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Received 10 November 2007; Accepted 29 April 2008

Recommended by Shusen Ding
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1. Introduction

There is no doubt that the Brézis-Wainger inequality (see [1]) is a very useful tool in the
examination of partial differential equations. Namely, a lot of estimates to a solution of PDE
are obtained with the help of the Brézis-Wainger inequality. Especially, the inequality is often
applied in the theory of wave maps.

In this paper, we extend the Brézis-Wainger result onto a compact Riemannian manifold.
We show the following theorem.

Theorem 1.1. Let (M, g) be an n-dimensional compact Riemannian manifold, and u ∈ Hk,p(M),∫
MudVg = 0, for n > k > n/p, where k is a positive integer and p ≥ 1 is a real number. Then,
u ∈ L∞(M) and

‖u‖L∞(M) ≤ ‖u‖Hk,n/k(M)

(
C + log

‖u‖Hk,p(M)

‖u‖Hk,n/k(M)

)
, (1.1)

where C = C(k,M) is a positive constant.

The proof relies on the application of a Moser-Trudinger inequality (see Theorem 2.2)
and the Sobolev embedding theorem (see Theorem 2.1). Moreover, we will use the integral
representation of a smooth function via the Green function (see [2]).
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2. Preliminaries

In order to make this paper more readable, we recall some definitions and facts from the theory
of Sobolev spaces on Riemannian manifolds. In particular, we present useful inequalities and
embeddings.

Let (M, g) be a smooth, compact Riemannian manifold without boundary. We will
denote by C∞(M) a space of smooth real functions. For φ ∈ C∞(M) and integer m, we denote
by ∇mφ the mth covariant derivative of φ. Next, for φ ∈ C∞(M) and for a fixed integer m and
a real p ≥ 1, we set

‖φ‖Hm,p(M) =
m∑

i=0

(∫

M

∣∣∇iφ
∣∣pdVg

)1/p

, (2.1)

where by Vg we have denoted the Riemannian measure on the manifold (M, g).
We define the Sobolev space Hm,p(M) as a completion of C∞(M) with respect to

‖·‖Hm,p(M).
We close this section stating the following results, which will be used in the proof of the

main result.

Theorem 2.1 (Sobolev embedding theorem [3, 4]). Let (M, g) be a smooth, compact Riemannian n-
manifold. Then, for any real numbers 1 ≤ p < q and any integers 0 ≤ m < k, if 1/q = 1/p−(k−m)/n,
then Hk,p(M) ↪→ Hm,q(M). Moreover, there exists a constant C such that for all u ∈ Hk,p(M), the
following inequality holds:

‖u‖Hm,q(M) ≤ C‖u‖Hk,p(M). (2.2)

Theorem 2.2 (Moser-Trudinger inequality [5]). Let (M, g) be a smooth, compact Riemannian n-
manifold and k a positive integer, strictly smaller than n. There exist a constant C = C(k,M) and
λ(k, n) such that for all u ∈ Cn(M) with

∫
MudVg = 0 and

∫
M|∇ku|n/kdVg ≤ 1, the following

inequality holds:

∫

M
eλ(k,n)(u/‖u‖Hk,n/k (M))

n/(n−k)
dVg ≤ C. (2.3)

Let us stress that this inequality is a generalization of the Moser and Trudinger result
(see [6–8]).

3. Proof of the main result

In this section, we will prove the main result, that is, Theorem 1.1.

Proof. Let us notice that by the assumptions we have an embedding Hk,p(M) ↪→ Hk,n/k(M).
First of all, we show the following lemma.

Lemma 3.1. If u ∈ C∞(M),
∫
M udVg = 0,

∫
M|∇ku|n/kdVg ≤ 1, and d ∈ [1,∞), then eu ∈ Ld(M).

Moreover, the following estimate holds:

∥∥eu
∥∥
Ld(M) ≤ C

(‖u‖Hk,n/k(M), d,M
)
. (3.1)
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Proof. Let us put

a =
(
λ(k, n)

n

n − k

)(n−k)/n u

‖u‖Hk,n/k(M)
,

b = d

(
λ(k, n)

n

n − k

)n/(n−k)
‖u‖Hk,n/k(M)

(3.2)

in Young’s inequality

ab ≤ ap

p
+
bq

q
, (3.3)

where 1/p + 1/q = 1. Then, we obtain an estimate

ud ≤ λ(k, n)
(

u

‖u‖Hk,n/k(M)

)n/(n−k)
+
k

n
dn/k

(
λ(k, n)

n

n − k

)(n−k)/n
‖u‖n/k

Hk,n/k(M), (3.4)

where λ(k, n) is a constant from the Moser-Trudinger inequality (see Theorem 2.2).
Next, we can estimate

∫

M
euddVg ≤ C

(
d, ‖u‖Hk,n/k(M)

)
∫

M
eλ(k,n)(u/‖u‖Hk,n/k (M))

n/(n−k)
dVg. (3.5)

Subsequently, we can apply the Moser-Trudinger inequality to the right-hand side of the above
inequality:

∫

M
eλ(k,n)(u/‖u‖Hk,n/k (M))

n/(n−k)
dVg ≤ c. (3.6)

From this, the proof of Lemma 3.1 follows.

Now, we can go back to the proof of Theorem 1.1. First, we prove the theorem for u ∈
C∞(M) such that ‖u‖Hk,n/k(M) = 1 and

∫
MudVg = 0. Replacing u by −u if necessary, we may

suppose that

‖u‖L∞(M) = u
(
x0
)
, (3.7)

for x0 ∈ M.
Let us recall (see [2]) that for (M, g), a compact Riemannian n-manifold, there exists a

Green function G : M × M→R such that

(1) for any φ ∈ C∞(M) and any z ∈ M,

φ(z) =
1

Vol(M)

∫

M
φ dVg +

∫

M
G(z, x)Δgφ(x)dVg, (3.8)

where Vol(M) is a Riemannian volume of the manifold (M, g), and Δg is the Laplace-
Beltrami operator on a manifold;
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(2) there exists a constant C such that for any (x, y) ∈ M ×M \Δ,

∣∣∇xG(x, y)
∣∣ ≤ C

(
dg(x, y)

)n−1 , (3.9)

where Δ is a diagonal:

Δ =
{
(x, y) ∈ M ×M : x = y

}
, (3.10)

and dg(x, y) is a Riemannian distance from x to y.

Let us define the map ψ = eu − 1. Next, we apply the first property of the Green function
to the map ψ and to the point x0. Namely,

0 ≤ ψ
(
x0
)

=
1

Vol(M)

∫

M

(
eu − 1

)
dVg +

∫

M
G
(
x0, x

)
Δgψ(x)dVg

≤ 1 +
1

Vol(M)
∥∥eu

∥∥
L1(M) +

∫

M

∣∣∇xG
(
x0, x

)∣∣∣∣∇xψ(x)
∣∣dVg.

(3.11)

Subsequently, by the second property of the Green function we can estimate ψ(x0) as follows:

ψ
(
x0
) ≤ 1 +

1
Vol(M)

∥∥eu
∥∥
L1(M) +

∫

M

C
(
dg

(
x0, x

))n−1 |∇u|eudVg. (3.12)

Now, we will try to estimate the last term in the inequality (3.12). Let us notice that if u ∈
Hk,p(M), then ∇u ∈ Hk−1,p(M). Next, by the Sobolev theorem (see Theorem 2.1),

Hk−1,p(M) ↪→ Lq(M), for
1
q
=

1
p
− k − 1

n
, (3.13)

and we have that ∇u ∈ Lq(M).
Using elementary calculations, one can easily show the lemma.

Lemma 3.2. There exist r < n/(n − 1) and a finite d such that the following equality holds:

1
r
+
1
q
+
1
d
= 1, (3.14)

where q is the exponent from the Sobolev theorem.

By Hölder’s inequality with exponents r, q, d, we can estimate the inequality (3.12) as
follows:

ψ
(
x0
) ≤ 1 +

1
Vol(M)

∥∥eu
∥∥
L1(M) + C̃‖∇u‖Lq(M)

∥∥eu
∥∥
Ld(M), (3.15)
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where C̃ = supx0∈M‖C/(dg(x0, ·))n−1‖Lr(M) and r is the exponent from Lemma 3.2. Finally, by
Lemma 3.1 and the Sobolev theorem, we obtain

ψ
(
x0
) ≤ C

(
1 + ‖u‖Hk,p(M)

)
. (3.16)

Let us stress that since ‖u‖Hk,n/k(M) = 1, the constant C does not depend on u. We can rewrite
the inequality (3.16) as follows:

eu(x0) ≤ C
(
1 + ‖u‖Hk,p(M)

)
. (3.17)

Hence,

‖u‖L∞(M) = u
(
x0
) ≤ log

(
C
(
1 + ‖u‖Hk,p(M)

))
. (3.18)

Taking into account 1 = ‖u‖Hk,n/k(M) ≤ c‖u‖Hk,p(M), we obtain

‖u‖L∞(M) ≤ C + log ‖u‖Hk,p(M). (3.19)

This finishes the proof of the inequality in the case u ∈ C∞(M) such that ‖u‖Hk,n/k(M) = 1
and

∫
MudVg = 0. Subsequently, one can easily obtain the inequality for u ∈ C∞(M) such that

∫
MudVg = 0.

Now, we prove the theorem for an arbitrary u ∈ Hk,p(M) such that
∫
MudVg = 0. We

apply the density argument. Namely, for any ε > 0, there exists ũε ∈ C∞(M) such that
∥∥ũε − u

∥∥
Hk,p(M) ≤ ε. (3.20)

Next, we define

uε = ũε − 1
Vol(M)

∫

M
ũε dVg. (3.21)

Such uε has zero-mean value. Moreover, the following inequality holds:
∥∥uε − u

∥∥
Hk,p(M) ≤ 2ε. (3.22)

Indeed,

∥∥uε − u
∥∥
Hk,p(M) ≤

∥∥ũε − u
∥∥
Hk,p(M) +

∥
∥∥∥

1
Vol(M)

∫

M

(
ũε − u

)
dVg

∥
∥∥∥
Hk,p(M)

≤ ε +
1

Vol(M)

∫

M

∣∣ũε − u
∣∣dVg‖1‖Hk,p(M)

≤ ε +
(∫

M

∣∣ũε − u
∣∣pdVg

)1/p

≤ 2ε.

(3.23)

Hence,

‖u‖L∞(M) ≤
∥∥u − uε

∥∥
L∞(M) +

∥∥uε

∥∥
Hk,n/k(M)

(

C + log

∥∥uε

∥∥
Hk,p(M)∥∥uε

∥∥
Hk,n/k(M)

)

. (3.24)

Finally, we take ε→0. This completes the proof.
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