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1. Introduction

Following Popescu’s work [1], we present here some basic properties of the Euclidean operator
radius of an n-tuple of operators (T1, . . . , Tn) that are defined on a Hilbert space (H; 〈·, ·〉). This
radius is defined by

we

(
T1, . . . , Tn

)
:= sup

‖h‖=1

(
n∑

i=1

∣∣〈Tih, h
〉∣∣2
)1/2

. (1.1)

We can also consider the following norm and spectral radius on B(H)(n) := B(H)×· · ·×B(H),
by setting [1]

∥∥(T1, . . . , Tn
)∥∥

e := sup
(λ1,...,λn)∈Bn

∥∥λ1T1 + · · · + λnTn
∥∥,

re
(
T1, . . . , Tn

)
= sup

(λ1,...,λn)∈Bn

r
(
λ1T1 + · · · + λnTn

)
,

(1.2)
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where r(T) denotes the usual spectral radius of an operator T ∈ B(H) and Bn is the closed
unit ball in C

n.
Notice that ‖·‖e is a norm on B(H)(n) :

∥
∥(T1, . . . , Tn

)∥∥
e =
∥
∥(T ∗

1 , . . . , T
∗
n

)∥∥
e, re

(
T1, . . . , Tn

)
= re
(
T ∗
1 , . . . , T

∗
n

)
. (1.3)

Now, if we denote by ‖[T1, . . . , Tn]‖ the square root of the norm ‖∑n
i=1 TiT

∗
i ‖, that is,

∥
∥[T1, . . . , Tn

]∥∥ :=

∥
∥
∥
∥
∥

n∑

i=1

TiT
∗
i

∥
∥
∥
∥
∥

1/2

, (1.4)

then we can present the following result due to Popescu [1] concerning some sharp
inequalities between the norms ‖[T1, . . . , Tn]‖ and ‖(T1, . . . , Tn)‖e.

Theorem 1.1 (see [1]). If (T1, . . . , Tn) ∈ B(H)(n), then

1√
n

∥∥[T1, . . . , Tn
]∥∥ ≤ ∥∥(T1, . . . , Tn

)∥∥
e ≤
∥∥[T1, . . . , Tn

]∥∥, (1.5)

where the constants 1/
√
n and 1 are best possible in (1.5).

Following [1], we list here some of the basic properties of the Euclidean operator
radius of an n-tuple of operators (T1, . . . , Tn) ∈ B(H)(n).

(i) we(T1, . . . , Tn) = 0 if and only if T1 = · · · = Tn = 0;

(ii) we(λT1, . . . , λTn) = |λ|we(T1, . . . , Tn) for any λ ∈ C;

(iii) we(T1 + T ′
1, . . . , Tn + T ′

n) ≤ we(T1, . . . , Tn) +we(T ′
1, . . . , T

′
n);

(iv) we(U∗T1U, . . . ,U∗TnU) = we(T1, . . . , Tn) for any unitary operator U : K → H;

(v) we(X∗T1X, . . . , X∗TnX) ≤ ‖X‖2we(T1, . . . , Tn) for any operator X : K → H;

(vi) (1/2)‖(T1, . . . , Tn)‖e ≤ we(T1, . . . , Tn) ≤ ‖(T1, . . . , Tn)‖e;
(vii) re(T1, . . . , Tn) ≤ we(T1, . . . , Tn);

(viii) we(Iε ⊗ T1, . . . , Iε ⊗ Tn) = we(T1, . . . , Tn) for any separable Hilbert space ε;

(ix) we is a continuous map in the norm topology;

(x) we(T1, . . . , Tn) = sup(λ1,...,λn)∈Bn
w(λ1T1 + · · · + λnTn);

(xi) (1/2
√
n)‖[T1, . . . , Tn]‖ ≤ we(T1, . . . , Tn) ≤ ‖[T1, . . . , Tn]‖ and the inequalities are

sharp.

Due to the fact that the particular cases n = 2 and n = 1 are related to some classical
and new results of interest which naturally motivate the research, we recall here some facts
of significance for our further considerations.
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For A ∈ B(H), let w(A) and ‖A‖ denote the numerical radius and the usual operator
norm of A, respectively. It is well known that w(·) defines a norm on B(H), and for every
A ∈ B(H),

1
2
‖A‖ ≤ w(A) ≤ ‖A‖. (1.6)

For other results concerning the numerical range and radius of bounded linear operators on
a Hilbert space, see [2, 3].

In [4], Kittaneh has improved (1.6) in the following manner:

1
4
∥
∥A∗A +AA∗∥∥ ≤ w2(A) ≤ 1

2
∥
∥A∗A +AA∗∥∥, (1.7)

with the constants 1/4 and 1/2 as best possible.
Let (C,D) be a pair of bounded linear operators on H, the Euclidean operator radius

is

we(C,D) := sup
‖x‖=1

(∣∣〈Cx, x〉∣∣2 + ∣∣〈Dx, x〉∣∣2)1/2 (1.8)

and, as pointed out in [1],we : B2(H) → [0,∞) is a norm and the following inequality holds:

√
2
4
∥∥C∗C +D∗D

∥∥1/2 ≤ we(C,D) ≤ ∥∥C∗C +D∗D
∥∥1/2, (1.9)

where the constants
√
2/4 and 1 are best possible in (1.9).

We observe that, if C and D are self-adjoint operators, then (1.9) becomes

√
2
4
∥∥C2 +D2∥∥1/2 ≤ we(C,D) ≤ ∥∥C2 +D2∥∥1/2. (1.10)

We observe also that if A ∈ B(H) and A = B + iC is the Cartesian decomposition of A, then

w2
e(B,C) = sup

‖x‖=1

[∣∣〈Bx, x〉∣∣2 + ∣∣〈Cx, x〉∣∣2]

= sup
‖x‖=1

∣∣〈Ax, x〉∣∣2

= w2(A).

(1.11)

By the inequality (1.10) and since (see [4])

A∗A +AA∗ = 2
(
B2 + C2), (1.12)
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then we have

1
16
∥
∥A∗A +AA∗∥∥ ≤ w2(A) ≤ 1

2
∥
∥A∗A +AA∗∥∥. (1.13)

We remark that the lower bound for w2(A) in (1.13) provided by Popescu’s inequality (1.9)
is not as good as the first inequality of Kittaneh from (1.7). However, the upper bounds for
w2(A) are the same and have been proved using different arguments.

In order to get a natural generalization of Kittaneh’s result for the Euclidean operator
radius of two operators, we have obtained in [5] the following result.

Theorem 1.2. Let B,C : H → H be two bounded linear operators on the Hilbert space (H; 〈·, ·〉).
Then

√
2
2
[
w
(
B2 + C2)]1/2 ≤ we(B,C)

( ≤ ∥∥B∗B + C∗C
∥∥1/2). (1.14)

The constant
√
2/2 is best possible in the sense that it cannot be replaced by a larger constant.

Corollary 1.3. For any two self-adjoint bounded linear operators B, C on H,one has

√
2
2
∥∥B2 + C2∥∥1/2 ≤ we(B,C)

( ≤ ∥∥B2 + C2∥∥1/2). (1.15)

The constant
√
2/2 is sharp in (1.15).

Remark 1.4. The inequality (1.15) is better than the first inequality in (1.10) which follows
from Popescu’s first inequality in (1.9). It also provides, for the case that B, C are the self-
adjoint operators in the Cartesian decomposition of A, exactly the lower bound obtained by
Kittaneh in (1.7) for the numerical radius w(A).

For other inequalities involving the Euclidean operator radius of two operators and
their applications for one operator, see the recent paper [5], where further references are
given.

Motivated by the useful applications of the Euclidean operator radius concept in
multivariable operator theory outlined in [1], we establish in this paper various new
sharp upper bounds for the general case n ≥ 2. The tools used are provided by several
generalizations of Bessel inequality due to Boas-Bellman, Bombieri, and the author. Also
several reverses of the Cauchy-Bunyakovsky-Schwarz inequalities are employed. The case
n = 2, which is of special interest since it generates for the Cartesian decomposition of a
bounded linear operator various interesting results for the norm and the usual numerical
radius, is carefully analyzed.
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2. Upper bounds via the Boas-Bellman-type inequalities

The following inequality that naturally generalizes Bessel’s inequality for the case of
nonorthonormal vectors y1, . . . , yn in an inner product space is known in the literature as
the Boas-Bellman inequality (see [6, 7], or [8, chapter 4]):

n∑

i=1

∣
∣〈x, yi

〉∣∣2 ≤ ‖x‖2
⎡

⎣max
1≤i≤n

∥
∥yi

∥
∥2 +

(
∑

1≤i /= j≤n

∣
∣〈yi, yj

〉∣∣2
)1/2

⎤

⎦ , (2.1)

for any x ∈ H.
Obviously, if {y1, . . . , yn} is an orthonormal family, then (2.1) becomes the classical

Bessel’s inequality

n∑

i=1

∣∣〈x, yi

〉∣∣2 ≤ ‖x‖2, x ∈ H. (2.2)

The following result provides a natural upper bound for the Euclidean operator radius
of n bounded linear operators.

Theorem 2.1. If (T1, . . . , Tn) ∈ B(H)(n), then

we

(
T1, . . . , Tn

) ≤
⎡

⎣max
1≤i≤n

∥∥Ti
∥∥2 +

{
∑

1≤i /= j≤n
w2(T ∗

j Ti
)
}1/2
⎤

⎦

1/2

. (2.3)

Proof. Utilizing the Boas-Bellman inequality for x = h, ‖h‖ = 1 and yi = Tih, i = 1, . . . , n, we
have

n∑

i=1

∣∣〈Tih, h
〉∣∣2 ≤ max

1≤i≤n

∥∥Tih
∥∥2 +

(
∑

1≤i /= j≤n

∣∣〈T ∗
j Tih, h

〉∣∣2
)1/2

. (2.4)

Taking the supremum over ‖h‖ = 1 and observing that

sup
‖h‖=1

[
max
1≤i≤n

∥∥Tih
∥∥2
]
= max

1≤i≤n

∥∥Ti
∥∥2,

sup
‖h‖=1

(
∑

1≤i /= j≤n

∣∣〈T ∗
j Tih, h

〉∣∣2
)1/2

≤
[
∑

1≤i /= j≤n
sup
‖h‖=1

∣∣〈T ∗
j Tih, h

〉∣∣2
]1/2

=

[
∑

1≤i /= j≤n
w2(T ∗

j Ti
)
]1/2

,

(2.5)

then by (2.4)we deduce the desired inequality (2.3).
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Remark 2.2. If (T1, . . . , Tn) ∈ B(H)(n) is such that T ∗
j Ti = 0 for i, j ∈ {1, . . . , n}, then from (2.3),

we have the inequality:

we

(
T1, . . . , Tn

) ≤ max
1≤i≤n

∥
∥Ti
∥
∥. (2.6)

We observe that a sufficient condition for T ∗
j Ti = 0, with i /= j, i, j ∈ {1, . . . , n} to hold, is that

Range(Ti) ⊥ Range(Tj) for i, j ∈ {1, . . . , n}, with i /= j.

Remark 2.3. If we apply the above result for two bounded linear operators on H,B,C : H →
H, then we get the simple inequality

w2
e(B,C) ≤ max

{‖B‖2, ‖C‖2} +
√
2w
(
B∗C
)
. (2.7)

Remark 2.4. If A : H → H is a bounded linear operator on the Hilbert space H and if we
denote by

B :=
A +A∗

2
, C :=

A −A∗

2i
(2.8)

its Cartesian decomposition, then

w2
e(B,C) = w2(A),

w
(
B∗C
)
= w
(
C∗B
)
=

1
4
w
[(
A∗ −A

)(
A +A∗)],

(2.9)

and from (2.7), we get the inequality

w2(A) ≤ 1
4
{
max

{∥∥A +A∗∥∥2,
∥∥A −A∗∥∥2} +

√
2w
[(
A∗ −A

)(
A +A∗)]}. (2.10)

In [9], the author has established the following Boas-Bellman type inequality for the
vectors x, y1, . . . , yn in the real or complex inner product space (H, 〈·, ·〉):

n∑

i=1

∣∣〈x, yi

〉∣∣2 ≤ ‖x‖2
{
max
1≤i≤n

∥∥yi

∥∥2 + (n − 1) max
1≤i /= j≤n

∣∣〈yi, yj

〉∣∣
}
. (2.11)

For orthonormal vectors, (2.11) reduces to Bessel’s inequality as well. It has also been
shown in [9] that the Boas-Bellman inequality (2.1) and the inequality (2.11) cannot be
compared in general, meaning that in some instances the right-hand side of (2.1) is smaller
than that of (2.11) and vice versa.

Now, utilizing the inequality (2.11) and making use of the same argument from the
proof of Theorem 2.1, we can state the following result as well.
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Theorem 2.5. If (T1, . . . , Tn) ∈ B(H)(n), then

we

(
T1, . . . , Tn

) ≤
[
max
1≤i≤n

∥
∥Ti
∥
∥2 + (n − 1) max

1≤i /= j≤n
w
(
T ∗
j Ti
)
]1/2

. (2.12)

If in (2.12) one assumes that T ∗
j Ti = 0 for each i, j ∈ {1, . . . , n} with i /= j, then one gets

the result from (2.6).

Remark 2.6. We observe that, for n = 2,we get from (2.12) a better result than (2.7), namely,

w2
e(B,C) ≤ max

{‖B‖2, ‖C‖2} +w
(
B∗C
)
, (2.13)

where B, C are arbitrary linear bounded operators on H. The inequality (2.13) is sharp. This
follows from the fact that for B = C = A ∈ B(H), A a normal operator, we have

w2
e(A,A) = 2w2(A) = 2‖A‖2,

w
(
A∗A

)
= ‖A‖2,

(2.14)

and we obtain in (2.13) the same quantity in both sides. The inequality (2.13) has been
obtained in [5, (12.23)] on utilizing a different argument.

Also, for the operatorA : H → H,we can obtain from (2.13) the following inequality:

w2(A) ≤ 1
4
{
max

{∥∥A +A∗∥∥2,
∥∥A −A∗∥∥2} +w

[(
A∗ −A

)(
A +A∗)]}, (2.15)

which is better than (2.10). The constant 1/4 in (2.15) is sharp. The case of equality in (2.15)
follows, for instance, if A is assumed to be self-adjoint.

Remark 2.7. If in (2.13) we choose C = A, B = A∗, A ∈ B(H), and take into account that

w2
e

(
A∗, A

)
= 2w2(A), (2.16)

then we get the inequality

w2(A) ≤ 1
2
[‖A‖2 +w

(
A2)]( ≤ ‖A‖2), (2.17)

for any A ∈ B(H). The constant 1/2 is sharp.
Note that this inequality has been obtained in [10] by the use of a different argument

based on the Buzano inequality [11].

A different approach is incorporated in the following result.
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Theorem 2.8. If (T1, . . . , Tn) ∈ B(H)(n), then

w2
e

(
T1, . . . , Tn

) ≤ max
1≤i≤n

w
(
Ti
)·
{∥∥
∥
∥
∥

n∑

i=1

T ∗
i Ti

∥
∥
∥
∥
∥
+
∑

1≤i /= j≤n
w
(
T ∗
j Ti
)
}1/2

. (2.18)

Proof. We use the following Boas-Bellman-type inequality obtained in [9] (see also [8, page
132]):

n∑

i=1

∣
∣〈x, yi

〉∣∣2 ≤ ‖x‖max
1≤i≤n

∣
∣〈x, yi

〉∣∣
{

n∑

i=1

∥
∥yi

∥
∥2 +

∑

1≤i /= j≤n

∣
∣〈yi, yj

〉∣∣
}1/2

, (2.19)

where x, y1, . . . , yn are arbitrary vectors in the inner product space (H; 〈·, ·〉).
Now, for x = h, ‖h‖ = 1, yi = Tih, i = 1, . . . , n,we get from (2.19) that

n∑

i=1

∣∣〈Tih, h
〉∣∣2 ≤ max

1≤i≤n

∣∣〈Tih, h
〉∣∣
{

n∑

i=1

∥∥Tih
∥∥2 +

∑

1≤i /= j≤n

∣∣〈Tih, Tjh
〉∣∣
}1/2

. (2.20)

Observe that

n∑

i=1

∥∥Tih
∥∥2 =

n∑

i=1

〈
Tih, Tih

〉
=

n∑

i=1

〈(
T ∗
i Ti
)
h, h
〉
=

〈
n∑

i=1

(
T ∗
i Ti
)
h, h

〉

, (2.21)

for h ∈ H, ‖h‖ = 1.
Therefore, on taking the supremum in (2.20) and noticing that w(

∑n
i=1 T

∗
i Ti) =

‖∑n
i=1 T

∗
i Ti‖, we get the desired result (2.18).

Remark 2.9. If (T1, . . . , Tn) ∈ B(H)(n) satisfies the condition that T ∗
i Tj = 0 for each i, j ∈

{1, . . . , n} with i /= j, then from (2.18)we get

w2
e

(
T1, . . . , Tn

) ≤ max
1≤i≤n

w
(
Ti
)·
∥∥∥∥∥

n∑

i=1

T ∗
i Ti

∥∥∥∥∥

1/2

. (2.22)

Remark 2.10. If we apply Theorem 2.8 to n = 2, then we can state the following simple
inequality:

w2
e(B,C) ≤ max

{‖B‖, ‖C‖}[∥∥B∗B + C∗C
∥∥ + 2w

(
B∗C
)]1/2

, (2.23)

for any bounded linear operators B,C ∈ B(H).
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Moreover, if B and C are chosen as the Cartesian decomposition of the bounded linear
operator A ∈ B(H), then we can state that

w2(A) ≤ 1
2
max

{∥∥A +A∗∥∥,
∥
∥A −A∗∥∥}

{∥∥
∥
∥
A∗A +AA∗

2

∥
∥
∥
∥ +

1
2
w
[(
A +A∗)(A −A∗)]

}1/2

.

(2.24)

The constant 1/2 is best possible in (2.24). The equality case is obtained if A is a self-adjoint
operator onH.

If we choose in (2.23), C = A, B = A∗, A ∈ B(H), then we get

w2(A) ≤ 1
2
‖A‖[∥∥AA∗ +A∗A

∥
∥ + 2w

(
A2)]1/2( ≤ ‖A‖2). (2.25)

The constant 1/2 is best possible in (2.25).

3. Upper bounds via the Bombieri-type inequalities

A different generalization of Bessel’s inequality for nonorthogonal vectors than the one
mentioned above and due to Boas and Bellman is the Bombieri inequality (see [12], [13, page
394], or [8, page 134])

n∑

i=1

∣∣〈x, yi

〉∣∣2 ≤ ‖x‖2max
1≤i≤n

{
n∑

j=1

∣∣〈yi, yj

〉∣∣
}

, (3.1)

where x, y1, . . . , yn are vectors in the real or complex inner product space (H; 〈·, ·〉).
Note that the Bombieri inequality was not stated in the general case of inner product

spaces in [12]. However, the inequality presented there easily leads to (3.1)which, apparently,
was firstly mentioned as is in [13, page 394].

The following upper bound for the Euclidean operator radius may be obtained as
follows.

Theorem 3.1. If (T1, . . . , Tn) ∈ B(H)(n), then

w2
e

(
T1, . . . , Tn

) ≤ max
1≤i≤n

{
n∑

j=1

w
(
T ∗
j Ti
)
}

. (3.2)

Proof. Follows by Bombieri’s inequality applied for x = h, ‖h‖ = 1 and yi = Tih, i = 1, . . . , n.
Then taking the supremum over ‖h‖ = 1 and utilizing its properties, we easily deduce the
desired inequality (3.2).
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Remark 3.2. If we apply the above theorem for two operators B and C, then we get

w2
e(B,C) ≤ max

{
w
(
B∗B
)
+w
(
C∗B
)
, w
(
B∗C
)
+w
(
C∗C
)}

= max
{‖B‖2 +w

(
B∗C
)
, w
(
B∗C
)
+ ‖C‖2}

= max
{‖B‖2, ‖C‖2} +w

(
B∗C
)
,

(3.3)

which is exactly the inequality (2.13) that has been obtained in a different manner above.

In order to get other bounds for the Euclidean operator radius, we may state the
following result as well.

Theorem 3.3. If (T1, . . . , Tn) ∈ B(H)(n), then

w2
e

(
T1, . . . , Tn

) ≤

⎧
⎪⎪⎨

⎪⎪⎩

Dw,

Ew,

Fw,

(3.4)

meaning that the left side is less than each of the quantities in the right side, where

Dw :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤k≤n

{
w
(
Tk
)}
[

n∑

i,j=1

w
(
T ∗
j Ti
)
]1/2

,

max
1≤k≤n

{
w
(
Tk
)}1/2

(
n∑

i=1

[
w
(
Ti
)]r
)1/2r

⎡

⎣
n∑

i=1

(
n∑

j=1

w
(
T ∗
j Ti
)
)s
⎤

⎦

1/2s

,

where r, s > 1,
1
r
+
1
s
= 1,

max
1≤k≤n

{
w
(
Tk
)}1/2

(
n∑

i=1

w
(
Ti
)
)1/2

max
1≤i≤n

[
n∑

j=1

w
(
T ∗
j Ti
)
]1/2

,

Ew :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n∑

k=1

[
w
(
Tk
)]p
)1/2p

max
1≤k≤n

{
w
(
Tk
)}1/2

⎡

⎣
n∑

i=1

(
n∑

j=1

w
(
T ∗
j Ti
)
)q
⎤

⎦

1/2q

,

where p > 1,
1
p
+
1
q
= 1,

(
n∑

k=1

[
w
(
Tk
)]p
)1/2p( n∑

i=1

[
w
(
Ti
)]t
)1/2t

⎡

⎣
n∑

i=1

(
n∑

j=1

[
w
(
T ∗
j Ti
)]q
)u/q

⎤

⎦

1/2u

,

where p > 1,
1
p
+
1
q
= 1, t > 1,

1
t
+
1
u
= 1,

(
n∑

k=1

[
w
(
Tk
)]p
)1/2p( n∑

i=1

w
(
Ti
)
)1/2

max
1≤i≤n

⎧
⎨

⎩

(
n∑

j=1

[
w
(
T ∗
j Ti
)]q
)1/2p

⎫
⎬

⎭
,

where p > 1,
1
p
+
1
q
= 1,
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Fw :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n∑

k=1

w
(
Tk
)
)1/2

max
1≤i≤n
{
w
(
Ti
)}1/2 n∑

i=1

[
max
1≤j≤n
{
w
(
T ∗
j Ti
)}1/2

]
,

(
n∑

k=1

w
(
Tk
)
)1/2( n∑

i=1

[
w
(
Ti
)]m
)1/2m n∑

i=1

[
max
1≤j≤n
[
w
(
T ∗
j Ti
)]l
]1/2l

,

where m > 1,
1
m

+
1
l
= 1,

n∑

k=1

w
(
Tk
)·max

1≤i,j≤n
{
w
(
T ∗
j Ti
)}1/2

.

(3.5)

Proof. In our paper [14] (see also [8, page 141-142]), we have established the following
sequence of inequalities for the vectors x, y1, . . . , yn in the inner product space (H, 〈·, ·〉) and
the scalars c1, . . . , cn ∈ K:

∣∣∣∣∣

n∑

i=1

ci
〈
x, yi

〉
∣∣∣∣∣

2

≤ ‖x‖2 ×

⎧
⎪⎪⎨

⎪⎪⎩

D,

E,

F,

(3.6)

where

D :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤k≤n

∣∣ck
∣∣2
(

n∑

i,j=1

∣∣〈yi, yj

〉∣∣
)

,

max
1≤k≤n

∣∣ck
∣∣
(

n∑

i=1

∣∣ci
∣∣r
)1/r

⎡

⎣
n∑

i=1

(
n∑

j=1

∣∣〈yi, yj

〉∣∣
)s
⎤

⎦

1/s

, where r, s > 1,
1
r
+
1
s
= 1,

max
1≤k≤n

∣∣ck
∣∣
(

n∑

i=1

∣∣ci
∣∣
)

max
1≤i≤n

[
n∑

j=1

∣∣〈yi, yj

〉∣∣
]

,

E :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n∑

k=1

∣∣ck
∣∣p
)1/p

max
1≤i≤n

|ci|
⎡

⎣
n∑

i=1

(
n∑

j=1

∣∣〈yi, yj

〉∣∣
)q
⎤

⎦

1/q

, where p > 1,
1
p
+
1
q
= 1,

(
n∑

k=1

∣∣ck
∣∣p
)1/p( n∑

i=1

∣∣ci
∣∣t
)1/t

⎡

⎣
n∑

i=1

(
n∑

j=1

∣∣〈yi, yj

〉∣∣q
)u/q

⎤

⎦

1/u

, where p > 1,
1
p
+
1
q
= 1,

t > 1,
1
t
+
1
u
= 1,

(
n∑

k=1

∣∣ck
∣∣p
)1/p( n∑

i=1

∣∣ci
∣∣
)

max
1≤i≤n

⎧
⎨

⎩

(
n∑

j=1

∣∣〈yi, yj

〉∣∣q
)1/q

⎫
⎬

⎭
, where p > 1,

1
p
+
1
q
= 1,
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F :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n∑

k=1

∣
∣ck
∣
∣
)

max
1≤i≤n

∣
∣ci
∣
∣

n∑

i=1

[
max
1≤j≤n

∣
∣〈yi, yj

〉∣∣
]
,

n∑

k=1

∣
∣ck
∣
∣
(

n∑

i=1

∣
∣ci
∣
∣m
)1/m n∑

i=1

[
max
1≤j≤n

∣
∣〈yi, yj

〉∣∣l
]1/l

, wherem > 1,
1
m

+
1
l
= 1,

(
n∑

k=1

∣
∣ck
∣
∣
)2

max
1≤i,j≤n

∣
∣〈yi, yj

〉∣∣.

(3.7)

If in this inequality we choose ci = 〈x, yi〉, i = 1, . . . , n and take the square root, then we get
the inequalities

n∑

i=1

∣∣〈x, yi

〉∣∣2 ≤ ‖x‖ ×

⎧
⎪⎪⎨

⎪⎪⎩

D̃,

Ẽ,

F̃,

(3.8)

where

D̃ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤k≤n

∣∣〈x, yk

〉∣∣
(

n∑

i,j=1

∣∣〈yi, yj

〉∣∣
)1/2

,

max
1≤k≤n

∣∣〈x, yk〉
∣∣1/2
(

n∑

i=1

∣∣〈x, yi

〉∣∣r
)1/2r

⎡

⎣
n∑

i=1

(
n∑

j=1

∣∣〈yi, yj

〉∣∣
)s
⎤

⎦

1/2s

,

where r, s > 1,
1
r
+
1
s
= 1,

max
1≤k≤n

∣∣〈x, yk〉
∣∣1/2
(

n∑

i=1

∣∣〈x, yi

〉∣∣
)1/2

max
1≤i≤n

[
n∑

j=1

∣∣〈yi, yj

〉∣∣
]1/2

,

Ẽ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n∑

k=1

∣∣〈x, yk

〉∣∣p
)1/2p

max
1≤i≤n

∣∣〈x, yi

〉∣∣1/2
⎡

⎣
n∑

i=1

(
n∑

j=1

∣∣〈yi, yj

〉∣∣
)q
⎤

⎦

1/2q

,

where p > 1,
1
p
+
1
q
= 1,

(
n∑

k=1

∣∣〈x, yk

〉∣∣p
)1/2p( n∑

i=1

∣∣〈x, yi

〉∣∣t
)1/2t

⎡

⎣
n∑

i=1

(
n∑

j=1

∣∣〈yi, yj

〉∣∣q
)u/q

⎤

⎦

1/2u

,

where p > 1,
1
p
+
1
q
= 1, t > 1,

1
t
+
1
u
= 1,

(
n∑

k=1

∣∣〈x, yk

〉∣∣p
)1/2p( n∑

i=1

∣∣〈x, yi

〉∣∣
)1/2

max
1≤i≤n

⎧
⎨

⎩

(
n∑

j=1

∣∣〈yi, yj

〉∣∣q
)1/q

⎫
⎬

⎭
,

where p > 1,
1
p
+
1
q
= 1,
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F̃ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n∑

k=1

∣
∣〈x, yk

〉∣∣
)1/2

max
1≤i≤n

∣
∣〈x, yi

〉∣∣1/2
n∑

i=1

[
max
1≤j≤n

∣
∣〈yi, yj

〉∣∣
]1/2

,

(
n∑

k=1

∣
∣〈x, yk

〉∣∣
)1/2( n∑

i=1

∣
∣〈x, yi

〉∣∣m
)1/2m[ n∑

i=1

[
max
1≤j≤n

∣
∣〈yi, yj

〉∣∣l
]]1/2l

,

where m > 1,
1
m

+
1
l
= 1,

n∑

k=1

∣
∣〈x, yk

〉∣∣max
1≤i,j≤n

∣
∣〈yi, yj

〉∣∣1/2.

(3.9)

By making use of the inequality (3.8) for the choices x = h, ‖h‖ = 1, yi = Tih, i = 1, . . . , n and
taking the supremum, we get the following result (3.4).

Remark 3.4. For n = 2, the above inequalities (3.4) provide various upper bounds for the
Euclidean operator radius we(B,C), for any B,C ∈ B(H). Out of these results and for the
sake of brevity, we only mention the following ones:

w2
e(B,C) ≤ max

{‖B‖, ‖C‖}1/2[w(B) +w(C)
]1/2[max

{‖B‖2, ‖C‖2} +w
(
B∗C
)]1/2

, (3.10)

w2
e(B,C) ≤

[
w(B) +w(C)

]
max

{‖B‖, ‖C‖, [w(B∗C
)]1/2}

, (3.11)

for any B,C ∈ B(H).
Both inequalities are sharp. This follows by the fact that for B = C = A ∈ B(H), A a

normal operator, we get in both sides of (3.10) and (3.11) the same quantity 2‖A‖2.

Remark 3.5. If we choose in (3.10), the Cartesian decomposition of the operator A, then we
get

w2(A) ≤ 1
4
max

{∥∥A +A∗∥∥,
∥∥A −A∗∥∥}1/2[∥∥A +A∗∥∥ +

∥∥A −A∗∥∥]1/2

× [max
{∥∥A +A∗∥∥2,

∥∥A −A∗∥∥2} +w
[(
A∗ −A

)(
A∗ +A

)]]1/2
.

(3.12)

The constant 1/4 is sharp. The equality case holds if A = A∗. The same choice in (3.11) will
give

w2(A) ≤ 1
4
[∥∥A +A∗∥∥ +

∥∥A −A∗∥∥]

×max
{∥∥A +A∗∥∥,

∥∥A −A∗∥∥, w1/2[(A∗ −A
)(
A∗ +A

)]}
.

(3.13)

The constant 1/4 is also sharp.
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In [15] (see also [8, page 233]), we obtained the following inequality of Bombieri type:

n∑

i=1

∣
∣〈x, yi

〉∣∣2 ≤ ‖x‖
(

n∑

k=1

∣
∣〈x, yk

〉∣∣p
)1/p[ n∑

i,j=1

∣
∣〈yi, yj

〉∣∣q
]1/2q

, (3.14)

for any x, y1, . . . , yn vectors in the inner product space (H, 〈·, ·〉, ) where p > 1 and
1/p + 1/q = 1. Out of this inequality, one can get for p = q = 2 the following inequality of
Bessel-type firstly obtained in [16]:

n∑

i=1

∣
∣〈x, yi

〉∣∣2 ≤ ‖x‖2
(

n∑

i,j=1

∣
∣〈yi, yj

〉∣∣2
)1/2

. (3.15)

The following upper bound for the Euclidean operator radius may be stated.

Theorem 3.6. If (T1, . . . , Tn) ∈ B(H)(n), then

w2
e

(
T1, . . . , Tn

) ≤
{

w2
e

(
T ∗
1T1, . . . , T

∗
nTn
)
+
∑

1≤i /= j≤n
w2(T ∗

j Ti
)
}1/2

≤
{∥∥∥∥∥

n∑

i=1

(
T ∗
i Ti
)2
∥∥∥∥∥
+
∑

1≤i /= j≤n
w2(T ∗

j Ti
)
}1/2

⎛

⎝≤
{

n∑

i=1

‖Ti‖4 +
∑

1≤i /= j≤n
w2(T ∗

j Ti
)
}1/2
⎞

⎠ .

(3.16)

Proof. Utilizing (3.15), for x = h, ‖h‖ = 1, yi = Tih, i = 1, . . . , n, we get

n∑

i=1

∣∣〈Tih, h
〉∣∣2 ≤

{
n∑

i=1

∥∥Tih
∥∥4 +

∑

1≤i /= j≤n

∣∣〈Tih, Tjh
〉∣∣2
}1/2

=

{
n∑

i=1

∣∣〈T ∗
i Tih, h

〉∣∣2 +
∑

1≤i /= j≤n

∣∣〈T ∗
j Tih, h

〉∣∣2
}1/2

.

(3.17)

Now, taking the supremum over ‖h‖ = 1, we deduce the first inequality in (3.16).
The second inequality follows by the property (xi) from Introduction applied for the

self-adjoint operators V1 = T ∗
1T1, . . . , Vn = T ∗

nTn.
The last inequality is obvious.
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Remark 3.7. If in (3.16)we assume that the operators (T1, . . . , Tn) satisfy the condition T ∗
j Ti = 0

for i, j ∈ {1, . . . , n}, with i /= j, then we get the inequality

w2
e

(
T1, . . . , Tn

) ≤ w2
e

(
T ∗
1T1, . . . , T

∗
nTn
) ≤
∥
∥
∥
∥
∥

n∑

i=1

(
T ∗
i Ti
)2
∥
∥
∥
∥
∥

1/2
⎛

⎝≤
{

n∑

i=1

∥
∥Ti
∥
∥4
}1/2
⎞

⎠ . (3.18)

Remark 3.8. For n = 2, the above inequality (3.16) provides

w2
e(B,C) ≤

[
w2

e

(
B∗B,C∗C

)
+ 2w2(B∗C

)]1/2

≤ [∥∥(B∗B
)2 +
(
C∗C
)2∥∥ + 2w2(B∗C

)]1/2

≤ [‖B‖4 + ‖C‖4 + 2w2(B∗C
)]1/2( ≤ ‖B‖2 + ‖C‖2),

(3.19)

for any B,C ∈ B(H).
If in (3.19) we choose B and C to be the Cartesian decompositions of the operator

A ∈ B(H), then we get

w2(A) ≤ 1
4
{∥∥(A +A∗)4 +

(
A −A∗)4∥∥ + 2w2[(A∗ −A

)(
A∗ +A

)]}1/2

(
≤ 1

4
{∥∥A +A∗∥∥4 +

∥∥A −A∗∥∥4 + 2w2[(A∗ −A
)(
A∗ +A

)]}1/2
)
.

(3.20)

Here, the constant 1/4 is best possible.

Remark 3.9. If in (3.19) we choose B = A∗ and C = A, where A ∈ B(H), then we get

w4(A) ≤ 1
2

[∥∥∥∥∥

(
AA∗)2 +

(
A∗A

)2

2

∥∥∥∥∥
+w2(A2)

]

. (3.21)

The constant 1/2 infront of the square bracket is best possible in (3.21).

4. Other upper bounds

For an n-tuple of operators (T1, . . . , Tn) ∈ B(H)(n), we use the notation ΔTk := Tk+1 − Tk, k =
1, . . . , n − 1.

The following result may be stated as follows.
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Theorem 4.1. If (T1, . . . , Tn) ∈ B(H)(n), n ≥ 2, then

(0 ≤) 1
n
w2

e

(
T1, . . . , Tn

) −w2

(
1
n

n∑

j=1

Tj

)

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2 − 1
12

max
1≤k≤n−1

w2(ΔTk
)

n2 − 1
6n

[
n−1∑

k=1

wp
(
ΔTk
)
]1/p[n−1∑

k=1

wq
(
ΔTk
)
]1/q

if p > 1,
1
p
+
1
q
= 1;

n − 1
2n

[
n−1∑

k=1

w
(
ΔTk
)
]2

.

(4.1)

Proof. We use the following scalar inequality that provides reverses of the Cauchy-
Bunyakovsky-Schwarz result for n complex numbers:

1
n

n∑

j=1

∣∣zj
∣∣2 −
∣∣∣∣∣
1
n

n∑

j=1

zj

∣∣∣∣∣

2

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2 − 1
12

max
1≤k≤n−1

∣∣Δzk
∣∣2,

n2 − 1
6n

[
n−1∑

k=1

∣∣Δzk
∣∣p
]1/p[n−1∑

k=1

∣∣Δzk
∣∣q
]1/q

if p > 1,
1
p
+
1
q
= 1,

n − 1
2n

[
n−1∑

k=1

∣∣Δzk
∣∣
]2

,

(4.2)

and the constants 1/12, 1/6, and 1/2 above cannot be replaced by smaller quantities for
general n. For complete proofs in the general setting of real or complex inner product spaces,
see [8, page 196–200].

Now, writing the inequality (4.2) for zj = 〈Tjh, h〉, where h ∈ H, ‖h‖ = 1, j ∈
{1, . . . , n}, yields

(0 ≤) 1
n

n∑

j=1

∣∣〈Tjh, h
〉∣∣2 −

∣
∣∣∣∣
1
n

〈(
n∑

j=1

Tj

)

h, h

〉∣∣∣∣∣

2

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2 − 1
12

max
1≤k≤n−1

∣∣〈(ΔTk
)
h, h
〉∣∣2,

n2 − 1
6n

[
n−1∑

k=1

∣∣〈(ΔTk
)
h, h
〉∣∣p
]1/p[n−1∑

k=1

∣∣〈(ΔTk
)
h, h
〉∣∣q
]1/q

if p > 1,
1
p
+
1
q
= 1,

n − 1
2n

[
n−1∑

k=1

∣∣〈(ΔTk
)
h, h
〉∣∣
]2

,

(4.3)

for any h ∈ H, ‖h‖ = 1.
Taking the supremum over h, ‖h‖ = 1 in (4.3), a simple calculation reveals that (4.1)

holds true and the theorem is proved.
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Remark 4.2. We observe that if p = q = 2 in (4.3), then we have the inequality

(0 ≤) 1
n

n∑

j=1

∣
∣〈Tjh, h

〉∣∣2 −
∣
∣
∣
∣
∣
1
n

〈(
n∑

j=1

Tj

)

h, h

〉∣∣
∣
∣
∣

2

≤ n2 − 1
6n

n−1∑

k=1

∣
∣〈(ΔTk

)
h, h
〉∣∣2, (4.4)

which implies, by taking the supremum over h ∈ H, ‖h‖ = 1, that

(0 ≤) 1
n
w2

e

(
T1, . . . , Tn

) −w2

(
1
n

n∑

j=1

Tj

)

≤ n2 − 1
6n

w2
e

(
T2 − T1, . . . , Tn − Tn−1

)
. (4.5)

Remark 4.3. The case n = 2 in all the inequalities (4.1) and (4.5) produces the simple inequality

w2
e(B,C) ≤

1
2
[
w2(B + C) +w2(B − C)

]
, (4.6)

for any B,C ∈ B(H), that has been obtained in a different manner in [5] (see (2.11)).

The following result providing other upper bounds for the Euclidean operator radius
holds.

Theorem 4.4. For any n-tuple of operator (T1, . . . , Tn) ∈ B(H)(n),one has

(0 ≤) 1
n
w2

e

(
T1, . . . , Tn

) −w2

(
1
n

n∑

j=1

Tj

)

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
T∈B(H)

[
max
1≤j≤n
{
w
(
Tj − T

)}
] n∑

j=1

w

(

Tj − 1
n

n∑

k=1

Tk

)

,

inf
T∈B(H)

⎡

⎣

(
n∑

j=1

wq
(
Tj−T

)
)1/q

⎤

⎦

(
n∑

j=1

wp

(

Tj− 1
n

n∑

k=1

Tk

))1/p

with p >1,
1
p
+
1
q
= 1,

inf
T∈B(H)

[(
n∑

j=1

w
(
Tj − T

)
)]

max
1≤j≤n

{

w

(

Tj − 1
n

n∑

k=1

Tk

)}

.

(4.7)

Proof. Utilizing the elementary identity for complex numbers,

1
n

n∑

j=1

∣∣zj
∣∣2 −
∣∣∣∣∣
1
n

n∑

j=1

zj

∣∣∣∣∣

2

=
1
n

n∑

j=1

(

zj − 1
n

n∑

k=1

zk

)
(
zj − z

)
, (4.8)
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which holds for any z1, . . . , zn and z,we can write that

1
n

n∑

j=1

∣
∣〈Tjh, h

〉∣∣2 −
∣∣
∣
∣
∣
1
n

〈(
n∑

j=1

Tj

)

h, h

〉∣∣
∣
∣
∣

2

=
1
n

n∑

j=1

〈(

Tj − 1
n

n∑

k=1

Tk

)

h, h

〉
〈
h,
(
Tj − T

)
h
〉
,

(4.9)

for any (T1, . . . , Tn) ∈ B(H)(n), T a bounded linear operator onH and h ∈ H with ‖h‖ = 1.
By the Hölder inequality, we also have

∣
∣
∣
∣
∣

n∑

j=1

〈(

Tj − 1
n

n∑

k=1

Tk

)

h, h

〉
〈
h,
(
Tj − T

)
h
〉
∣
∣
∣
∣
∣

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤j≤n

∣∣〈(Tj − T
)
h, h
〉∣∣

n∑

j=1

∣∣∣∣∣

〈(

Tj − 1
n

n∑

k=1

Tk

)

h, h

〉∣∣∣∣∣
,

(
n∑

j=1

∣∣∣∣∣

〈(

Tj− 1
n

n∑

k=1

Tk

)

h, h

〉∣∣∣∣∣

p)1/p( n∑

j=1

∣∣〈(Tj−T
)
h, h
〉∣∣q
)1/q

with p>1,
1
p
+
1
q
= 1,

max
1≤j≤n

∣∣∣∣∣

〈(

Tj − 1
n

n∑

k=1

Tk

)

h, h

〉∣∣∣∣∣

n∑

j=1

∣∣〈(Tj − T
)
h, h
〉∣∣,

(4.10)

for any h ∈ H, ‖h‖ = 1.
On utilizing (4.9) and (4.10), we thus have

1
n

n∑

k=1

∣∣〈Tjh, h
〉∣∣2

≤
∣∣∣∣∣
1
n

〈(
n∑

j=1

Tj

)

h, h

〉∣∣∣∣∣

2

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
1≤j≤n

∣∣〈(Tj − T
)
h, h
〉∣∣

n∑

j=1

∣∣∣∣∣

〈(

Tj − 1
n

n∑

k=1

Tk

)

h, h

〉∣∣∣∣∣
,

⎛

⎝
n∑

j=1

∣∣∣∣∣

〈(

Tj− 1
n

n∑

k=1

Tk

)

h, h

〉∣∣∣∣∣

p
⎞

⎠

1/p(
n∑

j=1

∣∣〈(Tj−T
)
h, h
〉∣∣q
)1/q

with p>1,
1
p
+
1
q
=1,

max
1≤j≤n

∣∣∣∣∣

〈(

Tj − 1
n

n∑

k=1

Tk

)

h, h

〉∣∣∣∣∣

n∑

j=1

∣∣〈(Tj − T
)
h, h
〉∣∣,

(4.11)

for any h ∈ H, ‖h‖ = 1.
Taking the supremum over h, ‖h‖ = 1 in (4.11), we easily deduce the desired result

(4.7).
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Remark 4.5. We observe that for p = q = 2 in (4.11) we can also get the inequality of interest

(0 ≤) 1
n
w2

e

(
T1, . . . , Tn

) −w2

(
1
n

n∑

j=1

Tj

)

≤ inf
T∈B(H)

[
we

(
T1 − T, . . . , Tn − T

)]
we

(

T1 − 1
n

n∑

k=1

Tk, . . . , Tn − 1
n

n∑

k=1

Tk

)

.

(4.12)

In particular, we have

(0 ≤) 1
n
w2

e

(
T1, . . . , Tn

) −w2

(
1
n

n∑

j=1

Tj

)

≤ w2
e

(

T1 − 1
n

n∑

k=1

Tk, . . . , Tn − 1
n

n∑

k=1

Tk

)

. (4.13)

The following particular case of Theorem 4.4 may be of interest for applications.

Corollary 4.6. Assume that (T1, . . . , Tn) ∈ B(H)(n) are such that there exists an operator T ∈ B(H)
and a constant M > 0 such that w(Tj − T) ≤ M for each j ∈ {1, . . . , n}. Then

(0 ≤) 1
n
w2

e

(
T1, . . . , Tn

) −w2

(
1
n

n∑

j=1

Tj

)

≤ M ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

j=1

w

(

Tj − 1
n

n∑

k=1

Tk

)

,

n1/q

[
n∑

j=1

wp

(

Tj − 1
n

n∑

k=1

Tk

)]1/p
with p > 1,

1
p
+
1
q
= 1,

nmax
1≤j≤n

{

w

(

Tj − 1
n

n∑

k=1

Tk

)}

.

(4.14)

Remark 4.7. Notice that by the Hölder inequality, the first branch in (4.14) provides a tighter
bound for the nonnegative quantity (1/n)w2

e(T1, . . . , Tn) − w2((1/n)
∑n

j=1 Tj) than the other
two.

Remark 4.8. Finally, we observe that the case n = 2 in (4.14) provides the simple inequality

w2
e(B,C) ≤

1
2
w2(B + C) +

√
2
2

w(B − C) · inf
T∈B(H)

we(B − T,C − T)
(

≤ 1
2
[
w2(B + C) +w2(B − C)

]
)
,

(4.15)

for any B,C ∈ B(H),which is a refinement of the inequality (4.6).
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