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1. Introduction

The so-called two-parameter mean or extendedmean between two unequal positive numbers
x and y was defined first by Stolarsky [1] as

E(r, s;x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
s
(
xr − yr

)

r
(
xs − ys)

)1/(r−s)
, r /= s, rs /= 0,

(
xr − yr

r(lnx − lny)

)1/r

, r /= 0, s = 0,

(
xs − ys

s(lnx − lny)

)1/s

, r = 0, s /= 0,

exp
(
xr lnx − yr lny

xr − yr
− 1
r

)

, r = s /= 0,

√
xy, r = s = 0.

(1.1)
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It contains many mean values, for instance,

E(1, 0;x, y) = L(x, y) =

⎧
⎨

⎩

x − y

lnx − lny
, x /= y,

x, x = y;
(1.2)

E(1, 1;x, y) = I(x, y) =

⎧
⎪⎨

⎪⎩

e−1
(
xx

yy

)1/(x−y)
, x /= y,

x, x = y;
(1.3)

E(2, 1;x, y) = A(x, y) =
x + y

2
; (1.4)

E

(
3
2
,
1
2
;x, y

)

= h(x, y) =
x +√

xy + y

3
. (1.5)

The monotonicity of E(r, s;x, y) has been researched by Stolarsky [1], Leach and
Sholander [2], and others also in [3–5] using different ideas and simpler methods.

Qi studied the log-convexity of the extended mean with respect to parameters in [6],
and pointed out that the two-parameter mean is a log-concave function with respect to either
parameter r or s on interval (0,+∞) and is a log-convex function on interval (−∞, 0).

In [7], Witkowski considered more general means defined by

R(u, v; r, s;x, y) =

(
E
(
u, v;xr, yr

)

E
(
u, v;xs, ys

)

)1/(r−s)
(1.6)

further and investigated the monotonicity of R.
Denote R

+ := (0,∞) and let f(x, y) be defined on Ω. If for arbitrary t ∈ R
+ with

(tx, ty) ∈ Ω, the following equation:

f(tx, ty) = tnf(x, y) (1.7)

is always true, then the function f(x, y) is called an n-order homogeneous functions. It
has many well properties [8–10]. Based on the conception and properties of homogeneous
function, the extended mean was generalized to two-parameter homogeneous functions in
[9], which is defined as follows.

Definition 1.1. Assume f : U(� R
+ × R

+) → R
+ is an n-order homogeneous function for

variables x and y, continuous and first partial derivatives exist, (a, b) ∈ R
+ × R

+ with a /= b,
(p, q) ∈ R × R.

If (1, 1)/∈U, then define that

Hf(p, q;a, b) =

(
f
(
ap, bp

)

f
(
aq, bq

)

)1/(p−q)
(p /= q, pq /= 0),

Hf(p, p;a, b) = lim
q→p

Hf(a, b; p, q) = Gf,p (p = q /= 0),

(1.8)

where

Gf,p = G
1/p
f

(
ap, bp

)
, Gf(x, y) = exp

(
xfx(x, y) lnx + yfy(x, y) lny

f(x, y)

)

, (1.9)

fx(x, y) and fy(x, y) denote partial derivatives with respect to first and second variable of
f(x, y), respectively.
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If (1, 1) ∈ U, then define further

Hf(p, 0;a, b) =

(
f
(
ap, bp

)

f(1, 1)

)1/p

(p /= 0, q = 0),

Hf(0, q;a, b) =

(
f
(
aq, bq

)

f(1, 1)

)1/q

(p = 0, q /= 0),

Hf(0, 0;a, b) = lim
p→0

Hf(a, b; p, 0) = afx(1,1)/f(1,1)bfy(1,1)/f(1,1) (p = q = 0).

(1.10)

Let f(x, y) = L(x, y). We can get two-parameter logarithmic mean, which is just
extended mean E(p, q;a, b) defined by (1.1). In what follows we adopt our notations and
denote byHL(p, q;a, b) or HL(p, q) or HL.

Concerning the monotonicity and log-convexity of the two-parameter homogeneous
functions, there are the following results.

Theorem 1.2 (see [9]). Let f(x, y) be a positive n-order homogenous function defined on U(�
R

+ × R
+) and be second differentiable. If I = (ln f)xy < (>)0, then Hf(p, q) is strictly increasing

(decreasing) in either p or q on (−∞, 0) and (0,+∞).

Theorem 1.3 (see [10]). Let f(x, y) be a positive n-order homogenous function defined on U(�
R

+ × R
+) and be third-order differentiable. If

J = (x − y)(xI)x < (>)0, where I = (ln f)xy, (1.11)

then Hf(p, q) is strictly log-convex (log-concave) with respect to either p or q on (0,+∞) and log-
concave (log-convex) on (−∞, 0).

By the above theorems we have the following.

Corollary 1.4 (see [10]). The conditions are the same as Theorem 1.3. If (1.11) holds, thenHf(p, 1−
p) is strictly decreasing (increasing) in p on (0, 1/2) and increasing (decreasing) on (1/2, 1).

If f(x, y) is symmetric with respect to x and y further, then the above monotone interval
can be extended from (0, 1/2) to (−∞, 0) and (0, 1/2), and from (1/2, 1) to (1/2, 1) and (1,+∞),
respectively.

Corollary 1.5 (see [10]). The conditions are the same as Theorem 1.3. If (1.11) holds, then for p, q ∈
(0,+∞) with p /= q, the following inequalities:

Gf, (p+q)/2 < (>)Hf(p, q) < (>)
√

Gf,pGf,q. (1.12)

hold. For p, q ∈ (−∞, 0) with p /= q, inequalities (1.12) are reversed.
If f(x, y) is defined on R

+ × R
+ and symmetric with respect to x and y further, then

substituting p + q > 0 for p, q ∈ (0,+∞) and p + q < 0 for p, q ∈ (−∞, 0), (1.12) are also true,
respectively.

Let f(x, y) = L(x, y), A(x, y), I(x, y), and D(x, y) in Theorems 1.2 and 1.3,
Corollaries 1.4 and 1.5, we can deduce some useful conclusions (see [9, 10]). These show
the monotonicity and log-convexity of L(x, y), A(x, y), I(x, y), and D(x, y) depend on the
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signs of I = (ln f)xy andJ = (x−y)(xI)x, respectively. NotingHL(r, s;x, y) contains L(x, y),
A(x, y), and I(x, y), naturally, we couldmake conjecture on the similar conclusion is also true
forHf(p, q;a, b), where f(x, y) = HL(r, s;x, y). Namely, the monotonicity and log-convexity
of the function HHL also depend on the signs of I = (ln f)xy < 0 and J = (x − y)(xI)x > 0,
respectively, which is just purpose of this paper.

2. Definition and main results

For stating the main results of this paper, let us introduce first the four-parameter mean as
follows.

Definition 2.1. Assume (a, b) ∈ R
+×R+ with a/= b, (p, q), (r, s) ∈ R×R, then the four-parameter

homogeneous mean denoted by F(p, q; r, s;a, b) is defined as follows:

F(p, q; r, s;a, b) =

(
L
(
apr , bpr

)

L
(
aps, bps

)
L
(
aqs, bqs

)

L
(
aqr , bqr

)

)1/(p−q)(r−s)
, if pqrs(p − q)(r − s) /= 0, (2.1)

or

F(p, q; r, s;a, b) =

(
apr − bpr

aps − bps
aqs − bqs

aqr − bqr

)1/(p−q)(r−s)
, if pqrs(p − q)(r − s) /= 0; (2.2)

if pqrs(p − q)(r − s) = 0, then the F(p, q; r, s;a, b) are defined as their corresponding limits, for
example,

F(p, p; r, s;a, b) = lim
q→p

F(p, q; r, s;a, b) =

(
I
(
apr, bpr

)

I
(
aps, bps

)

)1/p(r−s)
, if prs(r − s) /= 0, p = q;

F(p, 0; r, s;a, b) = lim
q→0

F(p, q; r, s;a, b) =

(
L
(
apr, bpr

)

L
(
aps, bps

)

)1/p(r−s)
, if prs(r − s) /= 0, q = 0;

F(0, 0; r, s;a, b) = lim
p→0

F(p, 0; r, s;a, b) = G(a, b), if rs(r − s) /= 0, p = q = 0,

(2.3)

where L(x, y), I(x, y) are defined by (1.2), (1.3) respectively, G(a, b) =
√
ab.

It is easy to verify that F(p, q; r, s;a, b) are symmetric with respect to a and b, p and
q, r and s, (p, q) and (r, s), and then F(p, q; r, s;a, b) is also denoted by F(p, q) or F(r, s) or
F(p, q; r, s) or F(a, b).

The four-parameter homogeneousmean F(p, q; r, s;a, b) containsmany two-parameter
means mentioned in [9], for example, (see Table 1).

In Table 1, F(2, 1; r, s;a, b) is just the Gini mean (is also called two-parameter arithmetic
mean), F(1, 0; r, s;a, b) is just the two-parameter mean or extended mean or Stolarsky mean
(is also called two-parameter logarithmic mean), F(1, 1; r, s;a, b) is just the two-parameter
exponential mean, and F(3/2, 1/2; r, s;a, b) is just the two-parameter Heron mean.

Our main results can be stated as follows.

Theorem 2.2. If r + s > (<)0, then F(p, q; r, s;a, b) are strictly increasing (decreasing) in either p or
q on (−∞,+∞).
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Table 1: Some familiar two-parameter mean values.

(p, q) F(p, q; r, s;a, b) (p, q) F(p, q; r, s;a, b)

(2, 1)
(
ar + br

as + bs

)1/(r−s) (
1
2
,
1
2

) (
I
(
ar/2, br/2

)

I
(
as/2, bs/2

)

)2/(r−s)

(1, 1)

(
I
(
ar, br

)

I
(
as, bs

)

)1/(r−s) (
2
3
,
1
3

) (
ar/3 + br/3

as/3 + bs/3

)3/(r−s)

(

1,
1
2

) (
ar/2 + br/2

as/2 + bs/2

)2/(r−s) (
3
4
,
1
4

) (
ar/2 +

(√
ab

)r/2
+ br/2

as/2 +
(√

ab
)s/2

+ bs/2

)2/(r−s)

(1, 0)
(
s

r

ar − br

as − bs

)1/(r−s) (
4
3
,−1

3

) (
ar/3 + br/3

as/3 + bs/3
a2r/3 + b2r/3

a2s/3 + b2s/3

)3/5(r−s)
G2/5

(

1,−1
2

) (
ar/2 + br/2

as/2 + bs/2

)2/3(r−s)
G2/3

(
3
2
,−1

2

) (
ar +

(√
ab

)r
+ br

as +
(√

ab
)s

+ bs

)1/2(r−s)
(√

ab
)1/2

(
3
2
,
1
2

) (
ar +

(√
ab

)r
+ br

as +
(√

ab
)s

+ bs

)1/(r−s)

(2,−1)
(
ar + br

as + bs

)1/3(r−s)(√
ab

)2/3

Theorem 2.3. If r + s > (<)0, then F(p, q; r, s;a, b) are strictly log-concave (log-convex) in either p
or q on (0,+∞) and log-convex (log-concave) on (−∞, 0).

By Corollary 1.4, we get Corollary 2.4.

Corollary 2.4. If r + s > (<)0, then F(p, 1 − p; r, s;a, b) are strictly increasing (decreasing) in p on
(−∞, 1/2) and decreasing (increasing) on (1/2,+∞).

Notice for f(x, y) = HL(r, s;x, y),

Gf(x, y) = exp
(
xfx(x, y) lnx + yfy(x, y) lny

f(x, y)

)

= exp
(

1
r − s

(
rxr

xr − yr
− sxs

xs − ys

)

lnx +
1

r − s

(

− ryr

xr − yr
+

sys

xs − ys

)

lny
)

= exp1/(r−s)
((

xr

xr − yr
lnxr − yr

xr − yr
lnyr

)

−
(

xs

xs − ys
lnxs − ys

xs − ys
lnys

))

=

(
I
(
xr, yr

)

I
(
xs, ys

)

)1/(r−s)
,

(2.4)

by Corollary 1.5, we get Corollary 2.5.
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Corollary 2.5. Let p /= q. If (p + q)(r + s) < 0, then

GHL, (p+q)/2 < F(p, q; r, s;a, b) <
√

GHL,pGHL,q, (2.5)

where GHL,t = G1/t
HL

(at, bt), GHL(x, y) = (I(xr, yr)/I(xs, ys))1/(r−s), I(x, y) is defined by (1.3).

Inequalities (2.5) are reversed if (p + q)(r + s) > 0.

3. Lemmas

To prove our main results, we need the following three lemmas.

Lemma 3.1. Suppose x, y > 0 with x /=y, define

U(t) :=

⎧
⎪⎨

⎪⎩

xtyt

(
xt − yt

t(x − y)

)−2
, t /= 0,

L2(x, y), t = 0,
(3.1)

then one has

(1) U(−t) = U(t);

(2) U(t) is strictly increasing in (−∞, 0) and decreasing in (0,+∞).

Proof. (1)A simple computation results in part (1) of the lemma, of which details are omitted.
(2) By directly calculations, we get

U′(t)
U(t)

= lnx + lny − 2
(
xt lnx − yt lny

)

xt − yt
+
2
t

=
2
t

(

ln
√

xtyt −
(
xt lnx − yt lny

xt − yt
− 1

))

=
2
t

(
lnG

(
xt, yt) − ln I

(
xt, yt)).

(3.2)

By the well-known inequality I(a, b) >
√
ab, we can get part two of the lemma immediately.

The following lemma is a well-known inequality proved by Carlson (see [11]), which
will be used in proof of Lemma 3.3.

Lemma 3.2. For positive numbers a and b with a/= b, the following inequality holds:

L(a, b) <
A + 2G

3
=

a + 4
√
ab + b

6
. (3.3)

Lemma 3.3. Suppose x, y > 0 with x /=y, define

V (t) :=

⎧
⎪⎨

⎪⎩

xtyt
xt + yt

2

(
xt − yt

t(x − y)

)−3
, t /= 0;

L3(x, y), t = 0,
(3.4)
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then one has

(1) V (−t) = V (t);

(2) V (t) is strictly increasing in (−∞, 0) and decreasing in (0,+∞).

Proof. (1) A simple computation results in part one, of which details are omitted.
(2) By direct calculations, we get

V ′(t)
V (t)

= lnx + lny +
xt lnx + yt lny

xt + yt
− 3

(
xt lnx − yt lny

)

xt − yt
+
3
t

=
(

1 +
xt

xt + yt
− 3xt

xt − yt

)

lnx +
(

1 +
yt

xt + yt
+

3yt

xt − yt

)

lny +
3
t

= −x
2t + 4xtyt + y2t

x2t − y2t
lnx +

x2t + 4xtyt + y2t

x2t − y2t
lny +

3
t

=
3
t
− x2t + 4xtyt + y2t

x2t − y2t
(lnx − lny)

=
3
t

2t(lnx − lny)
x2t − y2t

(
x2t − y2t

2t(lnx − lny)
− x2t + 4xtyt + y2t

6

)

.

(3.5)

Substituting a, b for x2t, y2t in the above last one expression, then

V ′(t)
V (t)

=
3
t
L−1(a, b)

(

L(a, b) − a + 4
√
ab + b

6

)

, (3.6)

in which L(a, b) − (a + 4
√
ab + b)/6 < 0 by Lemma 3.2, and L−1(a, b) > 0. Consequently,

V ′(t) > 0 if t < 0 and V ′(t) < 0 if t > 0.
The proof is completed.

4. Proofs of main results

To prove our main results, it is enough to make certain the signs of I = (lnHL)xy andJ = (x−
y)(xI)x because F(a, b; p, q; r, s) = HHL(a, b; p, q), where HL = HL(r, s;x, y) = E(r, s;x, y) is
defined by (1.1).

Proof of Theorem 2.2. Let us observe that

lnHL =
1

r − s

(
ln |s| + ln

∣
∣xr − yr

∣
∣ − ln |r| − ln

∣
∣xs − ys

∣
∣
)
. (4.1)

Through straightforward computations, we have

I =
(
lnHL

)

xy

=
1

xy(r − s)

(
r2xryr

(
xr − yr

)2 − s2xsys

(
xs − ys

)2

)

=
1

xy(r − s)

(
r2xryr

(
xr − yr

)2 − s2xsys

(
xs − ys

)2

)

=
1

xy(x − y)2
U(r) −U(s)

r − s
.

(4.2)
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By Lemma 3.1,

U(r) −U(s)
r − s

=
U
(|r|) −U

(|s|)

|r| − |s|
r + s

|r| + |s| , (4.3)

which shows that I < 0 if r + s > 0 and I > 0 if r + s < 0.
By Theorem 1.2, this proof is completed.

Proof of Theorem 2.3. Let us consider that

J = (x − y)(xI)x

=
x − y

xy(r − s)

(

− r3xryr
(
xr + yr

)

(
xr − yr

)3 +
s3xsys

(
xs + ys

)

(
xs − ys

)3

)

=
−2

xy(x − y)2
V (r) − V (s)

r − s
.

(4.4)

By Lemma 3.3,

V (r) − V (s)
r − s

=
V
(|r|) − V

(|s|)

|r| − |s|
r + s

|r| + |s| , (4.5)

it follows that J > 0 if r + s > 0 and J < 0 if r + s < 0.
Using Theorem 1.3, this completes the proof.

Proof of Corollary 2.4. By the proof of Theorem 2.3, there must be J < 0 if r + s < 0. Note
f(x, y) = HL(r, s;x, y) is symmetric with respect to x and y, it follows from Corollary 1.4
that F(p, 1− p; r, s;a, b) = HHL(a, b; p, 1− p) is strictly decreasing in p on (−∞, 0) and (0, 1/2).
Because

F(0, 1; r, s;a, b) = lim
p→ 0

F(p, 1 − p; r, s;a, b)

=

(
L
(
ar, br

)

L
(
as, bs

)

)1/(r−s)

=
(
s

r

ar − br

as − bs

)1/(r−s)
,

(4.6)

thus F(p, 1 − p; r, s;a, b) is strictly decreasing in p on (−∞, 1/2).
Likewise, F(p, 1 − p; r, s;a, b) is strictly increasing in p on (1/2,∞) if r + s > 0.
This proof is completed.

Proof of Corollary 2.5. By the proof of Theorem 2.3, there must J < 0 if r + s < 0. Notice
f(x, y) = HL(r, s;x, y) is defined on R

+×R+ and symmetric with respect to x and y, it follows
from Corollary 1.5 that (2.5) holds for p + q > 0. In this way, for r + s < 0 and p + q > 0 that
(2.5) are also hold by Corollary 1.5. Hence, that (2.5) are always hold for (p + q)(r + s) < 0.

Likewise, (2.5) are reversed for (p + q)(r + s) > 0.
The proof ends.
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5. Chains of inequalities for two-parameter means

Let a and b be positive numbers. The p-order power mean, Heron mean, logarithmic mean,
exponential (identic mean), power-exponential mean, and exponential-geometric mean are
defined as

Mp :=

⎧
⎨

⎩

M1/p(ap, bp
)

if p /= 0,

G(a, b) if p = 0,
M = A, h, L, I, Z and Y, (5.1)

where L = L(a, b), I = I(a, b), A = A(a, b), and h = h(a, b) are defined by (1.2)–(1.5),
respectively; while the power-exponential mean and exponential-geometric mean are defined
by Z := aa/(a+b)bb/(a+b) and Y := E exp(1 − G2/L2), in which G = G(a, b) =

√
ab, respectively

(see [9, Examples 2.2 and 2.3]).
Concerning the above means there are many useful and interesting results, such as

L < A1/3 (see [12]); I > A2/3 (see [13]); Z ≥ A2 (see [5]); h ≤ I (see [14]); L2 ≤ A2/3 ≤ I (see
[15]); L(a, b) ≤ hp(a, b) ≤ Aq(a, b) hold for p ≥ 1/2, q ≥ 2p/3 (see [16]).

Recently, Neuman applied the comparison theorem to obtain the following result. Let
p, q, r, s, t ∈ R

+. Then, the inequalities

Lp ≤ hr ≤ As ≤ It (5.2)

hold true if and only if p ≤ 2r ≤ 3s ≤ 2t (see [17]).
It is worth mentioning that the author obtained the following chains of inequalities

(see [9, 10]) by applying the monotonicity and log-convexity of two-parameter homogenous
functions:

G < L < A1/2 < I < A, (5.3)

G < I < Z1/2 < Y < Z, (5.4)

L2 < h < A2/3 < I < Z1/3 < Y1/2. (5.5)

Using our main results in this paper, the above chains of inequalities can be
generalized in form of inequalities for two-parameter means, which contain many classical
inequalities.

Example 5.1. By Theorem 2.2, for r + s > 0, we have

F(1,−1; r, s;a, b) < F
(

1,−1
2
; r, s;a, b

)

< F(1, 0; r, s;a, b)

< F
(

1,
1
2
; r, s;a, b

)

< F(1, 1; r, s;a, b) < F(1, 2; r, s;a, b),
(5.6)

that is,

G <

(
ar/2 + br/2

as/2 + bs/2

)2/3(r−s)
G2/3 <

(
s

r

ar − br

as − bs

)1/(r−s)

<

(
ar/2 + br/2

as/2 + bs/2

)2/(r−s)
<

(
I
(
ar, br

)

I
(
as, bs

)

)1/(r−s)
<

(
ar + br

as + bs

)1/(r−s)
,

(5.7)
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which can be concisely denoted by

G <

(
A
(
ar/2, br/2

)

A
(
as/2, bs/2

)

)2/3(r−s)
G2/3 <

(
L
(
ar, br

)

L
(
as, bs

)

)1/(r−s)

<

(
A
(
ar/2, br/2

)

A
(
as/2, bs/2

)

)2/(r−s)
<

(
I
(
ar, br

)

I
(
as, bs

)

)1/(r−s)
<

(
A
(
ar, br

)

A
(
as, bs

)

)1/(r−s)
,

(5.8)

where L, I, A are defined by (1.2)–(1.4).

In particular, putting r = 1, s = 0; r = 2s = 2; r = s = 1 in (5.7), respectively, we have
the following inequalities:

G < A1/3
1/2G

2/3 < L < A1/2 < I < A, (5.9)

G < A2/3A−1/3
1/2 G2/3 < A < A2A−1

1/2 < Z < A2A
−1, (5.10)

G < Z1/3
1/2G

2/3 < I < Z1/2 < Y < Z, (5.11)

which contain (5.3) and (5.4). Here we have used the formula I(a2, b2)/I(a, b) = Z(a, b) (see
[9, Remark 3]).

Example 5.2. By Corollary 2.4, we can get another more refined inequalities. For r + s > 0, we
have

F
(
1
2
,
1
2
; r, s;a, b

)

> F
(
2
3
,
1
3
; r, s;a, b

)

> F
(
3
4
,
1
4
; r, s;a, b

)

> F(1, 0; r, s;a, b)

> F
(
4
3
,−1

3
; r, s;a, b

)

> F
(
3
2
,−1

2
; r, s;a, b

)

> F(2,−1; r, s;a, b),
(5.12)

that is,
(

I
(
ar/2, br/2

)

I
(
as/2, bs/2

)

)2/(r−s)
>

(
ar/3 + br/3

as/3 + bs/3

)3/(r−s)
>

(
ar/2 +

√
ar/2br/2 + br/2

as/2 +
√
as/2bs/2 + bs/2

)2/(r−s)

>

(
s

r

ar − br

as − bs

)1/(r−s)
>

(
ar/3 + br/3

as/3 + bs/3
a2r/3 + b2r/3

a2s/3 + b2s/3

)3/5(r−s)
G2/5

>

(
ar +

√
arbr + br

as +
√
asbs + bs

)1/2(r−s)√
G >

(
ar + br

as + bs

)1/3(r−s)
G2/3,

(5.13)

which can be concisely denoted by
(

I
(
ar/2, br/2

)

I
(
as/2, bs/2

)

)2/(r−s)
>

(
A
(
ar/3, br/3

)

A
(
as/3, bs/3

)

)3/(r−s)
>

(
h
(
ar/2, br/2

)

h
(
as/2, bs/2

)

)2/(r−s)

>

(
L
(
ar, br

)

L
(
as, bs

)

)1/(r−s)
>

(
A
(
ar/3, br/3

)

A
(
as/3, bs/3

)
A
(
a2r/3, b2r/3

)

A
(
a2s/3, b2s/3

)

)3/5(r−s)
G2/5

>

(
h
(
ar, br

)

h
(
as, bs

)

)1/2(r−s)√
G >

(
A
(
ar, br

)

A
(
as, bs

)

)1/3(r−s)
G2/3,

(5.14)

where L(x, y), I(x, y), A(x, y), and h(x, y) are defined by (1.2)–(1.5), respectively.
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In particular, put r = 1, s = 0; r = 2, s = 1; r = 1, s → 1 in (5.14) and note

lim
r→s

(
A
(
ar, br

)

A
(
as, bs

)

)1/(r−s)
= Zs,

lim
r→s

(
h
(
ar, br

)

h
(
as, bs

)

)1/(r−s)
= I3/23s/2I

−1/2
s/2 ,

(5.15)

we have

I1/2 > A1/3 > h1/2 > L > A1/5
1/3A

2/5
2/3G

2/5 >
√
hG > A1/3G2/3,

Z1/2 > A2
2/3A

−1
1/3 > h2h−1

1/2 > A > A4/5
4/3A

−1/5
1/3 G2/5 > h2h

−1/2G1/2 > A2/3
2 A−1/3G2/3,

Y1/2 > Z1/3 > I3/23/4I
−1/2
1/4 > I > Z1/5

1/3Z
2/5
2/3G

2/5 > I3/43/2I
−1/4
1/2 G1/2 > Z1/3G2/3,

(5.16)

respectively. Here we have again used the formula I(a2, b2)/I(a, b) = Z(a, b). This shows the
inequalities (5.14) contain (5.11)–(5.13) in [10] and (5.5).

Example 5.3. Putting r = 1, s = 0; r = 2, s = 1; r = 1, s → 1 in Corollary 2.5, we have the
following inequalities:

I(p+q)/2 >

(
q

p

ap − bp

aq − bq

)1/(p−q)
>
√

IpIq,

Z(p+q)/2 >

(
ap + bp

aq + bq

)1/(p−q)
>
√

ZpZq,

Y(p+q)/2 >

(
I
(
ap, bp

)

I
(
aq, bq

)

)1/(p−q)
>
√

YpYq,

(5.17)

for p + q > 0 with p /= q.
On the other hand, putting p = 1, q = 0; p = 2, q = 1; p = 3/2, q = 1/2 in Corollary 2.5,

we can get another inequalities

(
I
(
ar/2, br/2

)

I
(
as/2, bs/2

)

)2/(r−s)
>

(
s

r

ar − br

as − bs

)1/(r−s)
>

(
I
(
ar, br

)

I
(
as, bs

)

)1/2(r−s)
G1/2,

(
I
(
a3r/2, b3r/2

)

I
(
a3s/2, b3s/2

)

)2/3(r−s)
>

(
ar + br

as + bs

)1/(r−s)
>

(
I
(
a2r , b2r

)

I
(
a2s, b2s

)

)1/4(r−s)(
I
(
ar, br

)

I
(
as, b2s

)

)1/2(r−s)
,

(
I
(
ar, br

)

I
(
as, b2s

)

)1/(r−s)
>

(
ar +

√
arbr + br

as +
√
asbs + bs

)1/(r−s)

>

(
I
(
a3r/2, b3r/2

)

I
(
a3s/2, b3s/2

)

)1/3(r−s)(
I
(
ar/2, br/2

)

I
(
as/2, bs/2

)

)1/(r−s)

(5.18)

for r + s > 0.
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