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1. Introduction

Considerable attention has been given to Hilbert inequalities and Hilbert-type inequalities
and their various generalizations by several authors including Handley et al. [1], Minzhe and
Bicheng [2], Minzhe [3], Hu [4], Jichang [5], Bicheng [6], and Zhao [7, 8]. In 1998, Pachpatte
[9] gave some new integral inequalities similar to Hilbert inequality (see [10, page 226]). In
2000, Zhao and Debnath [11] established some inverse-type inequalities of the above integral
inequalities. This paper deals with some new inverse-type Hilbert inequalities which provide
some new estimates on such types of inequalities.

2. Main results

Theorem 2.1. Let 0 < p; < 1 (i =1,...,n) and r < 0. Let {aj,;n,} be n positive sequences of real
numbers defined for m; = 1,2,...,k;, where k; (i = 1,...,n) are natural numbers, define A;,, =
S i, and define Aig = 0. Then forp™ +q7' =1,p<00r0<p <1, one has

l—[n AP: 1/ ki 1/q
l)n/ (pr) — le g ( Z (kl -m; + 1) (ai,mlApl )q) . (21)

m,:l

";1 Zl ((1/n)Zz 1
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Proof. By using the following inequality (see [10, page 39]):
hias  (@im, — bim) < @y, =B < Wbl (@i, — bim,), (2.2)
where a;m, >0, biy, >0,and 0< h; <1 (i =1,2,...,n), we obtain that
1 1 l 1 1
Afm +1 Afm = Pz i,m;+1 (Ai,m,-+1 - Ai,m,-) = Piai,mi+1Afm +1/
(2.3)
Z Az i+l Azlml - Apl 2 Z pidi, m,+1 1m,+1 =Ppi Z a; mtAllglm,

thus
. L —1
Al > > ai AT (2.4)

From inequality (2.4) and in view of the following mean inequality and inverse Holder’s in-
equality [10, page 24], we have

n 1 n 1/r
[ "2 <—Zmz> : (2.5)
i=1 ni3

IT- Aflm, i 1/q

Taking the sum of both sides of (2.6) over m; from 1 to k;(1,2,...,n) first and then using again
inverse Holder’s inequality, we obtain that

n AP: . 1/11
e i 1slApl
n;l mnz—l((l/n)zz Lm))" Hp <Z <Z(a > >

Tk (3 S weay)

m;=1 s;=1
» (2.7)
= le lM’(E:(k -5 +1)(azs1A”’ )q>
n k,‘ 1/[]
= Hpikil/p ( Z (kl —m; + 1) (ai,mlAp’ )q) .
i=1 mi=1
This completes the proof. O
Remark 2.2. Takingn =2, g =-2, r = -1to (2.1), (2.1) becomes
ki k AP] IQP2 ki L -1/2
P 2m2_3 > 8p1pa (kikz)” <Z (ki = m1 +1) (a1m A 2>
mi=t mo=1 (my' +m5t) =1 2.8)

ks -1/2
x<z(k2—m2+1)(a2,m2A§2m§) ) .

m2:1
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This is just an inverse form of the following inequality which was proven by Pachpatte

[9]:
12 , 172
Zk:ZAPBq 1 kr)1/2<i(k—m+1)(amAz1_l)2> (Z(r—n+1)(anz_l)2> :
A Am+n 2

m=1 n=1
(2.9)
Theorem 2.3. Let {aim,}, Aim, ki, p, and q be as defined in Theorem 2.1. Let {pim,} be n positive
sequences for m; = 1,2,...,k; (i = 1,2,...,n). Set P, = Z:;lpi,si (i=12,...,n). Let ¢; (i =
1,2,...,n) be n real-valued nonnegative, concave, and supermultiplicative functions defined on R, =
[0, +00). Then,

kzi [T i(A in;n)/pr) M(ky, ks, .. k)H<Z(k m,+1)<p1m¢l<a,ml>>q>1/q’

m=1 my,= l((l/n)zl 1m Pim;
(2.10)

where

Mk, Ky k) = H(z(‘i’l;f;fl))) . 1)

Proof. From the hypotheses and by Jensen’s inequality, the means inequality, and inverse
Holder’s inequality, we obtain that

i m, si Pi,si (ai,si /Pi,si> n Z?izlpi,si (ai,si /Pi,s,-)
(i)l (Al m,) ¢l < 1 m;i > 2 (i)i (Pi,m,v ) (I)i < 1 m; >
H H Zsi=1pilsi 1=H1 Zsi=1pi/5i

T S () I (800 G2)))

P151 i=1 zm, s; 1

n/(pr) 1/q
1< r i(Pim;) Ais; 1
- (33m) T (S (mn(22)))
i=1 i1 Dim si=1 Pisi
(2.12)

Dividing both sides of (2.12) by ((1/ n)Z?zlmf)"/ #r) and then taking the sum over m; (i =
1,2,...,n) from 1 to k; (and in view of inverse Holder’s inequality), we have

k k ki m; Vq
Lo 11¢1(A1m,) ST ( : ¢i(Pi,m,~)< ( , .<ai,s,->>q> >
le=1 mnz_l ((1/n) >n/(pr) 1:[ m,Zzl Py, 52:1 Pisi i Pis;

n i . . . l/p i al si /q
TS (*)) (25 (e0(22)))
q

= M(ky k..., k )H(Z Z<P”l¢l al:,Si>>q>

mi=1 5= Pis;i

_ M(kl,kz,...,kn)g<§l(ki-mi+1) (,,l m,¢z<"‘1mz>>">1/q'

(2.13)
The proof is complete. O
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Remark 2.4. Takingn =2, q=-2, r = -1 to (2.10), (2.10) becomes

k1 -1/2

Z Z 1 (A1) P2(Az,m,) > M(ki, k) < i (k1 —mq +1) <Pl,rm<i>1<a1,m1 >>—2>

3
mtm1 (my'+myt) mi=1 P1m

D (2.14)

ky 2 N\ 2\
x Z (kz—m2+1)<P2,m2¢2< - 2>> p
my=1 p2,m2

where
ki P 2/3\¥? / K p 2/3\ /2
M(ky, ks) = 8( S (—4’11(3 1'"“)> > <Z <—¢21() 2””2)> > : (2.15)
mi=1 1, my=1 2,m;
This is just an inverse of the following inequality which was proven by Pachpatte [9]:

zk: Z% < M(k,r) (Z(k —m+ 1)<pm¢<Z—Z>>2>

m=1 n=1

1/2

D (2.16)

(Zo-nen(an(2)))
w3 (5CR)) (BCSY) - ew

Similarly, the following theorem also can be established.

where

Theorem 2.5. Let P, {aim}, {Pim}, ki, p, and q be as in Theorem 2.3 and define A, =
1/ R,mi)ZZQPi,s,ﬂi,sw form; = 1,2,...,ki. Let ¢; (i = 1,2,...,n) be n real-valued, nonnegative,
and concave functions defined on R..Then,

1 n n - p . . Yq
sy 1lef¢l<A1mz))2 kl/P<z(k ml+1)(plm,¢l<a1ml))") NCAE)
i=1

m=1  my= 1((1/7’1)21 m )n/(pr mi=1

The proof of Theorem 2.5 can be completed by following the same steps as in the proof
of Theorem 2.3 with suitable changes. Here, we omit the details.

Remark 2.6. Takingn =2, g = -2, r = -1 to (2.18), (2.18) becomes

ki Py, Po iy @1 (A, ) P2 (A2,
5 Z 1 ( )4’ (Azm,)

mi=1m;=1 (" + mgl)

ke -1/2 -1/2
zs<k1k2>”< z<k1—m1+1><p1,m1¢1<a1,m1>>‘2) < z<kz—mz+1><pz,mz¢z<az,mz>>‘2> |

mq =1 m2:1
(2.19)
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This is just an inverse of the following inequality which was proven by Pachpatte [9]:

Zk: )3 mQn (Am)g (Br)

m=1 n=1 m+n
1 k /2 5, 1/2 (2.20)
< 5 (kr)'? <Z (k—m+ 1)(pm¢(am)>2> <Z<r -n+ 1)(‘1n‘l’(bn>)2>
m=1 n=1
Remark 2.7. In view of L'Hopital law, we have the following fact:
n n/(pr) nor
] 1 . n,, In((1/n)XiLm)
lim —Zmi =exp ( —lim
r—0\ 1 Py pr—0 r
(2.21)

n T )
Diam; Inm;

= eXp <Ehmw> = (ml.mz ..... mn)

pr=0 i=1

Accordingly, in the special case when n = 2, p = 0.1, and p;,, = 1, let r — 0, then the
inequality (2.18) reduces to the following inequality:

& 1 (ALm) 2 (Asm,
)Y $1 (Arm,) P2 (A2m)

my=1my=1 (m1m2)_2

(2.22)

> (kiks) ™! 21<k1—m1+1><¢1<a1,m1>>“2) 22_1<kz—mz+1><¢z<az,mz>>“2>-

This is just a discrete form of the following inequality which was proven by Zhao and Debnath
[11]:

22D s [ g ] s ]

(2.23)
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