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1. Introduction

We know that one of the important problems of vector variational inequalities and vector
equilibrium problems is to study the topological properties of the set of solutions. Among
its topological properties, the connectedness and the compactness are of interest. Recently,
Lee et al. [1] and Cheng [2] have studied the connectedness of weak efficient solutions set
for single-valued vector variational inequalities in finite dimensional Euclidean space. Gong
[3–5] has studied the connectedness of the various solutions set for single-valued vector
equilibrium problem in infinite dimension space. The set-valued vector equilibrium problem
was introduced by Ansari et al. [6]. Since then, Ansari and Yao [7], Konnov and Yao [8], Fu
[9], Hou et al. [10], Tan [11], Peng et al. [12], Ansari and Flores-Bazán [13], Lin et al. [14]
and Long et al. [15] have studied the existence of solutions for set-valued vector equilibrium
and set-valued vector variational inequalities problems. However, the connectedness and the
compactness of the set of solutions to the set-valued vector equilibrium problem remained
unstudied. In this paper, we study the existence, connectedness, and the compactness of the
weak efficient solutions set for set-valued vector equilibrium problems and the set-valued
vector Hartman-Stampacchia variational inequalities in normed linear space.
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2. Preliminaries

Throughout this paper, let X, Y be two normed linear spaces, let A be a nonempty subset of
X, let F : A ×A→ 2Y be a set-valued map, and let C be a closed convex pointed cone in Y .

We consider the following set-valued vector equilibrium problem (SVEP): find x ∈ A,
such that

F(x, y) ∩ (−intC) = ∅ ∀y ∈ A. (2.1)

Definition 2.1. Let intC/=∅. A vector x ∈ A satisfying

F(x, y) ∩ (−intC) = ∅ ∀y ∈ A (2.2)

is called a weak efficient solution to the SVEP. Denote by Vw(A,F) the set of all weak efficient
solutions to the SVEP.

Let Y ∗ be the topological dual space of Y . Let

C∗ = {f ∈ Y ∗ : f(y) ≥ 0 ∀y ∈ C} (2.3)

be the dual cone of C.

Definition 2.2. Let f ∈ C∗ \ {0}. A vector x ∈ A is called an f-efficient solution to the SVEP if

f(F(x, y)) ≥ 0 ∀y ∈ A, (2.4)

where f(F(x, y)) ≥ 0 means that f(z) ≥ 0, for all z ∈ F(x, y). Denote by Vf(A,F) the set of all
f-efficient solutions to the SVEP.

Definition 2.3. Let A be a nonempty convex subset in X. A set-valued map F : A × A→ 2Y

is called to be C-convex in its second variable if, for each fixed x ∈ A, for every y1, y2 ∈ A,
t ∈ [0, 1], the following property holds:

tF(x, y1) + (1 − t)F(x, y2) ⊂ F(x, ty1 + (1 − t)y2) + C. (2.5)

Definition 2.4. Let A be a nonempty convex subset in X. A set-valued map F : A × A→ 2Y

is called to be C-concave in its first variable if, for each fixed y ∈ A, for every x1, x2 ∈ A,
t ∈ [0, 1], the following property holds:

F(tx1 + (1 − t)x2, y) ⊂ tF(x1, y) + (1 − t)F(x2, y) + C. (2.6)

Definition 2.5. Let A be a nonempty subset of X. Let T : A→ 2L(X,Y ) be a set-valued map,
where L(X,Y ) is the space of all bounded linear operators from X into Y (let L(X,Y ) be
equipped with operator norm topology). Set (Tx, y) = {(s, y) : s ∈ Tx}, x, y ∈ A.
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(i) Let A be a convex subset of X. T is said to be v-hemicontinuous if, for every pair of
points x, y ∈ A, the set-valued map

J(α) := (T(αy + (1 − α)x), y − x), α ∈ [0, 1], (2.7)

is lower semicontinuous at 0.

(ii) Let f ∈ C∗ \ {0}. T is said to be f-pseudomonotone on A if, for every pair of points
x, y ∈ A, f((s, y − x)) ≥ 0, for all s ∈ Tx, then f((s′, y − x)) ≥ 0, for all s′ ∈ Ty.

The definition of v-hemicontinuity was introduced by Lin et al. [14].

Definition 2.6. Let X be a Hausdorff topological vector space and let K ⊂ X be a nonempty
set. G : K→ 2X is called to be a KKMmap if for any finite set {x1, . . . , xn} ⊂ K the relation

co{x1, . . . , xn} ⊂
n⋃

i=1

G(xi) (2.8)

holds, where co{x1, . . . , xn} denoted the convex hull of {x1, . . . , xn}.

For the definition of the upper semicontinuity and lower semicontinuity, see [16].
The following FKKM theorem plays a crucial role in this paper.

Lemma 2.7. Let X be a Hausdorff topological vector space. Let K be a nonempty convex subset of X,
and let G : K→ 2K be a KKM map. If for each x ∈ K, G(x) is closed in X, and if there exists a point
x0 ∈ K such that G(x0) is compact, then

⋂
x∈KG(x)/=∅.

By definition, we can get the following lemma.

Lemma 2.8. Let A be a nonempty convex subset of X. Let F : A ×A→ 2Y be a set-valued map, and
let C ⊂ Y be a closed convex pointed cone. Moreover, suppose that F(x, y) is C-convex in its second
variable. Then, for each x ∈ A, F(x,A) + C is convex.

3. Scalarization

In this section, we extend a result in [3] to set-valued map.

Theorem 3.1. Suppose that intC/=∅, and that F(x,A) + C is a convex set for each x ∈ A. Then

Vw(A,F) =
⋃

f∈C∗\{0}
Vf(A,F). (3.1)

Proof. It is clear that

Vw(A,F) ⊃
⋃

f∈C∗\{0}
Vf(A,F). (3.2)
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Now we prove that

Vw(A,F) ⊂
⋃

f∈C∗\{0}
Vf(A,F). (3.3)

Let x ∈ Vw(A,F). By definition, F(x, y) ∩ (−intC) = ∅, for all y ∈ A. Thus

F(x,A) ∩ (−intC) = ∅. (3.4)

As C is a convex pointed cone, we have

(F(x,A) + C) ∩ (−intC) = ∅. (3.5)

By assumption, F(x,A) + C is a convex set. By the separation theorem of convex sets, there
exist some f ∈ Y ∗ \ {0}, such that

inf{f(F(x, y) + c) : y ∈ A, c ∈ C} ≥ sup{f(−c) : c ∈ C}. (3.6)

By (3.6), we obtain that f ∈ C∗ \ {0} and

f(F(x, y)) ≥ 0 ∀y ∈ A. (3.7)

Therefore, x ∈ Vf(A,F). Hence Vw(A,F) ⊂ ⋃
f∈C∗\{0}Vf(A,F). Thus we have

Vw(A,F) =
⋃

f∈C∗\{0}
Vf(A,F). (3.8)

4. Existence of the weak efficient solutions

Theorem 4.1. Let A be a nonempty closed convex subset of X and let C ⊂ Y be a closed convex
pointed cone with intC/=∅. Let F : A ×A→ 2Y be a set-valued map with F(x, x) ⊂ C for all x ∈ A.
Suppose that for each y ∈ A, F(·, y) is lower semicontinuous on A, and that F(x, y) is C-convex
in its second variable. If there exists a nonempty compact subset D of A, and y′ ∈ D, such that
F(x, y′) ∩ (−intC)/=∅, for all x ∈ A \D, then, for any f ∈ C∗ \ {0}, Vf(A,F)/=∅, Vf(A,F) ⊂ D,
Vw(A,F)/=∅, and Vw(A,F) ⊂ D.

Proof. Let f ∈ C∗ \ {0}. Define the set-valued map G : A→ 2A by

G(y) = {x ∈ A : f(F(x, y)) ≥ 0}, y ∈ A. (4.1)

By assumption, y ∈ G(y), for all y ∈ A, so G(y)/=∅. We claim that G is a KKM map.
Suppose to the contrary that there exists a finite subset {y1, . . . , yn} of A, and there exists
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x ∈ co{y1, . . . , yn} such that x /∈⋃n
i=1G(yi). Then x =

∑n
i=1tiyi for some ti ≥ 0, 1 ≤ i ≤ n, with∑n

i=1ti = 1, and x /∈G(yi), for all i = 1, . . . , n. Then there exist zi ∈ F(x, yi), such that

f(zi) < 0 ∀i = 1, . . . ,n. (4.2)

As F(x, y) is C-convex in its second invariable, we can get that

t1F(x, y1) + t2F(x, y2) + · · · + tnF(x, yn) ⊂ F(x, x) + C. (4.3)

By (4.3), we know that there exist z ∈ F(x, x), c ∈ C, such that

t1z1 + t2z2 + · · · tnzn = z + c. (4.4)

Hence f(z + c) = f(t1z1 + t2z2 + · · · tnzn). By assumption, we have f(z + c) ≥ 0. By (4.2),
however, we have f(t1z1 + t2z2 + · · · tnzn) < 0. This is a contradiction. Thus G is a KKM map.
Nowwe show that for each y ∈ A,G(y) is closed. For any sequence, {xn} ⊂ G(y) and xn →x0.
Because A is a closed set, we have x0 ∈ A. By assumption, for each y ∈ A, F(·, y) is lower
semicontinuous on A, then by [16], for each fixed y ∈ A, and for each z0 ∈ F(x0, y), there
exist zn ∈ F(xn, y), such that zn → z0. Because {xn} ⊂ G(y), we have

f(F(xn, y)) ≥ 0. (4.5)

Thus f(zn) ≥ 0. By the continuity of f and zn → z0, we have f(z0) ≥ 0. By the arbitrariness
of z0 ∈ F(x0, y), we have f(F(x0, y)) ≥ 0, that is, x0 ∈ G(y). Hence G(y) is closed. By the
assumption, we have G(y′) ⊂ D, and G(y′) is closed. Since D is compact, G(y′) is compact.
By Lemma 2.7, we have

⋂
y∈AG(y)/=∅. Thus there exists x ∈ ⋂

y∈AG(y). This means that

f(F(x, y)) ≥ 0 ∀y ∈ A. (4.6)

Therefore, x ∈ Vf(A,F). Next we show that Vf(A,F) ⊂ D. If x ∈ Vf(A,F), then x ∈⋂
y∈AG(y) ⊂ G(y′) ⊂ D. It follows from Vf(A,F) ⊂ Vw(A,F) that Vw(A,F)/=∅, and by

Theorem 3.1, we have Vw(A,F) ⊂ D.

Theorem 4.2. Let A be a nonempty closed convex subset of X and let C ⊂ Y be a closed convex
pointed cone with intC/=∅. Let f ∈ C∗ \ {0}. Assume that T : A→ 2L(X,Y ) is a v-hemicontinuous,
f-pseudomonotone mapping. Moreover, assume that the set-valued map F : A × A→ 2Y defined by
F(x, y) = (Tx, y − x) is C-convex in its second variable. If there exists a nonempty compact subsetD
of A, and y′ ∈ D, such that (Tx, y′ − x) ∩ (−intC)/=∅, for all x ∈ A \ D, then Vf(A,F)/=∅ and
Vf(A,F) ⊂ D.

Proof. Let f ∈ C∗ \ {0}. Define the set-valued maps E, G : A→ 2A by

E(y) = {x ∈ A : f((s, y − x)) ≥ 0 ∀s ∈ Tx}, y ∈ A,

G(y) = {x ∈ A : f((s, y − x)) ≥ 0 ∀s ∈ Ty}, y ∈ A,
(4.7)
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respectively. As for each y ∈ A, we have y ∈ E(y), then E(y)/=∅. The proof of the theorem is
divided into four steps.

(I) E is a KKMmap on A.
Suppose to the contrary that there exists a finite subset {y1, . . . , yn} of A, and there

exists x ∈ co{y1, . . . , yn} such that x /∈⋃n
i=1E(yi). Then x ∈ A, x =

∑n
i=1tiyi for some ti ≥ 0,

1 ≤ i ≤ n, with
∑n

i=1ti = 1, and x /∈E(yi), for all i = 1, . . . , n. Then there exist si ∈ T x such that

f((si, yi − x)) < 0 for each i = 1, 2, . . . , n. (4.8)

Since F(x, y) is C-convex in its second variable, we have

t1(T x, y1 − x) + · · · + tn(T x, yn − x) ⊂ (T x, x − x) + C = C. (4.9)

Let zi = (si, yi − x), for each i = 1, 2, . . . , n. By (4.9), we know there exists c ∈ C, such that

t1z1 + t2z2 + · · · + tnzn = c. (4.10)

As f ∈ C∗ \ {0}, we have

f(c) ≥ 0. (4.11)

While by (4.8), we have f(t1z1 + t2z2 + · · · + tnzn) < 0. This is a contraction. Hence E is a KKM
map on A.

(II) E(y) ⊂ G(y) for all y ∈ A and G is a KKMmap.
By the f-pseudomonotonicity of T , for each y ∈ A, we have E(y) ⊂ G(y). Since E is a

KKMmap, so is G.
(III)

⋂
y∈AG(y)/=∅.

Now we show that for each y ∈ A, G(y) is closed. Let {xn} be a sequence in G(y) such
that xn converges to x. By the closedness of A, we have x ∈ A. Since {xn} ⊂ G(y), then for
each s ∈ Ty, we have

f((s, y − xn)) ≥ 0. (4.12)

As xn →x, and the continuity of f , then for each s ∈ Ty, we have

f((s, y − x)) ≥ 0. (4.13)

Consequently, x ∈ G(y). Hence G(y) is closed. By the assumption, we have G(y′) ⊂ D. Then
G(y′) is compact since D is compact. By step (II), we know G is a KKM map. By Lemma 2.7,⋂

y∈AG(y)/=∅.
(IV)

⋂
y∈AG(y) =

⋂
y∈AE(y).

Because E(y) ⊂ G(y), we have
⋂

y∈AG(y) ⊃ ⋂
y∈AE(y). Now let us show that⋂

y∈AG(y) ⊂ ⋂
y∈AE(y). Let x ∈ ⋂

y∈AG(y). For each y ∈ A, and each s ∈ Ty, we have

f((s, y − x)) ≥ 0. (4.14)
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For any s ∈ T x and for each fixed y ∈ A, define the set-valued mapping J : [0, 1]→ 2Y by

J(α) = (T(αy + (1 − α)x), y − x) α ∈ [0, 1]. (4.15)

We pick a sequence {αn} ⊂ (0, 1] such that αn → 0 and set xn = αny + (1 − αn)x. Since A is a
convex set, xn ∈ A for each n. It is clear that xn →x. Letw = (s, y−x). We havew ∈ J(0). Since
T is v-hemicontinuous, J(α) is lower semicontinuous at 0. By [16], there exist wn ∈ J(αn) =
(T(αny + (1 − αn)x, y − x)), such that wn →w. As wn ∈ J(αn), there exist sn ∈ T(xn) such that
wn = (sn, y − x). By wn →w, we have (sn, y − x)→ (s, y − x). By (4.14), we have

αnf((sn, y − x)) = f((sn, αny + (1 − αn)x − x)) ≥ 0. (4.16)

Since αn > 0, f((sn, y − x)) ≥ 0. Hence f((s, y − x)) ≥ 0 since f is continuous and wn →w.
Therefore, for any s ∈ T x and for each y ∈ A, we have f((s, y −x)) ≥ 0. Hence x ∈ ⋂

y∈AE(y).
Thus

⋂
y∈AE(y) =

⋂
y∈AG(y)/=∅. This means that there exists x ∈ A, for each s ∈ Tx, we have

f((s, y − x)) ≥ 0, for all y ∈ A. It follows that x ∈ Vf(A,F), thus Vf(A,F)/=∅. By the proof of
Theorem 4.1, we know Vf(A,F) ⊂ D. Since Vf(A,F) ⊂ Vw(A,F), we have Vw(A,F)/=∅. The
proof of the theorem is completed.

5. Connectedness and compactness of the solutions set

In this section, we discuss the connectedness and the compactness of the weak efficient
solutions set for set-valued vector equilibrium problems and the set-valued vector Hartman-
Stampacchia variational inequalities in normed linear space.

Theorem 5.1. Let A be a nonempty closed convex subset of X, let C ⊂ Y be a closed convex pointed
cone with intC/=∅, and let F : A×A→ 2Y be a set-valued map. Assume that the following conditions
are satisfied:

(i) for each y ∈ A, F(·, y) is lower semicontinuous on A;

(ii) F(x, y) is C-concave in its first variable and C-convex in its second variable;

(iii) F(x, x) ⊂ C, for all x ∈ A;

(iv) {F(x, y) : x, y ∈ A} is a bounded subset in Y ;

(v) there exists a nonempty compact convex subset D of A, and y′ ∈ D, such that F(x, y′) ∩
(−intC)/=∅, for all x ∈ A \D.

Then Vw(A,F) is a nonempty connected compact set.

Proof. We define the set-valued map H : C∗ \ {0}→ 2D by

H(f) = Vf(A,F), f ∈ C∗ \ {0}. (5.1)

By Theorem 4.1, for each f ∈ C∗ \ {0}, we haveH(f)/=∅, hence Vw(A,F)/=∅ and Vw(A,F) ⊂
D. It is clear that C∗ \ {0} is convex, so it is a connected set. Now we prove that, for each
f ∈ C∗ \ {0}, H(f) is a connected set. Let x1, x2 ∈ H(f), we have x1, x2 ∈ D and

f(F(xi, y)) ≥ 0 ∀y ∈ A. (5.2)
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Because F(x, y) is C-concave in its first variable, for each fixed y ∈ A, and for above x1, x2 ∈
D, and t ∈ [0, 1], we have tx1 + (1 − t)x2 ∈ D since D is convex, and

F(tx1 + (1 − t)x2, y) ⊂ tF(x1, y) + (1 − t)F(x2, y) + C. (5.3)

Hence for each y ∈ A, z ∈ F(tx1 + (1 − t)x2, y), there exist z1 ∈ F(x1, y), z2 ∈ F(x2, y), and
c ∈ C, such that z = tz1 + (1 − t)z2 + c. As f ∈ C∗ \ {0} and by (5.2), we have

f(z) = tf(z1) + (1 − t)f(z2) + f(c) ≥ 0. (5.4)

Thus

f(F(tx1 + (1 − t)x2, y)) ≥ 0 ∀y ∈ A, (5.5)

that is tx1 + (1 − t)x2 ∈ H(f). SoH(f) is convex, therefore it is a connected set.
Now we show that H(f) is upper semicontinuous on C∗ \ {0}. Since D is a nonempty

compact set, by [16], we only need to prove that H is closed. Let the sequence {(fn, xn)} ⊂
Graph(H) and (fn, xn)→ (f0, x0), where {fn} converge to f0 with respect to the norm
topology. As (fn, xn) ∈ Graph(H), we have

xn ∈ H(fn) = Vfn(A,F), (5.6)

that is, fn(F(xn, y)) ≥ 0, for all y ∈ A. As xn →x0 andD is compact, we have x0 ∈ D. Since for
each y ∈ A, F(·, y) is lower semicontinuous onA, for each fixed y ∈ A, and each z0 ∈ F(x0, y),
there exist zn ∈ F(xn, y), such that zn → z0. From fn(F(xn, y)) ≥ 0, we have

fn(zn) ≥ 0. (5.7)

By the continuity of f0 and zn → z0, we have

f0(zn) −→ f0(z0). (5.8)

Let Q = {F(x, y) : x, y ∈ A}. By assumption, Q is a bounded set in Y , then there exist some
M > 0, such that for each z ∈ Q, we have ‖z‖ ≤ M. For any ε > 0, because fn − f0 → 0 with
respect to norm topology, there exists n0 ∈ N, and when n ≥ n0, we have ‖fn − f0‖ < ε.
Therefore, there exists n0 ∈ N, and when n ≥ n0, we have

|fn(zn) − f0(zn)| = |(fn − f0)(zn)| ≤ ‖fn − f0‖‖zn‖ ≤ Mε. (5.9)

Hence

lim
n→∞

(fn(zn) − f0(zn)) = 0. (5.10)
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Consequently, by (5.8), (5.10), we have

lim
n→∞

fn(zn) = lim
n→∞

(fn(zn) − f0(zn) + f0(zn))

= lim
n→∞

(fn(zn) − f0(zn)) + lim
n→∞

(f0(zn))

= f0(z0).

(5.11)

By (5.7), we have f0(z0) ≥ 0. So for any y ∈ A and for each z0 ∈ F(x0, y), we have f0(z0) ≥ 0.
Hence

f0(F(x0, y)) ≥ 0 ∀y ∈ A. (5.12)

This means that

x0 ∈ Vf0(A,F) = H(f0). (5.13)

Hence the graph of H is closed. Therefore, H is a closed map. By [16], H is upper
semicontinuous onC∗ \{0}. Because F(x, y) isC-convex in its second variable, by Lemma 2.8,
for each x ∈ A, F(x,A) + C is convex. It follows from Theorem 3.1 that

Vw(A,F) =
⋃

f∈C∗\{0}
Vf(A,F). (5.14)

Thus by [17, Theorem 3.1] Vw(A,F) is a connected set.
Now, we show that Vw(A,F) is a compact set. We first show that Vw(A,F) is a

closed set. Let {xn} ⊂ Vw(A,F) with xn →x0. Since D is compact, x0 ∈ D. We claim that
x0 ∈ Vw(A,F). Suppose to the contrary that x0 /∈Vw(A,F), then there exist some y0 ∈ A such
that

F(x0, y0) ∩ (−intC)/=∅. (5.15)

Thus there exists z0 ∈ F(x0, y0) such that

z0 ∈ −intC. (5.16)

Hence −intC is a neighborhood of z0. Since F(·, y0) is lower semicontinuous at x0, there exists
some neighborhood U(x0) of x0 such that

F(x, y0) ∩ (−intC)/=∅ ∀x ∈ U(x0) ∩A. (5.17)

Since xn →x0, there exist some n0, and when n ≥ n0, we have xn ∈ U(x0) ∩A. By (5.17),

F(xn, y0) ∩ (−intC)/=∅. (5.18)
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This contradicts {xn} ⊂ Vw(A,F). Thus x0 ∈ Vw(A,F). This means that Vw(A,F) is a closed
set. Since D is compact and Vw(A,F) ⊂ D, Vw(A,F) is compact.

Theorem 5.2. Let A be a nonempty closed convex subset of X, and let C ⊂ Y be a closed convex
pointed cone with intC/=∅. Assume that for each f ∈ C∗\{0}, T : A→ 2L(X,Y ) is a v-hemicontinuous,
f-pseudomonotone mapping. Moreover, assume that the set-valued map F : A × A→ 2Y defined by
F(x, y) = (Tx, y − x) is C-convex in its second variable, and the set {F(x, y) : x, y ∈ A} is a
bounded set in Y . If there exists a nonempty compact convex subset D of A, and y′ ∈ D, such that
(Tx, y′ − x) ∩ (−intC)/=∅, for all x ∈ A \D, then Vw(A,F) is a nonempty connected set.

Proof. We define the set-valued map H : C∗ \ {0}→ 2D by

H(f) = Vf(A,F) for each f ∈ C∗ \ {0}. (5.19)

By Theorem 4.2, for each f ∈ C∗ \{0}, we haveH(f) = Vf(A,F)/=∅ and Vf(A,F) ⊂ D. Hence
Vw(A,F)/=∅ and Vw(A,F) ⊂ D. Clearly, C∗ \ {0} is a convex set, hence it is a connected set.
Define the set-valued maps E, G : A→ 2A by

E(y) = {x ∈ A : f((s, y − x)) ≥ 0, ∀s ∈ Tx}, y ∈ A,

G(y) = {x ∈ A : f((s, y − x)) ≥ 0, ∀s ∈ Ty}, y ∈ A,
(5.20)

respectively. Now we prove that for each f ∈ C∗ \ {0}, H(f) is a connected set. Let x1, x2 ∈
H(f) = Vf(A,F), then x1, x2 ∈

⋂
y∈AE(y). By the proof of Theorem 4.2, we have

⋂
y∈AG(y) =⋂

y∈AE(y), so x1, x2 ∈
⋂

y∈AG(y). Hence for i = 1, 2, and for each y ∈ A, s ∈ Ty, we have

f((s, y − xi)) ≥ 0. (5.21)

Then, for each y ∈ A, s ∈ Ty, and t ∈ [0, 1], we have tx1 + (1 − t)x2 ∈ D sinceD is convex and

f((s, y − (tx1 + (1 − t)x2))) ≥ 0. (5.22)

Hence tx1 + (1 − t)x2 ∈ ⋂
y∈AG(y) =

⋂
y∈AE(y). Thus tx1 + (1 − t)x2 ∈ H(f). Consequently,

for each f ∈ C∗ \ {0}, H(f) is a convex set. Therefore, it is a connected set. The following is
to prove that H is upper semicontinuous on C∗ \ {0}. Since D is a nonempty compact set, by
[16] we only need to show that H is a closed map. Let sequence {(fn, xn)} ⊂ Graph(H) and
(fn, xn)→ (f0, x0), where {fn} converges to f0 with respect to the norm topology of Y ∗. As
(fn, xn) ∈ Graph(H), we have

xn ∈ H(fn) = Vfn(A,F). (5.23)

Then, for each s′ ∈ Txn, we have that

fn((s′, y − xn)) ≥ 0 ∀y ∈ A. (5.24)
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By assumption, for each n, T : A→ 2L(X,Y ) is fn-pseudomonotone, and by (5.24), for each
y ∈ A, for the above xn, and for each s ∈ Ty, we have

fn((s, y − xn)) ≥ 0 ∀y ∈ A. (5.25)

As xn →x0, we have (s, y − xn)→ (s, y − x0), and f0((s, y − xn))→ f0((s, y − x0)). As xn →x0,
and D is compact, we have x0 ∈ D. Let Q = {F(x, y) : x, y ∈ A}. By assumption, Q is a
bounded set in Y . Then, there exists M > 0, such that for each z ∈ Q, we have ‖z‖ ≤ M. For
any ε > 0, because fn − f0 → 0 with respect to the norm topology, there exists n0 ∈ N, and
when n ≥ n0, we have ‖fn − f0‖ < ε. Therefore, there exists n0 ∈ N, and when n ≥ n0, we
have

|fn((s, y − xn)) − f0((s, y − xn))| = |(fn − f0)((s, y − xn))| ≤ Mε. (5.26)

Hence

lim
n→∞

(fn((s, y − xn)) − f0((s, y − xn))) = 0. (5.27)

Then

lim
n→∞

fn((s, y − xn)) = lim
n→∞

(fn((s, y − xn)) − f0((s, y − xn)) + f0((s, y − xn)))

= f0((s, y − x0)).
(5.28)

Then, by (5.25), (5.28), we have f0((s, y −x0)) ≥ 0. Hence for each y ∈ A, and for each s ∈ Ty,
we have f0((s, y − x0)) ≥ 0. Since T is f0-pseudomonotone, for each y ∈ A, and for each
s∗ ∈ Tx0, we have f0((s∗, y − x0)) ≥ 0. Hence x0 ∈ H(f0) = Vf0(A,F). Therefore, the graph
of H is closed, and H is a closed map. By [16], we know that H is upper semicontinuous on
C∗ \ {0}. Because F(x, y) is C-convex in its second variable, for each x ∈ A, F(x,A) + C is
convex. It follows from Theorem 3.1 that

Vw(A,F) =
⋃

f∈C∗\{0}
Vf(A,F). (5.29)

Then, by [17, Theorem 3.1], we know that Vw(A,F) is a connected set. The proof of the
theorem is completed.

LetNb(0) denote the base of neighborhoods of 0 of L(X,Y ). By [18], for each bounded
subset Q ⊂ X, and for each neighborhood V of 0 in Y , we have

W(Q,V ) := {s ∈ L(X,Y ) : s(Q) ⊂ V } ∈ Nb(0). (5.30)

Lemma 5.3. Let A be a nonempty convex subset of X, and let T : A→ 2L(X,Y ). If T is lower
semicontinuous on A, then T is v-hemicontinuous on A.
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Proof. For any fixed x, y ∈ A, we need to show that the set-valued mapping

J(α) := (T(αy + (1 − α)x), y − x), α ∈ [0, 1], (5.31)

is lower semicontinuous at 0. For any z ∈ J(0) and for any neighborhood U(z) of z, there
exists s0 ∈ Tx such that z = (s0, y − x), and there exists a neighborhood V of 0 in Y , such that
U(z) = z + V . Since T is lower semicontinuous at x, for the neighborhood

U(s0) := s0 +W(y − x, V ) = s0 + {s ∈ L(X,Y ) : (s, y − x) ∈ V } (5.32)

of s0, there exists a neighborhood U(x) of x such that

Tx′ ∩U(s0)/=∅ ∀x′ ∈ U(x) ∩A. (5.33)

For the above y, since αy + (1 − α)x→x, when α→ 0, there exists 0 < α0 < 1, and when
0 < α < α0, we have αy + (1 − α)x ∈ U(x). By (5.33), we have

T(αy + (1 − α)x) ∩U(s0)/=∅ ∀0 < α < α0. (5.34)

Thus there exist sα ∈ T(αy + (1 − α)x) such that sα ∈ U(s0), for all 0 < α < α0. By (5.32), we
have

(sα, y − x) ∈ U(z) ∀0 < α < α0, (5.35)

that is

J(α) ∩U(z)/=∅ ∀0 ≤ α < α0. (5.36)

This means that J is lower semicontinuous at 0. By definition, T is v-hemicontinuous on
A.

Theorem 5.4. Let A be a nonempty closed bounded convex subset of X, and let C ⊂ Y be a closed
convex pointed cone with intC/=∅. Assume that for each f ∈ C∗ \ {0}, T : A→ 2L(X,Y ) is a f-
pseudomonotone, lower semicontinuous mapping. Moreover, assume that the set-valued map F : A ×
A→ 2Y defined by F(x, y) = (Tx, y − x) is C-convex in its second variable, and the set {F(x, y) :
x, y ∈ A} is a bounded set in Y . If there exists a nonempty compact convex subset D of A, and
y′ ∈ D, such that (Tx, y′ − x) ∩ (−intC)/=∅, for all x ∈ A \ D, then Vw(A,F) is a nonempty
connected compact set.

Proof. By Lemma 5.3 and Theorem 5.2, Vw(A,F) is a nonempty connected set. Since D is a
compact set, we need only to show that Vw(A,F) is closed. Let {xn} ⊂ Vw(A,F), xn →x0. It
is clear that x0 ∈ D and {xn} ⊂ D. We claim that x0 ∈ Vw(A,F). Suppose to the contrary that
x0 /∈Vw(A,F), then there exists y0 ∈ A such that

F(x0, y0) ∩ (−intC)/=∅, (5.37)
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that is

(Tx0, y0 − x0) ∩ (−intC)/=∅. (5.38)

Thus there exists s0 ∈ Tx0 such that

(s0, y0 − x0) ∈ −intC. (5.39)

Hence there exists ε > 0 such that

(s0, y0 − x0) + εB ⊂ −intC, (5.40)

where B is the unit ball of Y . Set

W

(
y0 −A,

(
ε

2

)
B

)
=
{
s ∈ L(X,Y ) : (s, y0 −A) ⊂

(
ε

2

)
B

}
. (5.41)

By definition, W(y0 − A, (ε/2)B) is a neighborhood of zero of L(X,Y ), since A is bounded.
Since T is lower semicontinuous at x0, for the above s0 ∈ Tx0 and the aboveW(y0−A, (ε/2)B),
there exists a neighborhood U(x0) of x0 such that

Tx ∩
(
s0 +W

(
y0 −A,

(
ε

2

)
B

))
/=∅ ∀x ∈ U(x0) ∩A. (5.42)

Since xn →x0, there exists N such that when n ≥ N, we have xn ∈ U(x0). Thus by (5.42) we
have

Txn ∩
(
s0 +W

(
y0 −A,

(
ε

2

)
B

))
/=∅. (5.43)

Thus there exist sn ∈ Txn ∩ (s0 + W(y0 − A, (ε/2)B)), for all n ≥ N. We have sn − s0 ∈
W(y0 −A, (ε/2)B), and hence

(sn − s0, y0 −A) ⊂
(
ε

2

)
B. (5.44)

Therefore,

(sn − s0, y0 − xn) ∈
(
ε

2

)
B ∀n ≥ N. (5.45)
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Since xn →x0 and s0 ∈ L(X,Y ), we have (s0, x0 − xn)→ 0. Hence there exists N1 ≥ N, and
when n ≥ N1, we have (s0, x0 − xn) ∈ (ε/2)B. This combining (5.45) implies that

(sn, y0 − xn) − (s0, y0 − x0)

= (sn, y0 − xn) − (s0, y0 − xn) + (s0, y0 − xn) − (s0, y0 − x0)

= (sn − s0, y0 − xn) + (s0, x0 − xn) ∈
(
ε

2

)
B +

(
ε

2

)
B = εB ∀n ≥ N1.

(5.46)

Hence

(sn, y0 − xn) ∈ (s0, y0 − x0) + εB ∀n ≥ N1. (5.47)

By (5.40) and (5.47), we have

(sn, y0 − xn) ∈ −intC ∀n ≥ N1. (5.48)

On the other hand, since {xn} ⊂ Vw(A,F), we have

(Txn, y − xn) ∩ (−intC) = ∅ ∀y ∈ A, ∀n. (5.49)

This contradicts (5.48), because sn ∈ Txn. Thus x0 ∈ Vw(A,F). This means that Vw(A,F) is a
closed subset of X.
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