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1. Introduction and main results

Let N ≥ 2 and let 〈·, ·〉 denote the canonical inner product on R
N × R

N . If ωN stands for the
area of the surface of the (N − 1)-dimensional unit sphere, then ωN = 2πN/2/Γ(N/2), where Γ
is the gamma function defined by Γ(s) =

∫∞
0 e−tts−1dt for s > 0 (see [1, Proposition 0.7]).

Let E denote the normalized fundamental solution of Laplace equation:

E(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2π

ln |x|, x /= 0 if N = 2,

1
(2 −N)ωN |x|N−2 , x /= 0 if N ≥ 3.

(1.1)

Unless otherwise stated, we assume throughout that Ω ⊂ R
N is a bounded domain

with C2 boundary ∂Ω. Let ν denote the unit outward normal to ∂Ω and let dσ indicate
the (N−1)-dimensional area element in ∂Ω. The Green-Riemann formula says that any function
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f ∈ C2(Ω) ∩ C1(Ω) satisfying Δf ∈ C(Ω) can be represented in Ω as follows (see [2, Section
2.4]):

f(y) =
∫

∂Ω

(
f(x)

∂E

∂ν
(x − y) − ∂f

∂ν
(x)E(x − y)

)
dσ(x) +

∫

Ω
E(x − y)Δf(x)dx, ∀y ∈ Ω,

(1.2)

where (∂f/∂ν)(x) is the normal derivative of f at x ∈ ∂Ω. In particular, if f ∈ C∞
0 (Ω) (the set of

functions in C∞(Ω)with compact support inΩ), then (1.2) leads to the representation formula

f(y) =
∫

Ω
E(x − y)Δf(x)dx, ∀y ∈ Ω. (1.3)

For a continuous function h on ∂Ω, the double-layer potential with moment h is defined by

uh(y) =
∫

∂Ω
h(x)

∂E

∂ν
(x − y)dσ(x). (1.4)

Expression (1.4)may be interpreted as the potential produced by dipoles located on ∂Ω;
the direction of which at any point x ∈ ∂Ω coincides with that of the exterior normal ν, while
its intensity is equal to h(x). The double-layer potential is well defined in R

N and it satisfies
the Laplace equation Δu = 0 in R

N \ ∂Ω (see Proposition 2.8). For other properties of the
double-layer potential, see Lemma 2.9 and Proposition 2.10.

The double-layer potential plays an important role in solving boundary value prob-
lems of elliptic equations. The representation of the solution of the interior/exterior
Dirichlet problem for Laplace’s equation is sought as a double-layer potential with unknown
density h. An application of property (2.14) leads to a Fredholm equation of the second kind
on ∂Ω in order to determine the function h (see, e.g., [3]).

In many problems of mathematical physics and variational calculus, it is not sufficient
to deal with classical solutions of differential equations. One needs to introduce the notion of
weak derivatives and to work in Sobolev spaces, which have become an indispensable tool in
the study of partial differential equations.

For 1 ≤ p ≤ ∞, we denote by W1,p(Ω) the Sobolev space defined by

W1,p(Ω) =

⎧
⎪⎪⎨

⎪⎪⎩
u ∈ Lp(Ω)

∣∣∣
∣∣∣∣∣

∃g1, g2, . . . , gN ∈ Lp(Ω) such that

∫

Ω
u
∂φ

∂xi
dx = −

∫

Ω
giφ dx, ∀φ ∈ C∞

0 (Ω), ∀i ∈ {1, 2, . . . ,N}

⎫
⎪⎪⎬

⎪⎪⎭
. (1.5)

For u ∈ W1,p(Ω), we define gi = ∂u/∂xi and write ∇u = (∂u/∂x1, ∂u/∂x2, . . . , ∂u/∂xN). The
Sobolev spaceW1,p(Ω) is endowed with the norm

‖u‖W1,p(Ω) = ‖u‖Lp(Ω) +
N∑

i=1

∥∥∥∥
∂u

∂xi

∥∥∥∥
Lp(Ω)

, (1.6)

where ‖·‖Lp(Ω) stands for the usual norm on Lp(Ω). The closure of C∞
0 (Ω) in the norm of

W1,p(Ω) is denoted by W
1,p
0 (Ω). For details on Sobolev spaces, we refer to [2, 4], or [5].
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Since Ω is bounded, we have C1(Ω) ⊂ W1,∞(Ω) ⊆ W1,p(Ω) for every p ∈ [1,∞].
The following representation holds for functions f in W

1,p
0 (Ω) with p ≥ 1 (see Remark

2.3):

f(y) = −
∫

Ω

〈∇E(x − y),∇f(x)
〉
dx a.e. y ∈ Ω. (1.7)

We first give an integral representation of functions in W1,p(Ω) for any p ≥ 1.

Theorem 1.1. For any g ∈ W1,p(Ω) with p ≥ 1, there is a sequence (gn) in C∞(Ω) such that

g(y) = lim
n→∞

∫

∂Ω
gn(x)

∂E

∂ν
(x − y)dσ(x) −

∫

Ω

〈∇E(x − y),∇g(x)
〉
dx a.e. y ∈ Ω, (1.8)

0 = lim
n→∞

∫

∂Ω
gn(x)

∂E

∂ν
(x − y)dσ(x) −

∫

Ω

〈∇E(x − y),∇g(x)
〉
dx, ∀y ∈ R

N \Ω. (1.9)

Remark 1.2. If g ∈ W
1,p
0 (Ω), then there exists a sequence (gn) in C∞

0 (Ω) for which (1.8) holds.
Thus, we regain (1.7) for any function f in W

1,p
0 (Ω).

Under a suitable smoothness condition, the representation of Theorem 1.1 can be refined
for functions in W1,p(Ω) with p > N (see Theorem 1.3). Using Morrey’s inequality, one can
prove that functions in the Sobolev space W1,p(Ω) with p > N are classically differentiable
almost everywhere in Ω (cf. [2, page 176] or [4]). By Proposition 2.13, any function inW1,p(Ω)
with N < p < ∞ is uniformly Hölder continuous in Ω with exponent 1 −N/p (after possibly
being redefined on a set of measures 0). In particular, any function in W1,p(Ω) with p > N is
continuous on Ω, and thus it has a well-defined trace which is bounded.

The proof of Theorem 1.1 relies on the density of C∞(Ω) in W1,p(Ω) as well as the fol-
lowing result.

Theorem 1.3. Assume that f ∈ W1,p(Ω) ∩ C1(Ω \A), where p ≥ 1 and A = (ai)i∈I is a finite family
of points in Ω.

(a) If p > N, then f can be represented as follows:

f(y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uf(y) −
∫

Ω

〈∇E(x − y),∇f(x)
〉
dx, ∀y ∈ Ω,

2
(
uf(y) −

∫

Ω

〈∇E(x − y),∇f(x)
〉
dx

)
, ∀y ∈ ∂Ω.

(1.10)

(b) If p ≥ 1 and f ∈ C(Ω), then

0 = uf(y) −
∫

Ω

〈∇E(x − y),∇f(x)
〉
dx, ∀y ∈ R

N \Ω. (1.11)
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Remark 1.4. (i) If f = 1 on Ω, then Theorem 1.3 recovers Gauss formula (see Lemma 2.9).
(ii) Theorem 1.3 leads to the mean value theorems for harmonic functions (see

Remark 5.4).
(iii) If f ∈ C2(Ω) ∩ C1(Ω) such that Δf ∈ C(Ω), then by combining Theorem 1.3 and

Proposition 2.7, we regain the Green-Riemann representation formula (1.2).

This paper is organized as follows. In Section 2, we include some known results that
are necessary later in the paper. Section 3 is dedicated to the proof of Theorem 1.3. Based
on it, we prove Theorem 1.1 in Section 4. We conclude the paper with a representation of
smooth functions in W1,p(Ω) with p > N in terms of the integral mean value over the domain
(see Theorem 5.1 in Section 5). As a byproduct of our main results, we obtain a sharp esti-
mate of the difference between the value of a function f and the double-layer potential with
moment f .

2. Preliminaries

Lemma 2.1 (see [4, Theorem IV.9]). Let ω ⊂ R
N be an open set. Let (hn) be a sequence in Lp(ω),

1 ≤ p ≤ ∞, and let h ∈ Lp(ω) be such that ‖hn − h‖Lp(ω) → 0.
Then, there exist a subsequence (hnk

) and a function ϕ ∈ Lp(ω) such that
(a) hnk

(x) → h(x) a.e. in ω,
(b) |hnk

(x)| ≤ ϕ(x) for all k, a.e. in ω.

For fixed y ∈ R
N , we define the operatorKj by

(Kju
)
(y) =

∫

Ω

xj − yj

|x − y|N u(x)dx, j ∈ {1, 2, . . . ,N}. (2.1)

Lemma 2.2. (i) If 1 ≤ p ≤ N, then the operatorKj : Lp(Ω) → Lp(Ω) is compact.
(ii) If p > N, then the operatorKj : Lp(Ω) → C(Ω) is compact.

Remark 2.3. If Ω ⊂ R
N is a bounded domain and f ∈ W

1,p
0 (Ω) with p ≥ 1, then (1.7) holds.

Indeed, E(x) given by (1.1) has weak derivatives and (∂/∂xj)E(x − y) = (1/ωn)((xj − yj)/|x −
y|N) for every j ∈ {1, 2, . . . ,N}. If f ∈ C∞

0 (Ω), then by the definition of weak derivatives, we
have

∫

Ω
E(x − y)(Δf)(x)dx = −

N∑

j=1

∫

Ω

∂E(x − y)
∂xj

∂f

∂xj
dx = −

∫

Ω

〈∇E(x − y),∇f(x)
〉
dx. (2.2)

Thus, using (1.3), we find (1.7) for every y ∈ Ω. Now, if f ∈ W
1,p
0 (Ω), we take a sequence

(fn)n≥1 in C∞
0 (Ω) such that fn → f inW1,p(Ω) as n → ∞. Thus, for each fn with n ≥ 1, we have

fn(y) = − 1
ωN

N∑

j=1

Kj

(
∂fn
∂xj

)
(y), ∀y ∈ Ω. (2.3)
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By Lemma 2.2, each operator Kj is compact from Lp(Ω) to Lp(Ω). Thus, ∂fn/∂xj → ∂f/∂xj

in Lp(Ω) as n → ∞ implies that Kj(∂fn/∂xj) → Kj(∂f/∂xj) in Lp(Ω) as n → ∞. By Lemma
2.1, we have (up to a subsequence of (fn)) limn→∞Kj(∂fn/∂xj) (y) = Kj(∂f/∂xj) (y) and
limn→∞fn(y) = f(y) a.e. y ∈ Ω (since fn → f in Lp(Ω) as n → ∞). By passing to the limit in
(2.3), we conclude (1.7).

Lemma 2.4 (see [5, Lemma 5.47]). Let y ∈ R
N and let ω be a domain of finite volume in R

N .
If 0 ≤ γ < N, then

∫

ω

|x − y|−γdx ≤ K|ω|1−γ/N, (2.4)

where the constant K depends on γ andN but not on y or ω.

By a vector field, we understand an R
N-valued function on a subset of R

N . If Z =
(z1, z2, . . . , zN) is a differentiable vector field on an open set ω ⊂ R

N , the divergence of Z on
ω is defined by

divZ =
N∑

i=1

∂zi
∂xi

. (2.5)

Proposition 2.5 (the divergence theorem). If ω ⊂ R
N is a bounded domain with C1 boundary and

Z is a vector field of class C1(ω) ∩ C(ω), then
∫

ω

divZ(y)dy =
∫

∂ω

〈
Z(x), ν(x)

〉
dσ(x). (2.6)

If ω is a domain to which the divergence theorem applies, then we have the following.

Proposition 2.6 (Green’s first identity). If u, v ∈ C2(ω) ∩ C1(ω), then the following holds:

∫

ω

v(x)Δu(x)dx +
∫

ω

〈∇u(x),∇v(x)
〉
dx =

∫

∂ω

v(x)
∂u

∂ν
(x)dσ(x). (2.7)

Proposition 2.7. Let Ω be a bounded domain with C1 boundary. If f ∈ C2(Ω) ∩ C1(Ω) such that
Δf ∈ C(Ω), then for every y ∈ R

N \ ∂Ω, one has

∫

Ω

〈∇E(x − y),∇f(x)
〉
dx =

∫

∂Ω

∂f

∂ν
(x)E(x − y)dσ(x) −

∫

Ω
E(x − y)Δf(x)dx. (2.8)

Proof. If y ∈ R
N \ Ω, then (2.8) follows from Proposition 2.6 (since x �→ E(x − y) belongs to

C2(Ω) ∩ C1(Ω)). For y ∈ Ω fixed, we choose ε > 0 such that Bε(y) ⊂ Ω, where Bε(y) denotes
the open ball of radius ε > 0 centered at y. By Proposition 2.6 (applied on Ω \ Bε(y)), we find

∫

Ω\Bε(y)
E(x − y)Δf(x)dx =

∫

∂Ω

∂f

∂ν
(x)E(x − y)dσ(x) −

∫

∂Bε(y)

∂f

∂ν
(x)E(x − y)dσ(x)

−
∫

Ω\Bε(y)

〈∇f(x),∇E(x − y)
〉
dx.

(2.9)
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Since Δf ∈C(Ω) and f ∈C1(Ω), we have that x �→ E(x − y)Δf(x) and x �→ ∫
Ω〈∇E(x −

y),∇f(x)〉dx are integrable on Ω. We see that

Iε :=
∫

∂Bε(y)

∂f

∂ν
(x)E(x − y)dσ(x) −→ 0 as ε −→ 0. (2.10)

Indeed, for some constant C > 0, we have

Iε ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2π

∫

∂Bε(y)

∣
∣
∣
∣
∂f

∂ν
(x) ln |x − y|

∣
∣
∣
∣dσ(x) ≤ −Cε ln ε if N = 2,

1
ωN(N − 2)

∫

∂Bε(y)

∣
∣
∣
∣
∂f

∂ν
(x)

∣
∣
∣
∣

dσ(x)
|x − y|N−2 ≤ CωNε if N ≥ 3.

(2.11)

Thus, passing to the limit ε → 0 in (2.9) and using (2.10), we obtain (2.8).

We next give some properties of the double-layer potential uh(y) defined by (1.4) (see
[1]).

Proposition 2.8. If h is a continuous function on ∂Ω, then

(i) uh(y) given by (1.4) is well defined for all y ∈ R
N ,

(ii) Δuh(y) = 0 for all y ∈ R
N \ ∂Ω.

Lemma 2.9. Let v be the double-layer potential with moment h ≡ 1, that is,

v(y) =
∫

∂Ω

∂E

∂ν
(x − y)dσ(x). (2.12)

Then, one has

v(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if y ∈ Ω,
1
2

if y ∈ ∂Ω,

0 if y ∈ R
N \Ω.

(2.13)

Proposition 2.10. If h is continuous on ∂Ω and y0 ∈ ∂Ω, then

lim
Ω�y→y0

uh(y) =
1
2
h
(
y0
)
+ uh

(
y0
)
, lim

RN\Ω�y→y0

uh(y) = −1
2
h
(
y0
)
+ uh

(
y0
)
. (2.14)

Remark 2.11. If h ∈ C(∂Ω), then uh ∈ C(∂Ω) ∩ Lm(Ω), for each 1 ≤ m ≤ ∞.

Indeed, by Propositions 2.8 and 2.10, the function ϕ : Ω → R defined by ϕ(y) = uh(y)
for y ∈ Ω and ϕ(y0) = (1/2)h(y0) + uh(y0) for y0 ∈ ∂Ω is continuous on Ω. It follows that
uh ∈ C(∂Ω) and ϕ ∈ L∞(Ω). But ϕ ≡ uh on Ω so that uh ∈ L∞(Ω). Thus, for each 1 ≤ m < ∞, we
have

∫

Ω

∣∣uh

∣∣mdx ≤ ∥∥uh

∥∥m

L∞(Ω)|Ω| < ∞, (2.15)

which shows that uh ∈ Lm(Ω).
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Definition 2.12. A Lipschitz domain (or domain with Lipschitz boundary) is a domain in R
N

whose boundary can be locally represented as the graph of a Lipschitz continuous function.

Many of the Sobolev embedding theorems require that the domain of study be a Lips-
chitz domain. All smooth and many piecewise smooth boundaries are Lipschitz boundaries.

Proposition 2.13 (see [2, Theorem 7.26]). Let ω be a Lipschitz domain in R
N . If N < p < ∞, then

W1,p(ω) is continuously embedded in C0,α(ω) with α = 1 −N/p.

Proposition 2.14 (see [2, page 155]). If ω is a Lipschitz domain, then C∞(ω) is dense in W1,p(ω)
for 1 ≤ p < ∞.

3. Proof of Theorem 1.3

Since Ω is bounded, we can assume without loss of generality that p < ∞.

Proof of (a). Suppose that p > N. Then, f ∈ C0,α(Ω)with α = 1 −N/p (cf. Proposition 2.13).

Proof of (1.10) when y ∈ Ω. We define F : Ω \ {y} → R
N as follows:

F(x) =
(
f(x) − f(y)

)∇E(x − y) =
f(x) − f(y)
ωN |x − y|N (x − y). (3.1)

Note that F /∈C1(Ω). We overcome this problem by choosing ε > 0 small enough such that
Bε(y), respectively, Bε(ai) (ai ∈ A\{y}), is contained withinΩ and every two such closed balls
are disjoint. Therefore, F ∈ C1(Dε) ∩ C(Dε), where Dε = Ω \ (⋃i∈IBε(ai) ∪ Bε(y)).

Using Proposition 2.5, we arrive at

∫

Dε

divFdx =
∫

∂Ω

(
f(x) − f(y)

)∂E
∂ν

(x − y)dσ(x) − 1
εN−1−α

∫

∂Bε(y)

f(x) − f(y)
ωN |x − y|α dσ(x)

− 1
ωN

∑

i∈I,ai/=y

∫

∂Bε(ai)

f(x) − f(y)
ε|x − y|N

〈
x − y, x − ai

〉
dσ(x).

(3.2)

We see that

lim
ε→0

1
εN−1−α

∫

∂Bε(y)

f(x) − f(y)
|x − y|α dσ(x) = 0. (3.3)

Indeed, by Proposition 2.13, there exists a constant L > 0 such that

0 ≤ 1
εN−1−α

∣∣∣∣

∫

∂Bε(y)

f(x) − f(y)
|x − y|α dσ(x)

∣∣∣∣

≤ L

εN−1−α

∫

∂Bε(y)
dσ(x) = LωNεα −→ 0 as ε −→ 0.

(3.4)

Notice that, for each i ∈ I with ai /= y, there exists a constant Ci > 0 such that

∣∣f(x) − f(y)
∣∣ ≤ Ci|x − y|N−1, ∀x ∈ Bε

(
ai

)
(3.5)
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(since y/∈Bε(ai)). Hence, if i ∈ I such that ai /= y, then

∣∣∣∣

∫

∂Bε(ai)

f(x) − f(y)
ε|x − y|N

〈
x − y, x − ai

〉
dσ(x)

∣∣∣∣ ≤
∫

∂Bε(ai)

∣∣f(x) − f(y)
∣∣

|x − y|N−1 dσ(x) ≤ CiωNεN−1. (3.6)

By (3.2)–(3.6) and Gauss lemma, it follows that

lim
ε→0

∫

Dε

divF(x)dx =
∫

∂Ω

(
f(x) − f(y)

)∂E
∂ν

(x − y)dσ(x)

=
∫

∂Ω
f(x)

∂E

∂ν
(x − y)dσ(x) − f(y).

(3.7)

Recall that x �→ E(x − y) is harmonic on R
N \ {y}. Thus, from (3.1), we derive that

divF(x) =
〈∇f(x),∇E(x − y)

〉
, ∀x ∈ Dε. (3.8)

From Lemma 2.2(ii), we know that

y �−→
∫

Ω

〈∇E(x − y),∇f(x)
〉
dx is continuous on Ω. (3.9)

From (3.7) and (3.8), we find

∫

Ω

〈∇f(x),∇E(x − y)
〉
dx = lim

ε→0

∫

Dε

divF(x)dx =
∫

∂Ω
f(x)

∂E

∂ν
(x − y)dσ(x) − f(y), (3.10)

which concludes the proof of (1.10) for y ∈ Ω.

Proof of (1.10) when y ∈ ∂Ω. We apply (1.10) to get f(t)with t ∈ Ω. Then, let t → y. Thus, using
(3.9) and the continuity of f on Ω, we obtain

f(y) = lim
Ω�t→y

f(t) = lim
Ω�t→y

uf(t) −
∫

Ω

〈∇E(x − y),∇f(x)
〉
dx. (3.11)

From Proposition 2.10, we know that

lim
Ω�t→y

uf(t) =
f(y)
2

+ uf(y). (3.12)

By combining (3.11) and (3.12), we attain (1.10).

Proof of (b). Assume that f ∈ C(Ω) and p ≥ 1. Let y ∈ R
N \Ω be fixed.

We define the vector field Z : Ω → R
N by

Z(x) = f(x)∇E(x − y) =
f(x)

ωN |x − y|N (x − y), ∀x ∈ Ω. (3.13)
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Clearly,Z ∈ C1(Ω\A)∩C(Ω). Let ε > 0 be fixed such that Bε(ai) ⊂ Ω for every i ∈ I and Bε(ai)∩
Bε(aj) = ∅ for all i, j ∈ I with i /= j. Set Ωε := Ω \ (⋃i∈IBε(ai)). By applying Proposition 2.5 to
Z : Ωε → R

N , we obtain

∫

Ωε

divZ(x)dx =
∫

∂Ω
f(x)

∂E

∂ν
(x − y)dσ(x) − 1

ωN

∑

i∈I

∫

∂Bε(ai)

f(x)
〈
x − y, x − ai

〉

ε|x − y|N dσ(x).

(3.14)

If Mi = dist (y, Bε(ai)), thenMi > 0 for every i ∈ I (since y/∈Ω). Hence, for each i ∈ I,

∣
∣
∣
∣

∫

∂Bε(ai)

f(x)
〈
x − y, x − ai

〉

ε|x − y|N dσ(x)
∣
∣
∣
∣ ≤

∫

∂Bε(ai)

∣∣f(x)
∣∣

|x − y|N−1dσ(x) ≤
‖f‖L∞(Ω)

MN−1
i

ωNεN−1. (3.15)

By (3.14) and (3.15), it follows that

lim
ε→0

∫

Ωε

divZ(x)dx =
∫

∂Ω
f(x)

∂E

∂ν
(x − y)dσ(x). (3.16)

Note that x �→ |x − y|1−N is continuous on Ω. By Hölder’s inequality, x �→ 〈∇f(x),∇E(x − y)〉
is integrable on Ω. Since x �→ E(x − y) is harmonic on R

N \ {y}, we find

divZ(x) =
〈∇f(x),∇E(x − y)

〉
, ∀x ∈ Ωε. (3.17)

Therefore, using (3.16), we obtain

∫

Ω

〈∇f(x),∇E(x − y)
〉
dx = lim

ε→0

∫

Ωε

divZ(x)dx =
∫

∂Ω
f(x)

∂E

∂ν
(x − y)dσ(x). (3.18)

This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.1

As before, we can assume that g ∈ W1,p(Ω) with p < ∞. By Proposition 2.14, there exists a
sequence gn ∈ C∞(Ω) such that gn → g in W1,p(Ω), that is,

lim
n→∞

∥∥gn − g
∥∥
Lp(Ω) = 0, lim

n→∞

∥∥∥∥
∂gn
∂xi

− ∂g

∂xi

∥∥∥∥
Lp(Ω)

= 0, ∀i ∈ {1, 2, . . . ,N}. (4.1)

From Lemma 2.1, we know that, up to a subsequence (relabeled (gn)),

gn −→ g a.e. in Ω. (4.2)

Since C1(Ω) ⊆ W1,q(Ω) for every q ≥ 1, we can apply Theorem 1.3 to each gn and obtain

∫

∂Ω
gn(x)

∂E

∂ν
(x − y)dσ(x) −

∫

Ω

〈∇E(x − y),∇gn(x)
〉
dx =

{
gn(y), ∀y ∈ Ω,

0, ∀y ∈ R
N \Ω.

(4.3)
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Using the definition ofKj in (2.1), we write

∫

Ω

〈∇E(x − y),∇gn(x)
〉
dx =

1
ωN

N∑

j=1

∫

Ω

xj − yj

|x − y|N
∂gn
∂xj

(x)dx =
1
ωN

N∑

j=1

Kj

(
∂gn
∂xj

)
(y). (4.4)

From (4.1) and Lemma 2.2, it follows that for every j ∈ {1, 2, . . . ,N},

lim
n→∞

∥∥∥∥Kj

(
∂gn
∂xj

)
−Kj

(
∂g

∂xj

)∥∥∥∥
Lp(Ω)

= 0 if 1 ≤ p ≤ N,

Kj

(
∂gn
∂xj

)
−→ Kj

(
∂g

∂xj

)
in C(Ω) as n −→ ∞ if p > N.

(4.5)

Hence, passing eventually to a subsequence (denoted again by (gn)), we have

lim
n→∞

Kj

(
∂gn
∂xj

)
(y) = Kj

(
∂g

∂xj

)
(y) a.e. y ∈ Ω, ∀j ∈ {1, 2, . . . ,N}. (4.6)

This, jointly with (4.4), implies that

lim
n→∞

∫

Ω

〈∇E(x − y),∇gn(x)
〉
dx =

∫

Ω

〈∇E(x − y),∇g(x)
〉
dx a.e. y ∈ Ω. (4.7)

Hence, passing to the limit n → ∞ in (4.3) and using (4.2), we reach (1.8).

Proof of (1.9). Let y ∈ R
N \ Ω be arbitrary. Then, x �→ |x − y|1−N is continuous on Ω. Let p′

denote the conjugate exponent to p (i.e., 1/p + 1/p′ = 1). By Hölder’s inequality,

∫

Ω

∣∣〈∇E(x − y),∇gn(x) − ∇g(x)
〉∣∣dx

≤ 1
ωN

(∫

Ω

dx

|x − y|(N−1)p′

)1/p′(∫

Ω

∣
∣∇(

gn − g
)
(x)

∣
∣pdx

)1/p

.

(4.8)

Thus, using (4.1) and Lemma 2.4, we infer that

lim
n→∞

∫

Ω

〈∇E(x − y),∇gn(x)
〉
dx =

∫

Ω

〈∇E(x − y),∇g(x)
〉
dx, ∀y ∈ R

N \Ω. (4.9)

Letting n → ∞ in (4.3), we conclude (1.9). This finishes the proof of Theorem 1.1.

5. Other results and applications to inequalities

If f : [a, b] → R is absolutely continuous on [a, b], then the Montgomery identity holds:

f(x) =
1

b − a

∫b

a

f(t)dt +
1

b − a

∫b

a

p(t, x)f ′(t)dt for x ∈ [a, b], (5.1)
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where p : [a, b]2 → R is given by

p(t, x) =

{
t − a if a ≤ t ≤ x,

t − b if x < t ≤ b.
(5.2)

In the last decade, many authors (see, e.g., [6] and the references therein) have extended the
above result for different classes of functions defined on a compact interval, including func-
tions of bounded variation, monotonic functions, convex functions, n-time differentiable func-
tions whose derivatives are absolutely continuous or satisfy different convexity properties, and
so forth, and they pointed out sharp inequalities for the absolute value of the difference

D(f ;x) := f(x) − 1
b − a

∫b

a

f(t)dt, x ∈ [a, b]. (5.3)

The obtained results have been applied in approximation theory, numerical integration, infor-
mation theory, and other related domains.

If f is absolutely continuous on [a, b], then we have the followingOstrowski-type inequal-
ities (see, e.g., [6, page 2]):

∣
∣D(f ;x)

∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1
4
+
(
x − (a + b)/2

b − a

)2
]

(b − a)
∥∥f ′∥∥

L∞ if f ′ ∈ L∞[a, b],

(b − a)1/p

(p + 1)1/p

[(
x − a

b − a

)p+1

+
(
b − x

b − a

)p+1
]1/p

∥∥f ′∥∥
Lq if f ′ ∈ Lq[a, b] with q > 1,

[
1
2
+
∣∣∣∣
x − (a + b)/2

b − a

∣∣∣∣

]∥∥f ′∥∥
L1 ,

(5.4)

where p is the conjugate exponent to q. The constants 1/4, (p + 1)−1/p, and 1/2 are best possible
in the sense that they cannot be replaced by smaller constants.

If the function f : [a, b] × [c, d] → R has continuous partial derivatives ∂f(t, s)/∂t,
∂f(t, s)/∂s, and ∂2f(t, s)/∂t∂s on [a, b] × [c, d], then one has the representation (see [6, page
307])

f(x, y) =
1

(b − a)(d − c)

[ ∫b

a

∫d

c

f(t, s)dt ds +
∫b

a

∫d

c

p(t, x)
∂f(t, s)

∂t
dt ds

+
∫b

a

∫d

c

q(s, y)
∂f(t, s)

∂s
dt ds +

∫b

a

∫d

c

p(t, x)q(s, y)
∂2f(t, s)
∂t∂s

dt ds

]
,

(5.5)

for each (x, y) ∈ [a, b]× [c, d],where p is defined by (5.2) and q is the corresponding kernel for
the interval [c, d]. Another representation for f : [a, b] × [c, d] → R is

f(x, y) =
1

b − a

∫b

a

f(t, y)dt +
1

d − c

∫d

c

f(x, s)ds − 1
(b − a)(d − c)

∫b

a

∫d

c

f(t, s)dt ds

+
1

(b − a)(d − c)

∫b

a

∫d

c

p(t, x)q(s, y)
∂2f(t, s)
∂t∂s

dt ds,

(5.6)
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for each (x, y) ∈ [a, b] × [c, d], provided ∂2f(t, s)/∂t∂s is continuous on [a, b] × [c, d] (see [6,
page 294]).

For various Ostrowski-type inequalities, the reader is referred to the book in [6, Chapters
5 and 6] and the papers in [7, 8].

In this section, we give a representation formula for f in terms of the integral mean value
over Ω (under the same assumptions on f as in Theorem 1.3).

Theorem 5.1. One assumes that f ∈ W1,p(Ω) ∩ C1(Ω \A), where p > N and A = (ai)i∈I is a finite
family of points in Ω. The following representation formula holds:

f(y) =
1
|Ω|

∫

Ω
f(x)dx +

∫

∂Ω

(
1

ωN |x − y|N − 1
N|Ω|

)
f(x)

〈
x − y, ν

〉
dσ(x)

−
∫

Ω

(
1

ωN |x − y|N − 1
N|Ω|

)
〈∇f(x), x − y

〉
dx, ∀y ∈ Ω.

(5.7)

Proof. We prove that

∫

Ω
f(x)dx =

1
N

∫

∂Ω
f(x)〈x − z, ν〉dσ(x) − 1

N

∫

Ω

〈∇f(x), x − z
〉
dx, ∀z ∈ R

N. (5.8)

Let z ∈ R
N be arbitrary. We define G : Ω → R

N by G(x) = f(x)(x − z). Let ε > 0 be small
such that Bε(ai) ⊂ Ω for every i ∈ I and Bε(ai) ∩ Bε(aj) = ∅ for all i, j ∈ I with i /= j. Set
Uε = Ω \ (⋃i∈IBε(ai)). We have G ∈ C1(Uε) ∩ C(Uε). By Proposition 2.5, we find

∫

Uε

divG(x)dx =
∫

∂Ω
f(x)〈x − z, ν〉dσ(x) −

∑

i∈I

∫

∂Bε(ai)

f(x)
ε

〈
x − z, x − ai

〉
dσ(x). (5.9)

For i ∈ I, we choose Ci > 0 large such that |x − z| ≤ Ci, for every x ∈ Bε(ai). Hence,

∣∣∣∣

∫

∂Bε(ai)

f(x)
ε

〈
x − z, x − ai

〉
dσ(x)

∣∣∣∣ ≤
∫

∂Bε(ai)

∣∣f(x)
∣∣∣∣x − z

∣∣dσ(x) ≤ Ci‖f‖L∞(Ω)ωNεN−1,

(5.10)

which implies that

lim
ε→0

∫

∂Bε(ai)

f(x)
ε

〈
x − z, x − ai

〉
dσ(x) = 0, ∀i ∈ I. (5.11)

Obviously, f ∈ L1(Ω) and x �→ 〈∇f(x), x − z〉 is integrable on Ω. Therefore, we have

lim
ε→0

∫

Uε

divG(x)dx =
∫

Ω
divG(x)dx =

∫

Ω

〈∇f(x), x − z
〉
dx +N

∫

Ω
f(x)dx. (5.12)

Passing to the limit ε → 0 in (5.9), then using (5.11) and (5.12), we reach (5.8).
Using representation (1.10) of f(y) with y ∈ Ω and representation (5.8) with z = y, we

conclude (5.7).
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Remark 5.2. More generally, in the framework of Theorem 5.1, one has

f(y) =
1
|Ω|

∫

Ω
f(x)dx +

∫

∂Ω

( 〈x − y, ν〉
ωN |x − y|N − 〈x − z, ν〉

N|Ω|
)
f(x)dσ(x)

−
∫

Ω

(〈∇f(x), x − y
〉

ωN |x − y|N −
〈∇f(x), x − z

〉

N|Ω|
)
dx, ∀y ∈ Ω, ∀z ∈ R

N.

(5.13)

As a consequence of Theorems 1.3 and 5.1, we obtain the following.

Corollary 5.3. Assume that f ∈ W1,p(Ω)∩C1(Ω \A), where p > N andA = (ai)i∈I is a finite family
of points in Ω. The following hold.

(i) An arbitrary value of f is compared below with the double-layer potential with moment f :

∣∣∣
∣f(y) −

∫

∂Ω
f(x)

∂E

∂ν
(x − y)dσ(x)

∣∣∣
∣ ≤

‖∇f‖Lp(Ω)

ωN

(∫

Ω

dx

|x − y|(N−1)p′

)1/p′

, ∀y ∈ Ω, (5.14)

where p′ denotes the conjugate coefficient of p (i.e., 1/p + 1/p′ = 1). Moreover, for y ∈ Ω fixed, the
equality in (5.14) is established for the nontrivial function f(x) = ±|x − y| if p = ∞, respectively,
f(x) = ±|x − y|β with β = (p −N)/(p − 1) if p ∈ (N,∞).

(ii) For each a ∈ Ω and R > 0 such that BR(a) ⊂ Ω, one has

f(a) =
1

∣∣BR(a)
∣∣

∫

BR(a)
f(x)dx − 1

ωN

∫

BR(a)

(
1

|x − a|N − 1
RN

)
〈∇f(x), x − a

〉
dx

=
1

ωNRN−1

∫

∂BR(a)
f(x)dσ(x) − 1

ωN

∫

BR(a)

〈∇f(x), x − a
〉

|x − a|N dx.

(5.15)

In addition,

∣∣∣∣f(a) −
1

ωNRN−1

∫

∂BR(a)
f(x)dσ(x)

∣∣∣∣ ≤ ω
1/p′−1
N

(
RN−(N−1)p′

N − (N − 1)p′

)1/p′

‖∇f‖Lp(BR(a)), (5.16)

where the equality is achieved for f(x) = ±|x−a| if p = ∞ and f(x) = ±|x−a|(p−N)/(p−1) if p ∈ (N,∞).

Proof. (i) From f ∈ W1,p(Ω) with p > N, we have (N − 1)p′ < N so that the right-hand side of
(5.14) is finite (see Lemma 2.4). By (1.10) and Hölder’s inequality, we have

∣∣f(y) − uf(y)
∣∣ =

∣∣∣∣

∫

Ω

〈
x − y,∇f(x)

〉

ωN |x − y|N dx

∣∣∣∣ ≤
‖∇f‖Lp(Ω)

ωN

(∫

Ω

dx

|x − y|(N−1)p′

)1/p′

. (5.17)

Let y ∈ Ω be fixed. We define f±
p,y : Ω → R by f±

p,y(x) = ±|x − y| if p = ∞ and ±|x − y|(p−N)/(p−1)

if p ∈ (N,∞). Clearly, we have f±
p,y ∈ C(Ω) ∩ C1(Ω \ {y}), and for every x ∈ Ω \ {y},

∇f±
p,y(x) = ± x − y

|x − y| if p = ∞, ±p −N

p − 1
x − y

|x − y|(p+N−2)/(p−1) if p ∈ (N,∞). (5.18)
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Since C(Ω) ⊂ Lp(Ω), we infer that f±
p,y ∈ W1,p(Ω) and

∥∥∇f±
p,y(x)

∥∥
Lp(Ω)

= 1
(
resp.,

p −N

p − 1

(∫

Ω

dx

|x − y|(N−1)p′

)1/p)

if p = ∞ (
resp., p ∈ (N,∞)

)
.

(5.19)

By (1.10) and (5.18), the left-hand side (LHS) of (5.14) for f±
p,y is

(LHS) =
∣∣∣∣

∫

Ω

〈
x − y,∇f±

p,y(x)
〉

ωN |x − y|N dx

∣∣∣∣ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
ωN

∫

Ω

dx

|x − y|N−1 if p = ∞,

p −N

ωN(p − 1)

∫

Ω

dx

|x − y|(N−1)p′ if p ∈ (N,∞).
(5.20)

A simple calculation shows that the right-hand side of (5.14) for f±
p,y equals the above LHS.

(ii) The first identity of (5.15) follows from Theorem 5.1, while the second follows from
Theorem 1.3 (with Ω = BR(a) and y = a). Notice that

∫

BR(a)

dx

|x − a|(N−1)p′ =
∫R

0

(∫

∂Bρ(a)

dσ(x)
|x − a|(N−1)p′

)
dρ =

ωNRN−(N−1)p′

N − (N − 1)p′
. (5.21)

By applying (5.14)with y = a and Ω = BR(a), we find (5.16).

Remark 5.4. Corollary 5.3(ii) leads to the mean value theorems for harmonic functions. Indeed,
if f is harmonic on Ω, then for every ball BR(a) with BR(a) ⊂ Ω, we have

∫

BR(a)

〈∇f(x), x − a
〉

|x − a|N dx =
∫R

0

(∫

∂Bρ(a)

∂f

∂ν
(x)dσ(x)

)
dρ

ρN−1 =
∫R

0

(∫

Bρ(a)
Δfdx

)
dρ

ρN−1 = 0.

(5.22)

This, jointly with (5.15), implies that

f(a) =
1

ωNRN−1

∫

∂BR(a)
f(x)dσ(x) =

N

ωNRN

∫

BR(a)
f(x)dx. (5.23)

Acknowledgment

The authors thank the referees for the useful comments on the first version of this paper.

References

[1] G. B. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, NJ,
USA, 1976.

[2] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag,
New York, NY, USA, 1998.

[3] C. Miranda, Partial Differential Equations of Elliptic Type, vol. 2 of Ergebnisse der Mathematik und ihrer
Grenzgebiete, Springer-Verlag, New York, NY, USA, 1970.
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