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1. Introduction and main results

q-series, which is also called basic hypergeometric series, plays a very important role in many
fields, such as affine root systems, Lie algebras and groups, number theory, orthogonal polyno-
mials, physics, and so on. Inequality technique is one of the useful tools in the study of special
functions. There are many papers about it [1–6]. In [1], the authors gave some inequalities for
hypergeometric functions. In this paper, we derive two inequalities for the basic hypergeomet-
ric series rφr , which can be used to study the convergence of q-series.

The main results of this paper are the following two inequalities.

Theorem 1.1. Suppose ai, bi, and z are any real numbers such that |bi|<1 with i=1, 2, . . . , r. Then
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Theorem 1.2. Suppose ai, bi, and z are any real numbers such that z < 0 and |ai| < 1, |bi| < 1 with
i = 1, 2, . . . , r. Then

rφr

(

a1, a2, . . . , ar

b1, b2, . . . , br
; q, z

)

≥ (z; q)∞
r∏

i=1

(∣
∣ai

∣
∣; q

)

∞
( − ∣

∣bi
∣
∣; q

)

∞
. (1.2)



2 Journal of Inequalities and Applications

Before the proof of the theorems, we recall some definitions, notations, and known
results which will be used in this paper. Throughout the whole paper, it is supposed that
0 < q < 1. The q-shifted factorials are defined as
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)
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We also adopt the following compact notation for multiple q-shifted factorial:

(

a1, a2, . . . , am; q
)

n =
(

a1; q
)

n

(

a2; q
)

n · · ·
(

am; q
)

n, (1.4)

where n is an integer or∞.
The q-binomial theorem [7]
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Replacing awith 1/a, and zwith az and then setting a = 0, we get
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Heine introduced the rφs basic hypergeometric series, which is defined by [7]
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2. The proof of Theorem 1.1

In this section, we use the q-binomial formula (1.6) to prove Theorem 1.1.

Proof. Since
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Multiplying both sides of (2.3) by
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Consequently,
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Using the q-binomial theorem (1.6) obtains
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Substituting (2.7) into (2.6) gets (1.1). Thus, we complete the proof.

3. The proof of Theorem 1.2

In this section, we use again the q-binomial formula (1.6) in order to prove Theorem 1.2.

Proof. Since
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Hence,
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Using the q-binomial theorem (1.6) obtains
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Substituting (3.7) into (3.6) gets (1.2). Thus, we complete the proof.

4. Some applications of the inequalities

Convergence is an important problem in the study of q-series. There are some results about
it. For example, Ito used inequality technique to give a sufficient condition for convergence of
a special q-series called Jackson integral [8]. In this section, we use the inequalities obtained
in this paper to give some sufficient conditions for convergence of a q-series and sufficient
conditions for divergence of a q-series.

Theorem 4.1. Suppose ai, bi, and z are any real numbers such that |bi|<1 with i=1, 2, . . . , r. Let {cn}
and {dn} be any number series. If

lim
n→∞

∣
∣
∣
∣

cn+1
cn

∣
∣
∣
∣
= p < 1,

∣
∣dn+1

∣
∣ ≤ ∣

∣dn

∣
∣, n = 1, 2, . . . , (4.1)

then the q-series

∞∑

n=0

cn rφr

(

a1, a2, . . . , ar

b1, b2, . . . , br
; q, dn

)

(4.2)

converges absolutely.



Mingjin Wang 5

Proof. Letting z = dn in (1.1) and then multiplying both sides of (1.1) by |cn| give
∣
∣
∣
∣
∣
cn rφr

(

a1, a2, . . . , ar

b1, b2, . . . , br
; q, dn

)∣
∣
∣
∣
∣
≤ ∣
∣cn

∣
∣
( − ∣

∣dn

∣
∣; q

)

∞

r∏

i=1

( − ∣
∣ai

∣
∣; q

)

∞
(∣
∣bi

∣
∣; q

)

∞
. (4.3)

From |dn+1| ≤ |dn|, we know

( − ∣
∣dn+1

∣
∣; q

)

∞
( − ∣

∣dn

∣
∣; q

)

∞
≤ 1. (4.4)

The ratio test shows that the series
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is convergent. From (4.3), it is sufficient to establish that (4.2) is absolutely convergent.

Theorem 4.2. Suppose ai, bi, and z are any real numbers such that |ai| < 1, |bi| < 1with i = 1, 2, . . . , r.
Let {cn} and {dn} be any number series. If
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Proof. Letting z = dn in (1.2) and then multiplying both sides of (1.2) by |cn| give
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there exists an integer N0 such that, when n > N0,
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So, (4.7) diverges.
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