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1. Introduction

Recently, new developments of the theory and applications of dynamic derivatives on
time scales were made. The study provides an unification and an extension of traditional
differential and difference equations and, in the same time, it is a unification of the
discrete theory with the continuous theory, from the scientific point of view. Moreover, it
is a crucial tool in many computational and numerical applications. Based on the well-
known Δ (delta) and ∇ (nabla) dynamic derivatives, a combined dynamic derivative, so-
called �α (diamond-α) dynamic derivative, was introduced as a linear combination of Δ
and ∇ dynamic derivatives on time scales. The diamond-α dynamic derivative reduces to
the Δ derivative for α = 1 and to the ∇ derivative for α = 0. On the other hand, it
represents a “weighted dynamic derivative” on any uniformly discrete time scale when
α = 1/2. See [1–5] for the basic rules of calculus associated with the diamond-α dynamic
derivatives.

The classical Hermite-Hadamard inequality gives us an estimate, from below and from
above, of the mean value of a convex function. The aim of this paper is to establish a full
analogue of this inequality if we compute the mean value with the help of the delta, nabla,
and diamond-α integral.

The left-hand side of the Hermite-Hadamard inequality is a special case of the Jensen
inequality.

Recently, it has been proven a variant of diamond-α Jensen’s inequality (see [6]).

Theorem 1.1. Let a, b ∈ T and c, d ∈ R. If g ∈ C([a, b]
T
, (c, d)), and f ∈ C((c, d),R) is convex,

then
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f

(∫b
a g(s)�αs
b − a

)
≤

∫b
a f

(
g(s)

)�αs
b − a

. (1.1)

In the same paper appears the following generalized version of the diamond-α
Jensen’s inequality.

Theorem 1.2. Let a, b ∈ T and c, d ∈ R. If g ∈ C([a, b]
T
, (c, d)), h ∈ C([a, b]

T
,R) with∫b

a |h(s)|�αs > 0, and f ∈ C((c, d),R) is convex, then

f

(∫b
a

∣∣h(s)∣∣g(s)�αs∫b
a

∣∣h(s)∣∣�αs
)

≤
∫b
a

∣∣h(s)|f(g(s))�αs∫b
a

∣∣h(s)∣∣�αs . (1.2)

In Section 2, we review some necessary definitions and the calculus on time scales.
In Section 3, we give our main results concerning the Hermite-Hadamard inequality. Some
improvements and applications are presented in Section 4, together with an extension
of Hermite-Hadamard inequality for some symmetric functions. A special case is that
of diamond-1/2 integral, which enables us to gain a number of consequences of our
Hermite-Hadamard type inequality; we present them in Section 5 together with a discussion
concerning the case of convex-concave symmetric functions.

2. Preliminaries

A time scale (or measure chain) is any nonempty closed subset T of R (endowed with the
topology of subspace of R).

Throughout this paper, T will denote a time scale and [a, b]
T
= [a, b] ∩T a time-scaled

interval.
For all t, r ∈ T, we define the forward jump operator σ and the backward jump operator ρ

by the formulas

σ(t) = inf{τ ∈ T : τ > t} ∈ T, ρ(r) = sup{τ ∈ T : τ < r} ∈ T. (2.1)

We make the convention:

inf∅ := supT, sup∅ := infT. (2.2)

If σ(t) > t, then t is said to be right-scattered, and if ρ(r) < r, then r is said to be
left-scattered. The points that are simultaneously right-scattered and left-scattered are called
isolated. If σ(t) = t, then t is said to be right dense, and if ρ(r) = r, then r is said to be left dense.
The points that are simultaneously right-dense and left-dense are called dense.

The mappings μ, ν : T → [0,+∞) defined by

μ(t) := σ(t) − t,

ν(t) := t − ρ(t)
(2.3)

are called, respectively, the forward and backward graininess functions.
If T has a right-scattered minimum m, then define Tκ = T − {m}; otherwise Tκ = T. If

T has a left-scattered maximum M, then define T
κ = T − {M}; otherwise T

κ = T. Finally, put
T
κ
κ = Tκ ∩ T

κ.
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Definition 2.1. For f : T → R and t ∈ T
κ, one defines the delta derivative of f in t, to be the

number denoted by fΔ(t) (when it exists), with the property that, for any ε > 0, there is a
neighborhood U of t such that∣∣[f(σ(t)) − f(s)

] − fΔ(t)
[
σ(t) − s

]∣∣ < ε
∣∣σ(t) − s

∣∣, (2.4)

for all s ∈ U.
For f : T → R and t ∈ Tκ, one defines the nabla derivative of f in t, to be the

number denoted by f∇(t) (when it exists), with the property that, for any ε > 0, there is a
neighborhood V of t such that∣∣[f(ρ(t)) − f(s)

] − f∇(t)
[
ρ(t) − s

]∣∣ < ε
∣∣ρ(t) − s

∣∣, (2.5)

for all s ∈ V .

We say that f is delta differentiable on T
κ, provided that fΔ(t) exists for all t ∈ T

κ and
that f is nabla differentiable on Tκ, provided that f∇(t) exists for all t ∈ Tκ.

If T = R, then

fΔ(t) = f∇(t) = f ′(t). (2.6)

If T = Z, then

fΔ(t) = f(t + 1) − f(t) (2.7)

is the forward difference operator, while

f∇(t) = f(t) − f(t − 1) (2.8)

is the backward difference operator.
For a function f : T → R, we define fσ : T → R by fσ(t) = f(σ(t)), for all t ∈ T, (i.e.,

fσ = f ◦ σ). We also define fρ : T → R by fρ(t) = f(ρ(t)), for all t ∈ T, (i.e., fρ = f ◦ ρ).
For all t ∈ T

κ, we have the following properties.

(i) If f is delta differentiable at t, then f is continuous at t.

(ii) If f is left continuous at t and t is right-scattered, then f is delta differentiable at t
with fΔ(t) = (fσ(t) − f(t))/μ(t).

(iii) If t is right-dense, then f is delta differentiable at t, if and only if, the limit
lims→t((f(t) − f(s))/(t − s)) exists as a finite number. In this case, fΔ(t) =
lims→t((f(t) − f(s))/(t − s)).

(iv) If f is delta differentiable at t, then fσ(t) = f(t) + μ(t)fΔ(t).

In the same manner, for all t ∈ Tκ we have the following properties.

(i) If f is nabla differentiable at t, then f is continuous at t.

(ii) If f is right continuous at t and t is left-scattered, then f is nabla differentiable at t
with f∇(t) = (f(t) − fρ(t))/ν(t).

(iii) If t is left-dense, then f is nabla differentiable at t, if and only if, the limit
lims→t((f(t) − f(s))/(t − s)) exists as a finite number. In this case, f∇(t) =
lims→t((f(t) − f(s))/(t − s)).

(iv) If f is nabla differentiable at t, then fρ(t) = f(t) − ν(t)f∇(t).
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Definition 2.2. A function f : T → R is called rd-continuous, if it is continuous at all right-
dense points in T and its left-sided limits are finite at all left-dense points in T. One denotes
by Crd the set of all rd-continuous functions.

A function f : T → R is called ld-continuous, if it is continuous at all left-dense points
in T and its right-sided limits are finite at all right-dense points in T. One denotes by Cld the
set of all ld-continuous functions.

It is easy to remark that the set of continuous functions on T contains both Crd and Cld.

Definition 2.3. A function F : T → R is called a delta antiderivative of f : T → R if FΔ(t) =
f(t), for all t ∈ T

κ. Then, one defines the delta integral by
∫ t
a f(s)Δs = F(t) − F(a).

A function G : T → R is called a nabla antiderivative of f : T → R if G∇(t) = f(t), for
all t ∈ Tκ. Then, one defines the nabla integral by

∫ t
a f(s)Δs = G(t) −G(a).

According to [2, Theorem 1.74], every rd-continuous function has a delta antideriva-
tive, and every ld-continuous function has a nabla antiderivative.

Theorem 2.4 (see [2, Theorem 1.75]). (i) If f ∈ Crd and t ∈ T
κ, then

∫σ(t)

t

f(s)Δs = μ(t)f(t). (2.9)

(ii) If f ∈ Cld and t ∈ T
κ, then

∫ t

ρ(t)
f(s)∇s = ν(t)f(t). (2.10)

Theorem 2.5 (see [2, Theorem 1.77]). If a, b, c ∈ T, β ∈ R, and f, g ∈ Crd, then

(i)
∫b
a(f(t) + g(t))Δt =

∫b
a f(t)Δt +

∫b
a g(t)Δt;

(ii)
∫b
a βf(t)Δt = β

∫b
a f(t)Δt;

(iii)
∫b
a f(t)Δt = − ∫a

b f(t)Δt;

(iv)
∫b
a f(t)Δt =

∫c
a f(t)Δt +

∫b
c f(t)Δt;

(v)
∫b
a f(σ(t))g

Δ(t)Δt = (fg)(b) − (fg)(a) − ∫b
a f

Δ(t)g(t)Δt;

(vi)
∫b
a f(t)g

Δ(t)Δt = (fg)(b) − (fg)(a) − ∫b
a f

Δ(t)g(σ(t))Δt;

(vii)
∫a
a f(t)Δt = 0;

(viii) if f(t) ≥ 0 for all t, then
∫b
a f(t)Δt ≥ 0;

(ix) if |f(t)| ≤ g(t) on [a, b), then

∣∣∣∣
∫b

a

f(t)Δt

∣∣∣∣ ≤
∫b

a

g(t)Δt. (2.11)
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Using Theorem 2.5, (viii) we get

(i) if f(t) ≤ g(t) for all t, then
∫b
a f(t)Δt ≤ ∫b

a g(t)Δt;

(ii) if f(t) ≥ 0 for all t, then f ≡ 0 if and only if
∫b
a f(t)Δt = 0;

and if in (ix), we choose g(t) = |f(t)| on [a, b], we obtain

∣∣∣∣
∫b

a

f(t)Δt

∣∣∣∣ ≤
∫b

a

∣∣f(t)∣∣Δt. (2.12)

A similar theorem works for the nabla antiderivative (for f, g ∈ Cld).
Now, we give a brief introduction of the diamond-α dynamic derivative and of the

diamond-α integral.

Definition 2.6. Let T be a time scale and for s, t ∈ T
κ
κ put μts = σ(t) − s, and νts = ρ(t) −

s. One defines the diamond-α dynamic derivative of a function f : T → R in t to be the
number denoted by f�α(t) (when it exists), with the property that, for any ε > 0, there is a
neighborhood U of t such that for all s ∈ U

∣∣α[f(σ(t)) − f(s)
]
νts + (1 − α)

[
f
(
ρ(t)

) − f(s)
]
μts − f�α(t)μtsνts

∣∣ < ε
∣∣μtsνts

∣∣. (2.13)

A function is called diamond-α differentiable on T
κ
κ if f

�α(t) exists for all t ∈ T
κ
κ. If f : T →

R is differentiable on T in the sense of Δ and ∇, then f is diamond-α differentiable at t ∈ T
κ
κ,

and the diamond-α derivative f�α(t) is given by

f�α(t) = αfΔ(t) + (1 − α)f∇(t), 0 ≤ α ≤ 1. (2.14)

As it was proved in [5, Theorem 3.9], if f is diamond-α differentiable for 0 < α < 1
then f is both Δ and ∇ differentiable. It is obvious that for α = 1 the diamond-α derivative
reduces to the standard Δ derivative and for α = 0 the diamond-α derivative reduces to the
standard ∇ derivative. For α ∈ (0, 1), it represents a “weighted dynamic derivative.”

We present here some operations with the diamond-α derivative. For that, let f, g :
T → R be diamond-α differentiable at t ∈ T. Then,

(i) f + g : T → R is diamond-α differentiable at t ∈ T and

(f + g)�α(t) = f�α(t) + g�α(t); (2.15)

(ii) if c ∈ R and cf : T → R is diamond-α differentiable at t ∈ T and

(cf)�α(t) = cf�α(t); (2.16)

(iii) fg : T → R is diamond-α differentiable at t ∈ T and

(fg)�α(t) = f�α(t)g(t) + αfσ(t)gΔ(t) + (1 − α)fρ(t)g∇(t). (2.17)
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Let a, b ∈ T and f : T → R. The diamond-α integral of f from a to b is defined by

∫b

a

f(t)�αt = α

∫b

a

f(t)Δt + (1 − α)
∫b

a

f(t)∇t, 0 ≤ α ≤ 1, (2.18)

provided that f has a delta and a nabla integral on [a, b]
T
. Obviously, each continuous

function has a diamond-α integral. The combined derivative �α is not a dynamic derivative,
since we do not have a �α antiderivative. See [6, Example 2.1]. In general,

(∫ t

a

f(s)�αs
)�α

/=f(t), t ∈ T, (2.19)

but we still have some of the “classical” properties, as one can easily be deduced from
Theorem 2.5 and its analogue for the nabla integral.

Theorem 2.7. If a, b, c ∈ T, β ∈ R, and f, g are continuous functions, then

(i)
∫b
a(f(t) + g(t))�αt =

∫b
a f(t)�αt +

∫b
a g(t)�αt;

(ii)
∫b
a βf(t)�αt = β

∫b
a f(t)�αt;

(iii)
∫b
a f(t)�αt = − ∫a

b f(t)�αt;
(iv)

∫b
a f(t)�αt =

∫c
a f(t)�αt +

∫b
c f(t)�αt;

(v)
∫a
a f(t)�αt = 0;

(vi) if f(t) ≥ 0 for all t, then
∫b
a f(t)�αt ≥ 0;

(vii) if f(t) ≤ g(t) for all t, then
∫b
a f(t)�αt ≤

∫b
a g(t)�αt;

(viii) if f(t) ≥ 0 for all t, then f ≡ 0 if and only if
∫b
a f(t)�αt = 0;

(ix) if |f(t)| ≤ g(t) on [a, b), then

∣∣∣∣
∫b

a

f(t)�αt
∣∣∣∣ ≤

∫b

a

g(t)�αt. (2.20)

In Theorem 2.7, (ix), if we choose g(t) = |f(t)| on [a, b],we have

∣∣∣∣
∫b

a

f(t)�αt
∣∣∣∣ ≤

∫b

a

∣∣f(t)∣∣�αt. (2.21)

3. The Hermite-Hadamard inequality

In this section, we present an extension of the Hermite-Hadamard inequality, for time scales.
For that, we need to find the conditions fulfilled by the functions defined on a time scale. We
want to evaluate

∫b
a tΔt and

∫b
a t∇t on such sets, because they provide us with a useful tool for

the proof of Hermite-Hadamard inequality. We start with a few technical lemmas.
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Lemma 3.1. Let f : T → R be a continuous function and a, b ∈ T.

(i) If f is nondecreasing on T, then

(b − a)f(a) ≤
∫b

a

f(t)Δt ≤
∫b

a

f̃(t)dt ≤
∫b

a

f(t)∇t ≤ (b − a)f(b), (3.1)

where f̃ : R → R is a continuous nondecreasing function such that f(t) = f̃(t), for all
t ∈ T.

(ii) If f is nonincreasing on T, then

(b − a)f(a) ≥
∫b

a

f(t)Δt ≥
∫b

a

f̃(t)dt ≥
∫b

a

f(t)∇t ≥ (b − a)f(b), (3.2)

where f̃ : R → R is a continuous nonincreasing function such that f(t) = f̃(t), for all
t ∈ T.

In both cases, there exists an αT ∈ [0, 1] such that

∫b

a

f(t)�αT t =
∫b

a

f̃(t)dt. (3.3)

Proof. (i)We start by noticing that if T = {a, b} then by Theorem 2.4, we have

∫b

a

f(t)Δt =
∫σ(a)

a

f(t)Δt = f(a)(b − a), (3.4)

while if T = [a, b], then

∫b

a

f(t)Δt =
∫b

a

f(t)dt. (3.5)

It suffices to prove that, for monotone functions, the value of
∫b
a f(t)Δt, for a general

time scale T, remains between the values of
∫b
a f(t)Δt for T = {a, b} and for T = [a, b].

Now, let f̃ : R → R be a continuous nondecreasing function such that f(t) = f̃(t), for
all t ∈ T. First, we will show that by adding a point or an interval, the corresponding integral
increases.
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Let us suppose that we add a point c to T, where a < c < b. If T1 = T ∪ {c}, and c /∈ T

is an isolated point of T1 (with
∫b
a f(t)Δ1t the corresponding integral), then

∫b

a

f(t)Δ1t =
∫ c

a

f(t)Δ1t +
∫b

c

f(t)Δ1t

=
∫ρ1(c)

a

f(t)Δ1t +
∫ c

ρ1(c)
f(t)Δ1t +

∫σ1(c)

c

f(t)Δ1t +
∫b

σ1(c)
f(t)Δ1t

=
∫ρ1(c)

a

f(t)Δt +
∫ c

ρ1(c)
f(t)Δ1t +

∫σ1(c)

c

f(t)Δ1t +
∫b

σ1(c)
f(t)Δt

=
∫b

a

f(t)Δt −
∫σ1(c)

ρ1(c)
f(t)Δt +

∫ c

ρ1(c)
f(t)Δ1t +

∫σ1(c)

c

f(t)Δ1t

=
∫b

a

f(t)Δt − f
(
ρ1(c)

)(
σ1(c) − ρ1(c)

)
+ f

(
ρ1(c)

)(
c − ρ1(c)

)
+ f(c)

(
σ1(c) − c

)

=
∫b

a

f(t)Δt +
(
f(c) − f

(
ρ1(c)

))(
σ1(c) − c

)

≥
∫b

a

f(t)Δt.

(3.6)

In the same manner, we prove that if we add an interval, the corresponding integral
remains in the same interval. So, let us denote T1 = T ∪ [c, d], with a < c < d < b and
T ∩ [c, d] = ∅, then

∫b

a

f(t)Δ1t =
∫ρ1(c)

a

f(t)Δ1t +
∫ c

ρ1(c)
f(t)Δ1t +

∫d

c

f(t)Δ1t +
∫σ1(d)

d

f(t)Δ1t +
∫b

σ1(d)
f(t)Δ1t

=
∫ρ1(c)

a

f(t)Δt +
∫ c

ρ1(c)
f(t)Δ1t +

∫d

c

f(t)Δ1t +
∫σ1(d)

d

f(t)Δ1t +
∫b

σ1(d)
f(t)Δt

=
∫b

a

f(t)Δt −
∫σ1(d)

ρ1(c)
f(t)Δt +

∫ c

ρ1(c)
f(t)Δ1t +

∫d

c

f(t)Δ1t +
∫σ1(d)

d

f(t)Δ1t

=
∫b

a

f(t)Δt − f(ρ1(c))(σ1(d) − ρ1(c)) + f(ρ1(c))(c − ρ1(c))

+
∫d

c

f̃(t)dt + f(d)(σ1(d) − d)

≥
∫b

a

f(t)Δt − f(ρ1(c))(d − c) + (d − c)f̃(s)

≥
∫b

a

f(t)Δt,

(3.7)

where s ∈ (c, d) is the point from mean value theorem.
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Using the same methods, we show that if we “extract” an isolated point or an interval
from an initial times scale, the corresponding integral decreases. And so, the value of

∫b
a f(t)Δt

is between its minimum value (corresponding to T = {a, b}) and its maximum value
(corresponding to T = [a, b]), that is

(b − a)f(a) ≤
∫b

a

f(t)Δt ≤
∫b

a

f̃(t)dt. (3.8)

The proof is similar in the case of nonincreasing functions and also, for the nabla
integral. The final conclusion of the Lemma 3.1 is obvious for any α ∈ [0, 1] if

∫b
a f(t)Δt is

equal to
∫b
a f(t)∇t, while if the two integrals differ, it is all clear taking

αT =

∫b
a f̃(t)dt −

∫b
a f(t)∇t∫b

a f(t)Δt − ∫b
a f(t)∇t

. (3.9)

Then, ∫b

a

f̃(t)dt = αT

∫b

a

f(t)Δt +
(
1 − αT

)∫b

a

f(t)∇t, (3.10)

that is ∫b

a

f(t)�αT t =
∫b

a

f̃(t)dt. (3.11)

Remark 3.2. The above proof covers the case of adding or extracting a set of the form
{l1, l1, . . . , ln, . . . , l}, where n ∈ N and (ln)n∈N is a sequence of real numbers such that limn→∞ =
l. For that, suppose that (ln)n∈N is a nondecreasing sequence (the proof works in the same
way for nonincreasing sequences, while the case of nonmonotone sequences can be split in
two subcases with monotone sequences). Let ε > 0. Since (ln)n∈N is convergent, we have
N1 ∈ N such that |l − ln| < ε, for all n ≥ N1. Since f is rd-continuous and l is left dense, the
limit limn→∞f(ln) exists and it is finite. Denoting by b this limit, we have N2 ∈ N such that
|b−f(ln)| < ε, for all n ≥ N2 and so f(ln) ∈ (b− ε, b+ ε), for all n ≥ N2. Using Theorem 2.5(iv),
we have, for N = max{N1,N2},∫ l

l1

f(t)Δt =
N−1∑
i=1

∫ li+1

li

f(t)Δt +
∫ l

lN

f(t)Δt

=
N−1∑
i=1

∫σ(li)

li

f(t)Δt +
∫ l

lN

f(t)Δt

=
N−1∑
i=1

μ(li)f(li) +
∫ l

lN

f(t)Δt.

(3.12)

Taking the delta integral in the following inequality b − ε < f(ln) < b + ε and using
Theorem 2.5(viii), we have

(b − ε)
(
l − lN

)
<

∫ l

lN

f(t)Δt < (b + ε)
(
l − lN

)
. (3.13)
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Taking the modulus in the last inequality and using |l − lN | < ε, we get

0 ≤
∣∣∣∣
∫ l

lN

f(t)Δt

∣∣∣∣ ≤ (b + ε)ε. (3.14)

If ε goes to 0 and N goes to ∞, then limN→∞
∫b
aN

f(t)Δt = 0. Passing to the limit as
N → ∞, in (3.12), we get

∫ l

l1

f(t)Δ1t = lim
n→∞

n∑
i=1

f
(
li
)(
li+1 − li

)
(3.15)

and so

∫ l

l1

f(t)Δ1t ≥ lim
n→∞

n∑
i=1

f
(
l1
)(
li+1 − li

)
= f

(
l1
)(
l − l1

)
, (3.16)

while

∫ l

l1

f(t)Δ1t ≤ lim
n→∞

n∑
i=1

f
(
ξi
)(
ξi+1 − ξi

)
=
∫ l

l1

f(t)dt, (3.17)

which are, respectively, the case of adding two points l1, l and the case of adding an interval
[l1, l].

Remark 3.3. (i) If f is nondecreasing on T, then for α ≤ αT , we have

∫b

a

f(t)�αt ≥
∫b

a

f̃(t)dt, (3.18)

while if α ≥ αT , we have

∫b

a

f(t)�αt ≤
∫b

a

f̃(t)dt. (3.19)

(ii) If f is nonincreasing on T, then for α ≤ αT , we have

∫b

a

f(t)�αt ≤
∫b

a

f̃(t)dt, (3.20)

while if α ≥ αT , we have

∫b

a

f(t)�αt ≥
∫b

a

f̃(t)dt. (3.21)

(iii) If T = [a, b] or if f is constant, then αT can be any real number from [0, 1].
Otherwise, αT ∈ (0, 1)
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Now we will prove that if f : T → R is a linear function, (i.e., f(t) = ut + v) then∫b
a f(t)Δt and

∫b
a f(t)∇t are symmetric with respect to

∫b
a f̃(t)dt, where f̃ : [a, b] → R, f̃(t) =

ut + v is the corresponding linear function, defined on the interval [a, b].

Lemma 3.4. Let f : T → R be a linear function and let f̃ : [a, b] → R be the corresponding linear
function. If

∫b
a f(t)Δt =

∫b
a f̃(t)dt − C, with C ∈ R, then

∫b
a f(t)∇t =

∫b
a f̃(t)dt + C.

Proof. We will start by considering the case of f : T → R, f(t) = t. If T = [a, b], then C = 0 and
the conclusion is clear. If T = [a, b] \ (c, d), then

∫b

a

tΔt =
∫ c

a

tΔt +
∫d

c

tΔt +
∫b

d

tΔt

=
∫ c

a

t dt +
∫σ(c)

c

tΔt +
∫b

d

t dt

=
∫b

a

t dt −
∫d

c

t dt + c(d − c)

=
∫b

a

t dt − (d − c)
d + c

2
+ c(d − c)

=
∫b

a

t dt − (d − c)2

2
,

(3.22)

while

∫b

a

t∇t =
∫ c

a

t∇t +
∫d

c

t∇t +
∫b

d

t∇t

=
∫ c

a

t dt +
∫d

ρ(d)
t∇t +

∫b

d

t dt

=
∫b

a

t dt −
∫d

c

t dt + d(d − c)

=
∫b

a

t dt − (d − c)
d + c

2
+ d(d − c)

=
∫b

a

t dt +
(d − c)2

2

(3.23)

and, obvious, if we choose C = (d − c)2/2 the conclusion is clear.
By repeating the same arguments several times, we can “extract” any number of

intervals from [a, b] and get the same conclusion.
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If we “extract” an interval, but we “add” an isolated point (i.e., T = [a, b] \ ((c, e) ∪
(e, d)) = [a, c] ∪ {e} ∪ [d, b]), then

∫b

a

tΔt =
∫ c

a

tΔt +
∫e

c

tΔt +
∫d

e

tΔt +
∫b

d

tΔt

=
∫ c

a

t dt +
∫σ(c)

c

tΔt +
∫σ(e)

e

tΔt +
∫b

d

t dt

=
∫b

a

t dt −
∫d

c

t dt + c(e − c) + e(d − e)

=
∫b

a

t dt − (d − c)
d + c

2
+ e(c + d) − c2 − e2

=
∫b

a

t dt − d2

2
− c2

2
+ e(c + d) − e2,

(3.24)

while ∫b

a

t∇t =
∫ c

a

t∇t +
∫e

c

t∇t +
∫d

e

t∇t +
∫b

d

t∇t

=
∫ c

a

t dt +
∫e

ρ(e)
t∇t +

∫d

ρ(d)
t∇t +

∫b

d

t dt

=
∫b

a

t dt −
∫d

c

t dt + e(e − c) + d(d − e)

=
∫b

a

t dt − (d − c)
d + c

2
− e(c + d) + d2 + e2

=
∫b

a

t dt +
d2

2
+
c2

2
− e(c + d) + e2

(3.25)

and thus, for C = (e − c)2/2 + (d − e)2/2, we get the conclusion.
For a general linear function, f(t) = ut + v, we have

∫b

a

f(t)Δt =
∫b

a

(ut + v)Δt = u

(∫b

a

t dt − C

)
+ v(b − a) = u

∫b

a

t dt − uC + v(b − a),

∫b

a

f(t)∇t =
∫b

a

(ut + v)∇t = u

(∫b

a

t dt + C

)
+ v(b − a) = u

∫b

a

t dt + uC + v(b − a),

(3.26)

so that
∫b
a f(t)Δt =

∫b
a f̃(t)dt − uC and

∫b
a f(t)∇t =

∫b
a f̃(t)dt + uC.

Definition 3.5. Let T be a bounded time scale and a, b ∈ T. One defines themeasure of graininess
between a and b to be the function G : T × T → R+ by

G(a, b) =
∑
a≤t<b

μ(t)2

2
=

∑
a<t≤b

ν(t)2

2
. (3.27)
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It is clear that the two sums are equal, noticing that

G(a, b) =
∑
a≤t<b

t left-scattered

μ(t)2

2
=

∑
a<t≤b

t right-scattered

ν(t)2

2
, (3.28)

and using the fact that μ(t) = ν(σ(t)) for all t right-scattered and that [a, b]
T
is a bounded set.

We have

G(a, b) =
∑
a≤t<b

μ(t)2

2
≤

(∑
a≤t<bμ(t)

)2
2

=
(b − a)2

2
, (3.29)

and so G(a, b) is finite.
In other words, the function G measures the square of distances between all scattered

points between a and b and it depends on the “geometry” of the time scale T.

Remark 3.6. The difference between
∫b
a tΔt and

∫b
a t dt depends on the measure of graininess

function. In fact, we have ∫b

a

tΔt =
∫b

a

t dt −G(a, b). (3.30)

The proof uses the same methods as the proof of Lemma 3.4, so we will omit the
details.

Notice that ∫b

a

t∇t =
∫b

a

t dt +G(a, b),∫b

a

t�1/2t = b2 − a2

2
.

(3.31)

Remark 3.7. For all time scales T and all α ∈ [0, 1], we have

1
b − a

∫b

a

t�αt ∈ [a, b]. (3.32)

Indeed, using Lemma 3.1 for the nondecreasing function f(t) = t,we have

a ≤ 1
b − a

∫b

a

tΔt ≤ a + b

2
≤ 1

b − a

∫b

a

t∇t ≤ b, (3.33)

and the conclusion is clear.
We denote by xα = (1/(b − a))

∫b
a t�αt and call it the α-center of the time-scaled interval

[a, b]
T
.

Based on the previous remarks, we can compute
∫b
a |t − s|�αs.

Corollary 3.8. Let T be a time scale. Then,∫b

a

|t − s|�αs =
(t − a)2 + (b − t)2

2
+ (1 − 2α)

(
G(t, b) −G(a, t)

)
, (3.34)

where G is the function introduced in Definition 3.5.
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Proof. Using Remark 3.6, we have

∫b

a

|t − s|�αs =
∫ t

a

(t − s)�αs +
∫b

t

(s − t)�αs

= t(t − a) −
∫ t

a

s�αs − t(b − t) +
∫b

t

s�αs

=
(t − a)2 + (b − t)2

2
+ (1 − 2α)

(
G(t, b) −G(a, t)

)
.

(3.35)

Now, we are able to give the Hermite-Hadamard inequality for the time scales.

Theorem 3.9 (Hermite-Hadamard inequality). Let T be a time scale and a, b ∈ T. Let f : [a, b] →
R be a continuous convex function. Then,

f
(
xα

) ≤ 1
b − a

∫b

a

f(t)�αt ≤ b − xα

b − a
f(a) +

xα − a

b − a
f(b). (3.36)

Proof. For every convex function, we have

f(t) ≤ f(a) +
f(b) − f(a)

b − a
(t − a). (3.37)

By taking the diamond-α integral side by side, we get

∫b

a

f(t)�αt ≤ f(a)(b − a) +
f(b) − f(a)

b − a

(∫b

a

t�αt − a(b − a)
)
, (3.38)

that is,

1
b − a

∫b

a

f(t)�αt ≤ b − xα

b − a
f(a) +

xα − a

b − a
f(b), (3.39)

and so we have proved the right-hand side.
For the left-hand side, we use Theorem 1.1, by taking g : T → T, g(s) = s for all s ∈ T.

We have

f

(∫b
a s�αs
b − a

)
≤

∫b
a f(s)�αs
b − a

, (3.40)

and, hence, we get

f
(
xα

) ≤ 1
b − a

∫b

a

f(t)�αt. (3.41)

Remark 3.10. The right-hand side of Hermite-Hadamard inequality (3.36) remains true for all
0 ≤ α ≤ λ, including for the nabla integral, if f(b) ≤ f(a) and for all λ ≤ α ≤ 1, including for
the delta integral, if f(b) ≥ f(a), where xλ is the λ-center of the time-scaled interval [a, b]

T
.
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Indeed, let us suppose that f(b) ≥ f(a). Then, by taking the diamond-α integral side
by side to the inequality f(t) ≤ f(a) + ((f(b) − f(a))/(b − a))(t − a), we get

∫b

a

f(t)�αt ≤ f(a)(b − a) +
f(b) − f(a)

b − a

(∫b

a

t�αt − a(b − a)
)

≤ f(a)(b − a) +
(
f(b) − f(a)

)
(xλ − a)

=
(
b − xλ

)
f(a) +

(
xλ − a

)
f(b).

(3.42)

According to Lemma 3.1, the last inequality is true for
∫b
a t�αt ≤

∫b
a t�λt, that is, for α ≥ λ.

The same arguments work for λ ≥ α.

Remark 3.11. The left-hand side of Hermite-Hadamard inequality (3.36) remains true for all
0 ≤ α ≤ λ, including the nabla integral, if f is nonincreasing and for all λ ≤ α ≤ 1, including
the delta integral, if f is nondecreasing.

Indeed, let us suppose that f is nonincreasing. Then, using Theorem 1.1, let g : T → T,
g(s) = s for all s ∈ T. We have

f

(∫b
a s�αs
b − a

)
≤

∫b
a f(s)�αs
b − a

. (3.43)

For α ≥ λ, we have
∫b
a s�αs ≤ ∫b

a s�λs and so

f

(∫b
a s�λs
b − a

)
≤ f

(∫b
a s�αs
b − a

)
≤

∫b
a f(s)�αs
b − a

, (3.44)

that is,

f
(
xλ

) ≤ 1
b − a

∫b

a

f(t)�αt. (3.45)

The same arguments are used to prove the case of f nondecreasing function.
Using the last remarks, we can give a more general Hermite-Hadamard inequality for

time scales.

Theorem 3.12 (a general version of Hermite-Hadamard inequality). LetT be a time scale, α, λ ∈
[0, 1] and a, b ∈ T. Let f : [a, b] → R be a continuous convex function. Then,

(i) if f is nondecreasing on [a, b]
T
, then, for all α ∈ [0, λ] one has

f
(
xλ

) ≤ 1
b − a

∫b

a

f(t)�αt, (3.46)

and for all α ∈ [λ, 1], one has

1
b − a

∫b

a

f(t)�αt ≤ b − xλ

b − a
f(a) +

xλ − a

b − a
f(b). (3.47)

(ii) If f is nonincreasing on [a, b]
T
, then, for all α ∈ [0, λ] one has the above inequality (3.47)

and for all α ∈ [0, λ] one has the above inequality (3.46).
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Remark 3.13. In the above inequalities (3.46) and (3.47), we have equalities if f is a constant
function and α, λ ∈ [0, 1] or if f is a linear function and α = λ.

Theorem 3.14 (a weighted version of Hermite-Hadamard inequality). Let T be a time scale and
a, b ∈ T. Let f : [a, b] → R be a continuous convex function and let w : T → R be a continuous
function such that w(t) ≥ 0 for all t ∈ T and

∫b
a w(t)�αt > 0. Then,

f
(
xw,α

) ≤ 1∫b
a w(t)�αt

∫b

a

f(t)w(t)�αt ≤
b − xw,α

b − a
f(a) +

xw,α − a

b − a
f(b), (3.48)

where xw,α =
∫b
a tw(t)�αt/

∫b
a w(t)�αt.

Proof. For every convex function, we have

f(t) ≤ f(a) +
f(b) − f(a)

b − a
(t − a). (3.49)

Multiplying this inequality with w(t)which is nonnegative, we get

f(t)w(t) ≤ f(a)w(t) +
f(b) − f(a)

b − a
(t − a)w(t). (3.50)

By taking the diamond-α integral side by side, we get

∫b

a

f(t)w(t)�αt ≤ f(a)
∫b

a

w(t)�αt +
f(b) − f(a)

b − a

(∫b

a

tw(t)�αt − a

∫b

a

w(t)�αt
)
, (3.51)

that is,

1∫b
a w(t)�αt

∫b

a

f(t)w(t)�αt ≤
b − xw,α

b − a
f(a) +

xw,α − a

b − a
f(b), (3.52)

and so we have proved the right-hand side.
For the left-hand side, we use Theorem 1.2, by taking g : T → T, g(s) = s for all s ∈ T

and h : T → R, h(t) = w(t). We have

f

(∫b
a sw(s)�αs∫b
a w(s)�αs

)
≤

∫b
a w(s)f(s)�αs∫b

a w(s)�αs
, (3.53)

and, hence, we get

f
(
xw,α

) ≤ 1
b − a

∫b

a

w(t)f(t)�αt. (3.54)

Remark 3.15. If we consider concave functions instead of convex functions, the above
Hermite-Hadamard inequalities (3.36), (3.46), (3.47), and (3.48) are reversed.
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4. The Hermite-Hadamard inequality for (w,α)-symmetric functions

In [7], Florea and Niculescu proved the following theorem.

Theorem 4.1 (see [7, Theorem 3]). Suppose that f : I → R verifies a symmetry condition (i.e.,
f(x) + f(2m − x) = 2f(m) for all x ∈ I ∩ (−∞, m]) and is convex over the interval I ∩ (−∞, m]
and concave over the interval I ∩ [m,∞).

If (a + b)/2 ≥ m and μ is a Hermite-Hadamard measure on each of the intervals [a, 2m − a]
and [2m − a, b], and is invariant with respect to the map T(x) = 2m − x on [a, 2m − a], then

f
(
xμ

) ≥ 1
μ
(
[a, b]

)∫b

a

f(x)dμ ≥ b − xμ

b − a
f(a) +

xμ − a

b − a
f(b). (GHH)

If (a + b)/2 ≤ m, then the inequalities (GHH) work in a reverse way, provided μ is a Hermite-
Hadamard measure on each of the intervals [a, 2m − b] and [2m − b, b], and is invariant with respect
to the map T(x) = 2m − x on [2m − b, b].

We will give an extension of this theorem, for time scales, using functions not
necessarily symmetric in the usual sense. For that, we need the following definition.

Definition 4.2. Let T be a time scale, a, b ∈ T, w : T → R+ be a positive weight and α ∈
[0, 1]. One says that a function f : [a, b] → R is (w,α)-symmetric on [a, b]

T
if the following

conditions are satisfied:

(i)

b − xw,α

b − a
f(a) +

xw,α − a

b − a
f(b) = f

(
xw,α

)
, (4.1)

(ii)

∫b

a

f(t)w(t)�αt = f(xw,α)
∫b

a

w(t)�αt. (4.2)

Here, xw,α = (
∫b
a tw(t)�αt)/(

∫b
a w(t)�αt).

Notice that the function f should be continuous only on [a, b]
T
not on [a, b]. An

example of such a function is the following.

Example 4.3. Let T = {1} ∪ [3, 4], w : {1} ∪ [3, 4] → R+, w(1) = 1, w(t) = 2 for all t ∈ [3, 4] and
α = 1/2. Then, f : [1, 4] → R,

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if t ∈
[
1,

14
5

)
,

1, if t ∈
[
14
5
, 3
)
,

5
3
, if t ∈ [3, 4],

(4.3)

is a (w, 1/2)-symmetric function on [1, 4]
T
.
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We can provide also a continuous function on [1, 4], such as

f(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
9
t − 5

9
, if t ∈

[
1,

14
5

)
,

10
3
t − 25

3
, if t ∈

[
14
5
, 3
)
,

5
3
, if t ∈ [3, 4],

(4.4)

which is (w, 1/2)-symmetric on [1, 4]
T
.

Indeed, since
∫4
1 w(t)�1/2t = 5 and

∫4
1 tw(t)�1/2t = 14, we have xw,1/2 = 14/5.

Condition (i) can be restated as

2
5
f(1) +

3
5
f(4) = f

(
14
5

)
, (4.5)

while condition (ii) can be restated as

∫4

1
f(t)w(t)�1/2t = 5f

(
14
5

)
, (4.6)

and it is easy to check that both are fulfilled.

Now, we can state our theorem, that is a generalization of Theorem 4.1.

Theorem 4.4. Let T be a time scale, a ≤ c ≤ b ∈ T, w : T → R+ be a positive weight and α ∈ [0, 1].
Let p =

∫c
a tw(t)�αt/

∫c
a w(t)�αt and q =

∫b
c tw(t)�αt/

∫b
c w(t)�αt.

(i) If the function f : [a, b] → R is (w,α)-symmetric on [a, c]
T
and convex on [p, b] then

f
(
xw,α

) ≤ 1∫b
a w(t)�αt

∫b

a

f(t)w(t)�αt ≤
b − xw,α

b − a
f(a) +

xw,α − a

b − a
f(b). (4.7)

If f is concave on [p, b] then the inequalities in (4.7) are reversed.

(ii) If the function f : [a, b] → R is (w,α)-symmetric on [c, b]
T
and concave on [a, q] then

one has (4.7).

If f is convex on [a, q], then the inequalities in (4.7) are reversed.

Proof. Suppose first that f is (w,α)-symmetric on [a, c]
T
and convex on [p, b]. We will prove

the left-hand side inequality in (4.7). For that, we notice that

∫b

a

f(t)w(t)�αt =
∫ c

a

f(t)w(t)�αt +
∫b

c

f(t)w(t)�αt

= f(p)
∫ c

a

w(t)�αt +
∫b

c

f(t)w(t)�αt,
(4.8)



Cristian Dinu 19

using the (w,α)-symmetry property of the function f . Since f is convex on [p, b] and c ≥ p,
then, using Theorem 3.14 the last integral is more or equal to f(q)

∫b
c w(t)�αt and so

1∫b
a w(t)�αt

∫b

a

f(t)w(t)�αt ≥
∫c
a w(t)�αt∫b
a w(t)�αt

f(p) +

∫b
c w(t)�αt∫b
a w(t)�αt

f(q)

≥ f

(∫c
a w(t)�αt∫b
a w(t)�αt

p +

∫b
c w(t)�αt∫b
a w(t)�αt

q

)

= f

(∫b
a tw(t)�αt∫b
a w(t)�αt

)

= f
(
xw,α

)
,

(4.9)

using the definitions of p and q, combined with the convexity of f on [p, b].
Now, we prove the right-hand side inequality in (4.7). Since f is (w,α)-symmetric on

[a, c]
T
and convex on [p, b], using Theorem 3.14 we have

∫b

a

f(t)w(t)�αt =
∫ c

a

f(t)w(t)�αt +
∫b

c

f(t)w(t)�αt

≤ f(p)
∫ c

a

w(t)�αt +
(
b − q

b − c
f(c) +

q − c

b − c
f(b)

)∫b

c

w(t)�αt.
(4.10)

Using again the definition of p and q, we have

q =

∫b
c tw(t)�αt∫b
c w(t)�αt

=
1∫b

c w(t)�αt

(∫b

a

tw(t)�αt −
∫ c

a

tw(t)�αt
)

=
xw,α

∫b
a w(t)�αt − p

∫c
a w(t)�αt∫b

c w(t)�αt
.

(4.11)

To complete the proof, it suffices to show that

f(p)
∫ c

a

w(t)�αt +
(
b − q

b − c
f(c) +

q − c

b − c
f(b)

)∫b

c

w(t)�αt

≤
(
b − xw,α

b − a
f(a) +

xw,α − a

b − a
f(b)

)∫b

a

w(t)�αt.
(4.12)
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We put λ =
∫c
a w(t)�αt/

∫b
a w(t)�αt. Then,

∫b
c w(t)�αt/

∫b
a w(t)�αt = 1−λ and the previous

inequality becomes

λf(p) + (1 − λ)
(
b − (

xw,α − λp
)
/(1 − λ)

b − c
f(c) +

(
xw,α − λp

)
/(1 − λ) − c

b − c
f(b)

)

≤ b − xw,α

b − a
f(a) +

xw,α − a

b − a
f(b),

(4.13)

and can be restated as

λf(p) +
(1 − λ)b − xw,α − λp

b − c
f(c) +

xw,α − λp − (1 − λ)c
b − c

f(b) ≤ b − xw,α

b − a
f(a) +

xw,α − a

b − a
f(b).

(4.14)

Since f is (w,α)-symmetric on [a, c]
T
, we have ((c − p)/(c − a))f(a) + ((p − a)/(c −

a))f(c) = f(p), that means f(a) = ((c − a)/(c − p))f(p) − ((p − a)/(c − p))f(c). And so, the
last inequality becomes

λf(p) +
(1 − λ)b − xw,α − λp

b − c
f(c) +

xw,α − λp − (1 − λ)c
b − c

f(b)

≤ b − xw,α

b − a

(
c − a

c − p
f(p) − p − a

c − p
f(c)

)
+
xw,α − a

b − a
f(b).

(4.15)

After making some calculation, including a simplification, we get

f(c) ≤ b − c

b − p
f(p) +

c − p

b − p
f(b), (4.16)

which is true since f is convex on [p, b]
T
, and c is a convex combination of p and b:

c =
b − c

b − p
p +

c − p

b − p
b. (4.17)

The other cases are treated similarly.

Remark 4.5. If c = a or c = b,we get Theorem 3.14 as a particular case of Theorem 4.4.

5. Some extensions of the diamond-1/2 integral

Using Remark 3.6, we get the following corollary, which is a “middle point” variant of
Theorem 3.9.

Corollary 5.1 (middle point Hermite-Hadamard inequality). Let T be a time scale and a, b ∈ T.
Let f : [a, b] → R be a continuous convex function. Then,

f

(
a + b

2

)
≤ 1

b − a

∫b

a

f(t)�1/2t ≤
f(a) + f(b)

2
. (5.1)



Cristian Dinu 21

Remark 5.2. (i) If T = {a, (a + b)/2, b} and αT = 1/2, then

f

(
a + b

2

)
≤ 1

2

[
f(a)
2

+
f
(
(a + b)/2

)
2

]
+
1
2

[
f
(
(a + b)/2

)
2

+
f(b)
2

]
≤ f(a) + f(b)

2
, (5.2)

that is,

f

(
a + b

2

)
≤ f(a)

4
+
f
(
(a + b)/2

)
2

+
f(b)
4

≤ f(a) + f(b)
2

. (5.3)

(ii) If T = {a, (a + b)/4, (a + b)/2, 3((a + b)/4), b}, and αT = 1/2, then

f

(
a + b

2

)
≤ f(a)

8
+
f
(
(a + b)/4

)
4

+
f
(
(a + b)/2

)
2

+
f
(
3
(
(a + b)/4

))
4

+
f(b)
8

≤ f(a) + f(b)
2

.

(5.4)

(iii) In general, if T has 2n + 1 points at equal distance, then

f

(
a + b

2

)
≤ f(a)

2n+1
+
f
(
(a + b)/2n

)
2n

+
f
(
(a + b)/2n−1

)
2n−1

+ · · ·

+
f
((
2n−1 − 1)

(
(a + b)/2n

))
22

+
f
(
(a + b)/2

)
2

+
f
((
2n−1 + 1

)(
(a + b)/2n

))
22

+ · · ·

+
f
((
2n − 1

)(
(a + b)/2n

))
2n

+
f(b)
2n+1

≤ f(a) + f(b)
2

.

(5.5)

Remark 5.3 (an improvement on Hermite-Hadamard inequality). Suppose T is a symmetric
time scale such that if we divide it in 2n all of them are symmetric. An example of such a time
scale is the set T with 2n + 1 points at equal distance. Then, by applying Hermite-Hadamard
inequality to the time scales T ∩ [a, (a + b)/2] and T ∩ [(a + b)/2, b],we get

f

(
3a + b

4

)
≤ 2

b − a

∫ (a+b)/2

a

f(t)�1/2t ≤ 1
2

(
f(a) + f

(
a + b

2

))
,

f

(
a + 3b

4

)
≤ 2

b − a

∫b

(a+b)/2
f(t)�1/2t ≤ 1

2

(
f

(
a + b

2

)
+ f(b)

)
.

(5.6)

By summing them, side by side, we obtain the following refinement of the inequality
(3.36):

f

(
a + b

2

)
≤ 1

2

(
f

(
3a + b

4

)
+ f

(
a + 3b

4

))

≤ 1
b − a

∫b

a

f(t)�1/2t

≤ 1
2

[
f

(
a + b

2

)
+
f(a) + f(b)

2

]

≤ 1
2
(
f(a) + f(b)

)
.

(5.7)



22 Journal of Inequalities and Applications

By continuing this process, we can obtain approximations of
∫b
a f(t)�1/2t as good as we

want, by the value of the function in some of the dyadic points of T.

5.1. The Hermite-Hadamard inequality for convex-concave symmetric functions

In [8], Czinder and Páles proved an interesting and useful extension of Hermite-Hadamard
inequality for convex-concave symmetric functions.

Theorem 5.4 (see [8, Theorem 2.2 ]). Let f : I → R be symmetric with respect to an element
m ∈ I, that is,

f(x) + f(2m − x) = 2f(m), ∀x ∈ I ∩ (−∞, m]. (S)

Furthermore, suppose that f is convex over the interval I ∩ (−∞, m] and concave over I ∩
[m,−∞]. Then, for any interval [a, b] ⊂ I with (a + b)/2 ≥ m, the following inequalities hold true:

f

(
a + b

2

)
≥ 1

b − a

∫b

a

f(x)dx ≥ f(a) + f(b)
2

. (CP)

If (a + b)/2 ≤ m, then the inequalities (CP) should be reversed.

We will try to give a similar version of the previous theorem. For that, we need some
definitions.

Definition 5.5. A set M ⊆ T is called symmetric with respect to an element m ∈ M provided that

m − t ∈ M implies m + t ∈ M, (5.8)

for all t ∈ R such that m − t ∈ M.

Definition 5.6. Let T be a time scale and let I ⊂ R be an interval such that IT = I ∩ T is
symmetric with respect tom ∈ T. A function f : IT → R is called symmetric with respect tom if
the equality

f(m − t) + f(m + t) = 2f(m) (5.9)

is true for all t ∈ R such that m − t ∈ IT.

We will need also two technical lemmas. The first one concerns the functions defined
on intervals (and its proof is similar to [8, Theorem 2.1]), while the second one concerns the
functions defined on a time scale T.

Lemma 5.7. Let f : I → R be a function which is symmetric with respect tom ∈ I. Then,

∫m−b

m−a
f(t)d t +

∫m+a

m+b
f(t)dt = 2(a − b)f(m), (5.10)

for any positive a, b ∈ (I −m) ∩ (I +m), with a > b.
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Lemma 5.8. Let f : I → R and IT be symmetric with respect tom ∈ I. Then,∫m+a

m−a
f(t)�1/2t = 2af(m), (5.11)

for any positive a ∈ R such that m − a ∈ IT.

Proof. First, we split the integral with respect to scattered points
∫m+a

m−a
f(t)�1/2t =

n∑
i=0

∫m−ai+1

m−ai
f(t)�1/2t +

n∑
i=0

∫m+ai

m+ai+1
f(t)�1/2t, (5.12)

where ai ∈ R are descending numbers such thatm− ai,m+ ai are all scattered points, for any
i ∈ {0, . . . , n} such that a0 = a and an = 0.

If m − ai, m − ai+1 are not isolated (that means, m − ai is right dense, while m − ai+1 is
left dense) then [ai, ai+1]T is an interval and thus, according to Lemma 5.7, we have∫m−ai+1

m−ai
f(t)�1/2t +

∫m+ai

m+ai+1
f(t)�1/2t =

∫m−ai+1

m−ai
f(t)dt +

∫m+ai

m+ai+1
f(t)dt

= 2
(
ai − ai+1

)
f(m).

(5.13)

Ifm − ai, m − ai+1 are isolated then, we have∫m−ai+1

m−ai
f(t)Δt =

(
ai − ai+1

)
f
(
m − ai

)
, (5.14)

while ∫m−ai+1

m−ai
f(t)∇t =

(
ai − ai+1

)
f
(
m − ai+1

)
. (5.15)

Furthermore, ∫m+ai

m+ai+1
f(t)Δt =

(
ai − ai+1

)
f
(
m + ai+1

)
, (5.16)

while ∫m+ai

m+ai+1
f(t)∇t =

(
ai − ai+1

)
f
(
m + ai

)
, (5.17)

and so, ∫m−ai+1

m−ai
f(t)�1/2t +

∫m+ai

m+ai+1
f(t)�1/2t

=
1
2
(
ai − ai+1

)[
f
(
m − ai

)
+ f

(
m − ai+1

)
+ f

(
m + ai

)
+ f

(
m + ai+1

)]
= 2

(
ai − ai+1

)
f(m).

(5.18)

Since these are the only possibilities, the proof is complete.

Now, we can give a theorem similar to [8, Theorem 2.2].
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Theorem 5.9. Let f : I → R and IT be symmetric with respect to m ∈ I and suppose that f is
concave over the interval I ∩ (−∞, m] and convex over I ∩ [m,−∞]. Then, for any a, b ∈ IT with
(a + b)/2 ≥ m, and (a + b)/2 ∈ T, the following inequalities hold true:

f

(
a + b

2

)
≤ 1

b − a

∫b

a

f(x)�1/2 ≤
f(a) + f(b)

2
. (Hs)

If (a + b)/2 ≤ m, then the inequalities (Hs) should be reversed.
If f is convex over the interval I ∩ (−∞, m] and concave over I ∩ [m,−∞]. Then, for any

a, b ∈ IT with (a+b)/2 ≤ m, and (a+b)/2 ∈ T the inequalities (Hs) hold true, while if (a+b)/2 ≥ m,
the inequalities (Hs) are reversed.

Using the previous lemmas, we could give a proof in the same manner as in [8]. We
will use, instead, Theorem 4.4.

Proof. Let a, b ∈ IT with (a + b)/2 ≥ m, and suppose that f is concave over the interval
I ∩ (−∞, m] and convex over I ∩ [m,−∞]. Further, we can assume that a < m < b (the other
cases are covered by Theorem 3.9). Due to the fact that a < m < b and (a + b)/2 ≥ m, we have
m < 2m − a < b.

According to Lemma 5.8, we have∫2m−a

a

f(t)�1/2 = 2(m − a)f(m), (5.19)

while

x1/2 =
∫2m−a

a

t�1/2 = m, (5.20)

and so f is (1, 1/2)-symmetric (that means, with respect to the weight w ≡ 1 and α = 1/2).
Now, it is obvious that we can apply Theorem 4.4, considering p = m, c = 2m − a, and w ≡ 1.

If (a + b)/2 ≤ m, then we will consider q = m, c = 2b −m, and w ≡ 1, and the proof is
clear. The other cases can be treated in a similar way.
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Birkhäuser, Boston, Mass, USA, 2001.

[3] S. Hilger, “Analysis on measure chains—a unified approach to continuous and discrete calculus,”
Results in Mathematics, vol. 18, no. 1-2, pp. 18–56, 1990.

[4] J. W. Rogers Jr. and Q. Sheng, “Notes on the diamond-α dynamic derivative on time scales,” Journal of
Mathematical Analysis and Applications, vol. 326, no. 1, pp. 228–241, 2007.

[5] Q. Sheng, M. Fadag, J. Henderson, and J. M. Davis, “An exploration of combined dynamic derivatives
on time scales and their applications,” Nonlinear Analysis: Real World Applications, vol. 7, no. 3, pp.
395–413, 2006.

[6] M. R. S. Ammi, R. A. C. Ferreira, and D. F. M. Torres, “Diamond-α Jensen’s inequality on time scales,”
Journal of Inequalities and Applications, vol. 2008, Article ID 576876, 13 pages, 2008.

[7] A. Florea and C. P. Niculescu, “A Hermite-Hadamard inequality for convex-concave symmetric
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