + A1(x) + £2(0),
f3(x) = Q(x) + A(x) + Az(x) + £3(0),
(2.125)
fa(x) = Q(x) + A(x) + A1 (x) + Az(x) + f4(0),
f5(x) = Q(x) + A(x) — A1(x) + f5(0),
fe(x) = Q(x) + A(x) — Az(x) + f6(0)

forall x € V. Moreover, the function Q is given by

Q(x) =

M ~ £0) (2.126)

fori=1,2,3,4,5,6 and the functions A, Ay, A, (k =1,2,3) are given by

J1(0) + fa(x) = f1(=x) = fa(=x)

A(x) = /
A = HEEE _‘{ A, (2.127)
Ax(x) = f3(x) — f6(x) —Za(—x) + fo(=x)
forallx € V.
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