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1. Introduction

The theory of means and their inequalities is fundamental to many fields including
mathematics, statistics, physics, and economics.This is certainly true in the area of probability
and statistics. There are large amounts of work available in the literature. For example,
some useful results have been given by Shaked and Tong [1], Shaked and Shanthikumar
[2], Shaked et al. [3], and Tong [4, 5]. Motivated by different concerns, there are numerous
ways to introduce mean values. In probability and statistics, the most commonly used mean
is expectation. In [6], the author proves the mean inequality of two random variables. The
purpose of the present paper is to establish a recurring mean inequality, which generalizes the
mean inequality of two random variables to n random variables. This result can, in turn, be
extended to establish other new inequalities, which include generalizations of the Polya-Szegö
and Kantorovich inequalities [7].

We begin by introducing some preliminary concepts and known results which can also
be found in [6].

Definition 1.1. The supremum and infimum of the random variable ξ are defined as infx{x : P(ξ ≤
x) = 1} and supx{x : P(ξ ≥ x) = 1}, respectively, and denoted by sup ξ and inf ξ.

Definition 1.2. If ξ is bounded, the arithmetic mean of the random variable ξ, A(ξ), is given by

A(ξ) =
sup ξ + inf ξ

2
. (1.1)
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In addition, if inf ξ ≥ 0, one defines the geometric mean of the random variable ξ, G(ξ), to be

G(ξ) =
√
sup ξ· inf ξ. (1.2)

Definition 1.3. If ξ1, . . . , ξn are bounded random variables, the independent arithmetic mean of the
product of random variables ξ1, . . . , ξn, A(ξ1, . . . , ξn) is given by

A
(
ξ1, . . . , ξn

)
=
∏n

i=1 sup ξi +
∏n

i=1 inf ξ
2

. (1.3)

Definition 1.4. If ξ1, . . . , ξn are bounded random variables with inf ξi ≥ 0, i = 1, . . . , n, one defines
the independent geometric mean of the product of random variables ξ1, . . . , ξn to be

G
(
ξ1, . . . , ξn

)
=

√√√√ n∏
i=1

sup ξi inf ξi. (1.4)

Remark 1.5. If ξ1, . . . , ξn are independent, then

A
(
ξ1, . . . , ξn

)
= A

(
n∏
i=1

ξi

)
,

G
(
ξ1, . . . , ξn

)
= G

(
n∏
i=1

ξi

)
.

(1.5)

The mean inequality of two random variables [6].

Theorem 1.6. Let ξ and η be bounded random variables. If inf ξ > 0 and inf η > 0, then

Eξ2·Eη2

E2(ξη)
≤ A

2
(ξ, η)

G
2
(ξ, η)

. (1.6)

Equality holds if and only if

P

{(
ξ

η
=

a

B

)⋃(
ξ

η
=
A

b

)}
= 1,

G
(
η2)Eξ2 = G

(
ξ2
)
Eη2

(1.7)

for A = sup ξ, B = supη, a = inf ξ, b = inf η.

2. Main results

Our main results are given by the following theorem.

Theorem 2.1. Suppose that ξ1, . . . , ξn, ξn+1 are bounded random variables, inf ξi > 0, i = 1, . . . , n + 1.
Let {U(n)} be a sequence of real numbers. If

∏n
i=1Eξ

2
i

E2
(∏n

i=1ξi
) ≤ U(n), (2.1)

then
∏n+1

i=1 Eξ
2
i

E2
(∏n+1

i=1 ξi
) ≤ A

2(
ξ1, . . . , ξn+1

)

G
2(
ξ1, . . . , ξn+1

)U(n). (2.2)
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Proof. Let Ai = sup ξi, ai = inf ξi, i = 1, . . . , n + 1. We have

P
{(

ξ1 · · · ξnAn+1 − a1 · · ·anξn+1
)(
A1 · · ·Anξn+1 − ξ1 · · · ξnan+1

) ≥ 0
}
= 1. (2.3)

So

P
{(

A1 · · ·An+1 + a1 · · ·an+1
)
ξ1 · · · ξn+1 ≥ A1a1 · · ·Ananξ

2
n+1 +An+1an+1ξ

2
1 · · · ξ2n

}
= 1, (2.4)

which implies that

(
A1 · · ·An+1 + a1 · · ·an+1

)
E
(
ξ1 · · · ξn+1

) ≥ A1a1 · · ·AnanE
(
ξ2n+1

)
+An+1an+1E

(
ξ21 · · · ξ2n

)
. (2.5)

Using the Jensen inequality [7] and assumption (2.1), we get

(
A1 · · ·An+1 + a1 · · ·an+1

)
E
(
ξ1 · · · ξn+1

) ≥ A1a1 · · ·AnanE
(
ξ2n+1

)
+An+1an+1E

2(ξ1 · · · ξn
)

≥ A1a1 · · ·AnanE
(
ξ2n+1

)
+An+1an+1

Eξ21 · · ·Eξ2n
U(n)

≥ 2
[
A1a1 · · ·AnanE

(
ξ2n+1

)
An+1an+1

Eξ21 · · ·Eξ2n
U(n)

]1/2
.

(2.6)

Hence,

[
G

2(
ξ1, . . . , ξn+1

)
Eξ21 · · ·Eξ2n+1

U(n)

]1/2
≤ A

(
ξ1, . . . , ξn+1

)
E
(
ξ1 · · · ξn+1

)
, (2.7)

from which (2.2) follows.

Combining this result with Theorem 1.6, the following recurring inequalities are
immediate.

Corollary 2.2. Let ξ1, . . . , ξn be bounded random variables. If inf ξi > 0, i = 1, . . . , n, then

Eξ21Eξ
2
2

E2
(
ξ1ξ2

) ≤ A
2(
ξ1, ξ2

)

G
2(
ξ1, ξ2

) ,

Eξ21Eξ
2
2Eξ

2
3

E2
(
ξ1ξ2ξ3

) ≤ A
2(
ξ1, ξ2, ξ3

)

G
2(
ξ1, ξ2, ξ3

)
A

2(
ξ1, ξ2

)

G
2(
ξ1, ξ2

) ,

...
∏n

k=1 Eξ
2
k

E2
(∏n

k=1ξk
) ≤

n∏
k=2

A
2(
ξ1, . . . ξk

)

G
2(
ξ1, . . . ξk

) .

(2.8)
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3. Some applications

In this section, we exhibit some of the applications of the inequalities just obtained. We make
use of the following known lemma which we state here without proof.

Lemma 3.1. If 0 < m2 ≤ m1 ≤ M1 ≤ M2, then

(1/2)
(
m1 +M1

)
√
m1M1

≤ (1/2)
(
m2 +M2

)
√
m2M2

. (3.1)

Theorem 3.2 (the extensions of the inequality of Polya-Szegö). Let aij > 0, ai = minjaij , Ai =
maxjaij , for i = 1, . . . , n and j = 1, . . . , m. Then,

n∏
i=1

m∑
j=1

a2
ij ≤

mn−2

4n−1

n∏
k=2

(
a1 · · ·ak +A1 · · ·Ak

)2
a1 · · ·akA1 · · ·Ak

(
m∑
j=1

n∏
i=1

aij

)2

. (3.2)

Proof. This result is a consequence of inequality (2.8). Let ξ1 have the distribution

P
(
ξ1 = a1j

)
=

1
m
, j = 1, . . . , m. (3.3)

We define n − 1 functions as follows:

fi
(
a1j

)
= aij , i = 2, . . . , n, j = 1, . . . , m. (3.4)

Let ξi = fi(ξ1), i = 2, . . . , n. Then,

Eξ2i =
1
m

m∑
j=1

a2
ij , i = 1, . . . , n,

E
(
ξ1 · · · ξn

)
=

1
m

m∑
j=1

n∏
i=1

aij ,

A
(
ξ1, . . . , ξk

)
=
1
2
(
a1 · · ·ak +A1 · · ·Ak

)
, G

(
ξ1, . . . , ξk

)
=
√
a1 · · ·akA1 · · ·Ak.

(3.5)

Inequality (2.8) then becomes

∏n
i=1(1/m)

∑m
j=1 a

2
ij(

(1/m)
∑m

j=1
∏n

i=1 aij

)2 ≤
n∏

k=2

[
(1/2)

(
a1 · · ·ak +A1 · · ·Ak

)]2
[√

a1 · · ·akA1 · · ·Ak

]2 , (3.6)

from which our result follows.

Remark 3.3. For n = 2, we can get the inequality of Polya-Szegö [7]:

(
m∑
k=1

a2
k

)(
m∑
k=1

b2k

)
≤ 1
4

(√
AB

ab
+

√
ab

AB

)2(
m∑
k=1

akbk

)2

, (3.7)

where ak, bk > 0, k = 1, . . . , m, a = minak, A = maxak, b = min bk, and B = max bk.
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Theorem 3.4 (the extensions of Kantorovich’s inequality). Let A be an m × m positive Hermitian
matrix. Denote by λ1 and λm the maximum and minimum eigenvalues of A, respectively. For real
β1, . . . , βn and β = β1 + · · · + βn, and any vector 0/=x ∈ R

m,the following inequality is satisfied:

∏n
i=1x

∗Aβix
(
x∗Aβ/2x

)2 ≤
(
x∗x

)n−2
4n−1

n∏
k=2

[
l1 · · · lk + L1 · · ·Lk

]2
l1 · · · lkL1 · · ·Lk

, (3.8)

where

li =

⎧
⎨
⎩
λ
βi/2
m , βi ≥ 0,

λ
βi/2
1 , βi < 0,

Li =

⎧
⎨
⎩
λ
βi/2
1 , βi ≥ 0,

λ
βi/2
m , βi < 0,

i = 1, . . . , n. (3.9)

Proof. Let λ1 ≥ · · · ≥ λm be eigenvalues of A and let Λ = diag(λ1, . . . , λm). There is a Hermitian
matrix U that satisfies

A = U∗ΛU. (3.10)

Let

y = Ux =
(
y1, y2, . . . , ym

)T
, pi =

∣∣yi

∣∣2
∑m

i=1

∣∣yi

∣∣2 , i = 1, . . . , m. (3.11)

Then,
∏n

i=1 x
∗Aβix

(
x∗Aβ/2x

)2 =
∏n

i=1 x
∗U∗ΛβiUx

(
x∗U∗Λβ/2Ux

)2

=
∏n

i=1 y
∗Λβiy

(
y∗Λβ/2y

)2

=

(
y∗y

)n−2∏n
i=1

∑m
k=1 λ

βi
k
pk

(∑m
k=1 λ

β/2
k

pk
)2

=

(
x∗x

)n−2∏n
i=1

∑m
k=1 λ

βi
k
pk

(∑m
k=1 λ

β/2
k

pk
)2 .

(3.12)

What remains to show is that
∏n

i=1
∑m

k=1 λ
βi
k
pk

(∑m
k=1 λ

β/2
k

pk
)2 ≤ 1

4n−1

n∏
k=2

[
l1 · · · lk + L1 · · ·Lk

]2
l1 · · · lkL1 · · ·Lk

, ∀pi ≥ 0,
m∑
i=1

pi = 1. (3.13)

We define the random variable ζ, and assign P(ζ = λi) = pi, i = 1, . . . , m. Suppose ξi =
ζβi/2, i = 1, . . . , n.Notice that λ1 and λn are the upper and lower bounds of the random variable
ζ, so li and Li are the lower and upper bounds of ξi. According to Lemma 3.1, we know that

A
2(
ξ1, . . . , ξk

)

G
2(
ξ1, . . . , ξk

) ≤
[
(1/2)

(
l1 · · · lk + L1 · · ·Lk

)]2
[√

l1 · · · lkL1 · · ·Lk

]2 . (3.14)
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Noticing that

E
(
ξ1 · · · ξn

)
= Eζβ/2 =

m∑
k=1

λ
β/2
k

pk, (3.15)

we can use inequality (2.8) to express inequality (3.13) as

Eξ21 · · ·Eξ2n
E2

(
ξ1 · · · ξn

) ≤
n∏

k=2

[
(1/2)

(
l1 · · · lk + L1 · · ·Lk

)]2
[√

l1 · · · lkL1 · · ·Lk

]2 . (3.16)

Remark 3.5. If n = 2, β1 = 1, and β2 = −1, this inequality takes the form

x∗Axx∗A−1x
(
x∗x

)2 ≤
(
λ1 + λm

)2
4λ1λm

(3.17)

which is Kantorovich’s inequality [7].
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