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1. Introduction

Throughout this paper let {Xn, n ≥ 1} be a sequence of random variables defined on a
probability space (Ω,F, P) and let {bn, n ≥ 1} be a sequence of positive numbers. We assume
that there exists a sequence {ρn, n ≥ 1} of nonnegative constants such that

sup
k≥1

E(XkXk+n) ≤ ρn, for n ≥ 1. (1.1)

In this paper, we establish a maximal inequality for weighted sums of the dependent random
variables satisfying (1.1). Applying this inequality, we obtain under some suitable conditions
on the sequence {ρn} that

n∑

i=1

Xi

bi
converges a.s. as n −→ ∞ (1.2)

and the strong law of large numbers (SLLN)
∑n

i=1Xi

bn
−→ 0 a.s. (1.3)

Note that if 0 < bn ↑ ∞, then (1.2) implies (1.3) by the Kronecker lemma.
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For a sequence of dependent random variables satisfying (1.1), the SLLNs were
established by Hu et al. [1, 2] and Lyons [3]. Lyons [3] obtained an SLLN under the conditions
that Var(Xn) = O(1) and bn = n. Without condition Var(Xn) = O(1), Hu et al. [1] obtained
an SLLN, where bn = n. Hu et al. [2] also obtained an SLLN for more general sequence {bn}
(bn = n is replaced by n = O(bn)).

For other results on the SLLN for a sequence of correlated random variables, see Chandra
[4], Móricz [5, 6], and Serfling [7, 8].

In this paper, we give a sufficient condition under which (1.2) and (1.3) hold. Our results
(partially) improve those of Hu et al. [1, 2]. The technique used in our proof is the well-
known method of subsequences. Note that the maximal inequality is used in the method of
subsequences. Our maximal inequality for weighted sums of the dependent random variables
satisfying (1.1) is sharper than that of Hu et al. [2].

Throughout this paper, logx denotes the natural logarithm.

2. Maximal inequalities for dependent random variables

To prove the maximal inequality for weighted sums of dependent random variables satisfying
(1.1), the following lemma is needed.

Lemma 2.1. Let {Xn, n ≥ 1} be a sequence of square integrable random variables satisfying (1.1). Let
{bn, n ≥ 1} be a sequence of positive numbers such that

n ≤ Dbn ∀n ≥ 1 and some constant D > 0. (2.1)

Then for all n ≥ 1, m > n, and δ > 0,

m−1∑

i=n

m∑

j=i+1

(EXiXj)
+

bibj
≤ D2Cδ

max{(log 2)δ, (logn)δ}
m−n∑

k=1

ρk
k
(1 + log k)1+δ, (2.2)

where Cδ= 2δ+1 max{1, δδe−δ}.

Proof. For simplicity of notation, let In,m =
∑m−1

i=n
∑m

j=i+1(EXiXj)
+/(bibj). Then we get by (1.1)

and (2.1) that for 1 ≤ n < m,

In,m ≤
m−1∑

i=n

m∑

j=i+1

ρj−i
bibj

≤ D2
m−1∑

i=n

m∑

j=i+1

ρj−i
ij

= D2
m−n∑

k=1

m−k∑

i=n

ρk
i(i + k)

= D2
m−n∑

k=1

ρk
k

m−k∑

i=n

(
1
i
− 1
i + k

)

≤ D2
m−n∑

k=1

ρk
k

n+k−1∑

i=n

1
i
.

(2.3)
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We next estimate
∑n+k−1

i=n 1/i. If n = 1, then

n+k−1∑

i=n

1
i
=

k∑

i=1

1
i
≤ 1 +

∫k

1

1
x
dx ≤ 1 + log k ≤ (1 + log k)1+δ. (2.4)

If n ≥ 2, then

n+k−1∑

i=n

1
i
≤
∫n+k−1

n−1

1
x
dx = log

(

1 +
k

n − 1

)

≤ 2 log
(

1 +
k

n

)

. (2.5)

The log(1 + k/n) is estimated as follows:

log
(

1 +
k

n

)

≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

log
(

1 +
1√
n

)

≤ (logn)δ

(logn)δ
√
n
≤ (2δ)δe−δ

(logn)δ
≤ (2δ)δe−δ

(1 + log k)1+δ

(logn)δ
, if 1 ≤ k ≤ √

n,

log
(

1 +
k

n

)
(2 log k)δ

(logn)δ
≤ 2δ

(log k)1+δ

(logn)δ
≤ 2δ

(1 + log k)1+δ

(logn)δ
, if k >

√
n.

(2.6)

Thus, we have the desired estimate for In,m:

In,m ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D2
m−n∑

k=1

ρk
k
(1 + log k)1+δ, if n = 1,

D2
m−n∑

k=1

ρk
k

2max {2δ, (2δ)δe−δ}
(logn)δ

(1 + log k)1+δ, if n ≥ 2,

≤ D22δ+1 max{1, δδe−δ}
max{(log 2)δ, (logn)δ}

m−n∑

k=1

ρk
k
(1 + log k)1+δ.

(2.7)

The following lemma is a maximal inequality for general dependent random variables.

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of square integrable random variables. Then for all a ≥ 0
and n ≥ 1,

E

(

max
1≤k≤n

∣
∣
∣
∣
∣

a+k∑

i=a+1

Xi

∣
∣
∣
∣
∣

2)

≤
(
log 2n
log 2

)2
{

a+n∑

i=a+1

EX2
i + 2

a+n−1∑

i=a+1

a+n∑

j=i+1

(EXiXj)
+

}

. (2.8)

Proof. Let Fa,n be the joint distribution function of Xa+1, . . . , Xa+n. Define a function g on {Fa,n :
a ≥ 0, n ≥ 1} by

g(Fa,n) =
a+n∑

i=a+1

EX2
i + 2

a+n−1∑

i=a+1

a+n∑

j=i+1

(EXiXj)
+. (2.9)
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Then we can easily obtain that for a ≥ 0, k ≥ 1, andm ≥ 1,

g(Fa,k) + g(Fa+k,m) ≤ g(Fa,k+m). (2.10)

Moreover, we have that for all a ≥ 0 and n ≥ 1,

E

(
a+n∑

i=a+1

Xi

)2

≤ g(Fa,n). (2.11)

By Serfling’s [9] generalization of the Rademacher-Menchoff maximal inequality for orthogo-
nal random variables,

E

(

max
1≤k≤n

∣
∣
∣
∣
∣

a+k∑

i=a+1

Xi

∣
∣
∣
∣
∣

2)

≤
(
log 2n
log 2

)2

g(Fa,n). (2.12)

Thus, the result is proved.

Combining Lemmas 2.1 and 2.2 gives the following maximal inequality for weighted
sums of dependent random variables satisfying (1.1).

Lemma 2.3. Let {Xn, n ≥ 1} be a sequence of square integrable random variables satisfying (1.1). Let
{bn, n ≥ 1} be a sequence of positive numbers satisfying (2.1). Then for all n ≥ 1, m > n, and δ > 0,

E

(

max
n≤i≤m

∣
∣
∣
∣
∣

i∑

j=n

Xj

bj

∣
∣
∣
∣
∣

2)

≤
(
log(2(m − n + 1))

log 2

)2
{

m∑

i=n

EX2
i

b2i
+

2D2Cδ

max{(log 2)δ, (logn)δ}
m−n∑

k=1

ρk
k
(1 + log k)1+δ

}

,

(2.13)

where Cδ = 2δ+1 max{1, δδe−δ}.

3. Almost surely convergent series and strong laws of large numbers

In this section, we will assume that {Xn, n ≥ 1} is a sequence of square integrable random
variables satisfying (1.1). A sufficient condition will be given under which (1.2) and (1.3) hold.

We first state and prove one of our main results. The proof is based on the well known
method of subsequences. Our proof is similar to that of Hu et al. [2]. However, the maximal
inequality (Lemma 2.3) used in the proof is sharper than that of Hu et al. [2].

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of square integrable random variables satisfying (1.1). Let
{bn, n ≥ 1} be a sequence of positive numbers satisfying (2.1). Suppose that the following conditions
hold:

(i)
∑∞

n=1(logn)
2EX2

n/b
2
n < ∞,

(ii)
∑∞

n=1(logn)
4+δρn/n < ∞ for some δ > 0.

Then (1.2) holds. Furthermore, if 0 < bn ↑ ∞, then (1.3) holds.
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Proof. As noted in the introduction, if 0 < bn ↑ ∞, then (1.2) implies (1.3). To prove (1.2), let
Sn =

∑n
i=1Xi/bi. By Lemma 2.1 with δ replaced by 3 + δ, we have that for m > n,

E(Sm − Sn)
2 =

m∑

i=n+1

EX2
i

b2i
+ 2

m−1∑

i=n+1

m∑

j=i+1

EXiXj

bibj

≤
m∑

i=n+1

EX2
i

b2i
+

2D2C3+δ

max{(log 2)3+δ, (logn)3+δ}
m−n−1∑

k=1

ρk
k
(1 + log k)4+δ

≤
∞∑

i=n+1

EX2
i

b2i
+

2D2C3+δ

max{(log 2)3+δ, (logn)3+δ}
∞∑

k=1

ρk
k
(1 + log k)4+δ −→ 0

(3.1)

as n → ∞ by (i) and (ii). Here C3+δ = 2δ+4 max{1, (3+δ)3+δe−(3+δ)}. By the Cauchy convergence
criterion, there exists a random variable S such that E(Sn − S)2 → 0 as n → ∞. It is easy to see
that S2n → S a.s. by the standard method. It remains to show that

max
2n<k≤2n+1

|Sk − S2n | −→ 0 a.s. as n −→ ∞. (3.2)

Using Lemma 2.3, (i), and (ii), we get that

∞∑

n=1

P
(

max
2n<k≤2n+1

|Sk − S2n | > ε
)

≤ 1
ε2

∞∑

n=1

E
(

max
2n<k≤2n+1

|Sk − S2n |2
)

≤ 1
ε2

∞∑

n=1

(
log 2n+1

log 2

)2{ 2n+1∑

i=2n+1

EX2
i

b2i
+

2D2C3+δ

(log (2n + 1))3+δ

2n−1∑

k=1

ρk
k
(1 + log k)4+δ

}

≤ 1

ε2(log 2)2

∞∑

i=3

(log(2i))2EX2
i

b2i
+

2D2C3+δ

ε2(log 2)3+δ

∞∑

n=1

(n + 1)2

n3+δ

∞∑

k=1

ρk
k
(1 + log k)4+δ < ∞.

(3.3)

Then (3.2) follows by the Borel-Cantelli lemma.

Remark 3.2. Hu et al. [2] proved Theorem 3.1 under (i) and (ii)′.
(ii)′

∑∞
n=1 ρn/n

q < ∞ for some 0 ≤ q < 1.
Since condition (ii) of Theorem 3.1 is weaker than (ii)′, Theorem 3.1 improves the result

of Hu et al. [2].

We can now establish the following SLLN if condition (2.1) on {bn} is replaced by the
condition 0 < bn ↑ ∞.

Theorem 3.3. Let {Xn, n ≥ 1} be a sequence of square integrable random variables satisfying (1.1). Let
{bn, n ≥ 1} be a nondecreasing unbounded sequence of positive numbers. Suppose that the following
conditions hold:

(i)
∑∞

n=1(logn)
2EX2

n/b
2
n < ∞,
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(ii)
∑∞

n=1ρn
∑∞

i=n+1(log i)
2/b2i < ∞,

(iii)
∑∞

n=1EX
2
n

∑∞
i=n+1 log i/(ib

2
i ) < ∞.

Then (1.3) holds.

To prove Theorem 3.3, we need the following lemmawhich is due to Fazekas and Klesov
[10].

Lemma 3.4. Let {Xn, n ≥ 1} be a sequence of random variables and {bn, n ≥ 1} be a nondecreasing
unbounded sequence of positive numbers. Let {αn, n ≥ 1} be a sequence of nonnegative numbers.
Assume that for each n ≥ 1,

E

(

max
1≤i≤n

∣
∣
∣
∣
∣

i∑

j=1

Xj

∣
∣
∣
∣
∣

r)

≤
n∑

i=1

αi, for some constant r > 0. (3.4)

If
∑∞

n=1αn/b
r
n < ∞, then (1.3) holds.

Proof of Theorem 3.3. From Lemma 2.2,

E

(

max
1≤i≤n

∣
∣
∣
∣
∣

i∑

j=1

Xj

∣
∣
∣
∣
∣

2)

≤
(
log 2n
log 2

)2
{

n∑

i=1

EX2
i + 2

n−1∑

i=1

n∑

j=i+1

(EXiXj)
+

}

. (3.5)

Define αn = (log 2n/ log 2)2An − (log 2(n − 1)/ log 2)2An−1 for n ≥ 1, where A0 = 0 and An =
∑n

i=1EX
2
i + 2

∑n−1
i=1

∑n
j=i+1(EXiXj)

+ for n ≥ 1. Then E(max1≤i≤n|
∑i

j=1Xj |2) ≤
∑n

i=1αi and

αn =
(
log 2n
log 2

)2

(An −An−1) +An−1

{(
log 2n
log 2

)2

−
(
log 2(n − 1)

log 2

)2}

=
(
log 2n
log 2

)2
{

EX2
n + 2

n−1∑

i=1

(EXiXn)
+

}

+
{(

log 2n
log 2

)2

−
(
log 2(n − 1)

log 2

)2}{n−1∑

i=1

EX2
i + 2

n−2∑

i=1

n−1∑

j=i+1

(EXiXj)
+

}

.

(3.6)

By Lemma 3.4, it is enough to show that
∞∑

n=1

(log 2n)2EX2
n

b2n
< ∞, (3.7)

∞∑

n=1

(log 2n)2

b2n

n−1∑

i=1

(EXiXn)
+ < ∞, (3.8)

∞∑

n=2

(log 2n)2 − (log 2(n − 1))2

b2n

n−1∑

i=1

EX2
i < ∞, (3.9)

∞∑

n=3

(log 2n)2 − (log 2(n − 1))2

b2n

n−2∑

i=1

n−1∑

j=i+1

(EXiXj)
+ < ∞. (3.10)

Clearly (3.7) holds by (i). It is easy to see that (3.8)–(3.10) hold, and the detailed proofs are
omitted.
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The following corollary shows that condition (ii) of Theorem 3.3 can be simplified under
the additional condition (2.1) on {bn}.

Corollary 3.5. Let {Xn, n ≥ 1} be a sequence of square integrable random variables satisfying (1.1).
Let {bn, n ≥ 1} be a nondecreasing unbounded sequence of positive numbers satisfying (2.1). Suppose
that the following conditions hold:

(i)
∑∞

n=1(logn)
2EX2

n/b
2
n < ∞,

(ii)
∑∞

n=1(logn)
2ρn/n < ∞,

(iii)
∑∞

n=1EX
2
n

∑∞
i=n+1 log i/(ib

2
i ) < ∞.

Then (1.3) holds.

Proof. By (2.1), we have that
∞∑

n=1

ρn
∞∑

i=n+1

(log i)2

b2i
≤ D2

∞∑

n=1

ρn
∞∑

i=n+1

(log i)2

i2
≤ C

∞∑

n=1

ρn
(logn)2

n
(3.11)

for some constant C > 0. Thus the result follows by Theorem 3.3.

Remark 3.6. Condition (ii) of Corollary 3.5 is weaker than condition (ii) of Theorem 3.1. On the
other hand, an additional condition is needed in Corollary 3.5 (namely condition (iii) above).

Using the following lemma, we can omit condition (iii) of Theorem 3.3 if conditions
(2.1) and (3.12) on {bn} are satisfied. If C1n ≤ bn ≤ C2n

α for all n ≥ 1 and some constants
C1 > 0, C2 > 0, and α > 0, then (2.1) and (3.12) hold.

Lemma 3.7. Let {bn, n ≥ 1} be a nondecreasing unbounded sequence of positive numbers satisfying
(2.1). If

lim sup
n→∞

log bn
logn

< ∞, (3.12)

then
b2n

log2n

∞∑

i=n

log i

ib2i
= O(1). (3.13)

Proof. Without loss of generality, we may assume that i ≤ bi for all i ≥ 1.
Let fix n. For each k ≥ 1, define mk by mk = min{i ≥ n : bi ≥ kbn}. Then bmk

≥ kbn and
n = m1 ≤ m2 ≤ · · · . It follows that

b2n

log2n

∞∑

i=n

log i

ib2i
=

b2n

log2n

∞∑

k=1

mk+1−1∑

i=mk

log i

ib2i
≤ b2n

log2n

∞∑

k=1

1
b2mk

mk+1−1∑

i=mk

log i
i

(by 0 < bn ↑)

≤ b2n

log2n

∞∑

k=1

1

(kbn)
2

mk+1−1∑

i=mk

log i
i

≤ 1

log2n

∞∑

k=1

1
k2

(
3∑

i=1

log i
i

+
∫mk+1−1

3

logx
x

dx

)

≤ 1

log2n

∞∑

k=1

1
k2

(
log 2
2

+
log 3
3

+
(log(mk+1 − 1))2

2

)

,

(3.14)
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where we assume in the casemk+1 = mk, the sum
∑mk+1−1

i=mk
= 0. Since bi ≥ i for all i ≥ 1, b[kbn]+1 ≥

[kbn] + 1 ≥ kbn andmk ≤ [kbn] + 1 ≤ kbn + 1. So we have that

(log(mk+1 − 1))2 ≤ (log((k + 1)bn))
2 ≤ 2

{
(log(k + 1))2 + (log bn)

2}. (3.15)

Substituting this into (3.14), (3.13) holds by (3.12).

The following example shows that Lemma 3.7 fails if (3.12) does not hold.

Example 3.8. Let φ(0) = 1 and φ(n) = 2φ(n−1) for n ≥ 1. Define a sequence {bn, n ≥ 1} by bn =
φ(k + 1) if φ(k) ≤ n < φ(k + 1). Then 0 < bn ↑ ∞ and bn ≥ n for all n ≥ 1. Since bφ(n) = φ(n + 1),
we obtain that

log bφ(n)
logφ(n)

=
logφ(n + 1)
logφ(n)

=
φ(n) log 2
logφ(n)

−→ ∞ (3.16)

as n → ∞.Hence (3.12) does not hold. We also obtain that for n ≥ 2,

b2
φ(n)

log2φ(n)

∞∑

i=φ(n)

log i

ib2i
≥

b2
φ(n)

log2φ(n)

φ(n+1)−1∑

i=φ(n)

log i

ib2i

=
1

log2φ(n)

φ(n+1)−1∑

i=φ(n)

log i
i

≥ 1

log2φ(n)

∫φ(n+1)

φ(n)

logx
x

dx

=
1
2

(
φ(n) log 2
logφ(n)

)2

− 1
2
−→ ∞

(3.17)

as n → ∞. So (3.13) does not hold.

If {bn} satisfies (2.1) and (3.12), then we can obtain the following SLLN.

Theorem 3.9. Let {Xn, n ≥ 1} be a sequence of square integrable random variables satisfying (1.1). Let
{bn, n ≥ 1} be a nondecreasing unbounded sequence of positive numbers satisfying (2.1) and (3.12).
Suppose that the following conditions hold:

(i)
∑∞

n=1(logn)
2EX2

n/b
2
n < ∞.

(ii)
∑∞

n=1(logn)
2ρn/n < ∞.

Then (1.3) holds.

Proof. By Lemma 3.7 and (i), we get

∞∑

n=1

EX2
n

∞∑

i=n+1

log i

(ib2i )
≤ O(1)

∞∑

n=1

log2(n + 1)EX2
n

b2n+1
< ∞, (3.18)

since log(n + 1)/bn+1 ≤ log(n + 1)/bn ≤ 2 logn/bn if n ≥ 2. The result follows by Corollary 3.5.
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Remark 3.10. Under condition (3.12), Theorem 3.9 improves Theorem 3.1, since condition (ii)
of Theorem 3.9 is weaker than condition (ii) of Theorem 3.1.

If bn = n for all n ≥ 1, then {bn} satisfies (2.1) and (3.12). Hence we can obtain the
following.

Corollary 3.11. Let {Xn, n ≥ 1} be a sequence of square integrable random variables satisfying (1.1).
Suppose that the following conditions hold.

(i)
∑∞

n=1(logn)
2EX2

n/n
2 < ∞.

(ii)
∑∞

n=1(logn)
2ρn/n < ∞.

Then the SLLN holds. Namely,
∑n

i=1Xi

n
−→ 0 a.s. (3.19)

Remark 3.12. Lyons [3] proved an SLLN (3.19) under the conditions that EX2
n = O(1) and

∞∑

n=1

ρn
n

< ∞. (3.20)

When EX2
n = O(1), condition (i) of Corollary 3.11 is obviously satisfied. Hu et al. [1] proved

an SLLN (3.19) under conditions (3.21) and (3.22):

∞∑

n=1

H(nϕ+1)
n2

< ∞ , (3.21)

∞∑

n=1

ρn

nϕ−1 < ∞, (3.22)

where ϕ = (1+
√
5)/2(= 1.618 · · · ) is the golden ratio, andH(x) > 0 is a nondecreasing function

on (0,∞) such that EX2
n ≤ H(n) for all n ≥ 1. Condition (ii) of Corollary 3.11 is weaker than

(3.22). In general, condition (i) of Corollary 3.11 is not comparable with (3.21).
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