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1. Introduction

If the real function k(x, y) is measurable in (0,∞)× (0,∞), satisfying k(y,x) = k(x, y),
for x, y ∈ (0,∞), then one calls k(x, y) the symmetric function. Suppose that p > 1, 1/p+
1/q = 1, lr (r = p,q) are two real normal spaces, and k(x, y) is a nonnegative symmetric
function in (0,∞)× (0,∞). Define the operator T as follows: for a= {am}∞m=1 ∈ lp,

(Ta)(n) :=
∞∑

m=1
k(m,n)am, n∈N; (1.1)

or for b = {bn}∞n=1 ∈ lq,

(Tb)(m) :=
∞∑

n=1
k(m,n)bn, m∈N. (1.2)

The function k(x, y) is said to be the symmetric kernel of T.
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If k(x, y) is a symmetric function, for ε(≥ 0) small enough and x > 0, set k̃r(ε,x) as

k̃r(ε,x) :=
∫∞

0
k(x, t)

(
x

t

)(1+ε)/r
dt (r = p,q). (1.3)

In 2007, Yang [1] gave three theorems as follows.

Theorem 1.1. (i) If for fixed x > 0, and r = p,q, the functions k(x, t)(x/t)1/r are decreasing
in t ∈ (0,∞), and

k̃r(0,x) :=
∫ ∞

0
k(x, t)

(
x

t

)1/r
dt = kp (r = p,q), (1.4)

where kp is a positive constant independent of x, then T ∈ B(lr→lr), T is called the Hilbert-
type operator and ‖T‖r ≤ kp (r = p,q);

(ii) if for fixed x > 0, ε ≥ 0 and r = p,q, the functions k(x, t)(x/t)(1+ε)/r are decreasing

in t ∈ (0,∞); k̃r(ε,x) = kp(ε) (r = p,q; ε ≥ 0) is independent of x, satisfying kp(ε) = kp +
o(1) (ε→0+), and

∞∑

m=1

1
m1+ε

∫ 1

0
k(m, t)

(
m

t

)(1+ε)/r
dt =O(1)

(
ε→0+; r = p,q

)
, (1.5)

then ‖T‖r = kp (r = p,q).

Theorem 1.2. Suppose that p > 1, 1/p + 1/q = 1, and k̃r(0,x) (r = p,q; x > 0) in (1.3)
satisfy condition (i) in Theorem 1.1. If am,bn ≥ 0 and a= {am}∞m=1 ∈ lp, b = {bn}∞n=1 ∈ lq,
then one has the following two equivalent inequalities:

∞∑

n=1

∞∑

m=1
k(m,n)ambn ≤ kp‖a‖p‖b‖q;

{ ∞∑

n=1

( ∞∑

m=1
k(m,n)am

)p}1/p

≤ kp‖a‖p,
(1.6)

where the positive constant factor kp(=
∫ ∞
0 k(x, t)(x/t)

1/qdt) is independent of x > 0.

Theorem 1.3. Suppose that p > 1, 1/p + 1/q = 1, and k̃r(ε,x) (r = p,q; x > 0, ε ≥ 0)
in (1.3) satisfy condition (ii) in Theorem 1.1. If am,bn ≥ 0 and a = {am}∞m=1 ∈ lp, b =
{bn}∞n=1 ∈ lq, and ‖a‖p,‖b‖q > 0, T is defined by (1.1), and the formal inner product of
Ta and b is defined by

(Ta,b) :=
∞∑

n=1

∞∑

m=1
k(m,n)ambn = (a,Tb), (1.7)
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then one has the following two equivalent inequalities:

(Ta,b) < ‖T‖p‖a‖p‖b‖q;
‖Ta‖p < ‖T‖p‖a‖p,

(1.8)

where the constant factor ‖T‖p =
∫ ∞
0 k(x, t)(x/t)

1/qdt(> 0) is the best possible.

Recently, Yang [2] also considered some frondose character of the symmetric kernel for
p = q = 2; Yang et al. [3–6] considered the character of the norm in Hilbert-type integral
operator and some applications.

Definition 1.4. If k(x, y) is a nonnegative function in (0,∞)× (0,∞), and there exists
λ > 0, satisfying k(xu,xv) = x−λk(u,v), for any x,u,v ∈ (0,∞), then k(x, y) is said to be
the homogeneous function of −λ-order.

In this paper, for keeping on research of the thesis in [1, 2], some frondose character of
the symmetric homogeneous kernel of −1-order satisfying condition (ii) of Theorem 1.1
is considered. One also considers two equivalent inequalities with the symmetric homo-
geneous kernel of−λ-order. As applications, some new Hilbert-type inequalities with the
best constant factors and the equivalent forms as the particular cases of the kernel are
established.

For this, one needs the formula of the Beta function B(u,v) as (see [7])

B(u,v)=
∫ ∞

0

1
(1+ t)u+v

t−u+1du= B(v,u) (u,v > 0). (1.9)

2. A lemma and a theorem

Suppose that the symmetric kernel k(x, y) is homogeneous function of −1-order. Setting
u= t/x in (1.3), one finds k̃r(ε,x) is independent of x > 0 and kr(ε) :=

∫ ∞
0 k(1,u)u

−(1+ε)/rdu
= k̃r(ε,x) (r = p,q). If kp := k̃r(0,x) is a positive constant, then setting v = 1/u, one

obtains kq =
∫ ∞
0 k(1,u)u

−1/qdu = ∫ ∞0 k(v,1)v−1/pdv = kp > 0, and k̃r(0,x) = kp (r = p,q).
Hence based on the above conditions, if for fixed x > 0 and r = p,q, the functions
k(x, t)(x/t)1/r are decreasing in t ∈ (0,∞), then the kernel k(x, y) satisfies condition (i)
of Theorem 1.1 and suits using Theorem 1.2.

Lemma 2.1. Let p > 1, 1/p + 1/q = 1, let the symmetric kernel k(x, y) be homogeneous
function of −1-order, and for fixed x > 0, r = p,q, the functions k(x, t)(x/t)1/r be decreas-
ing in t ∈ (0,∞). If k(1,u) is positive and continuous in (0,1], and there exist constant η <
min{1/p,1/q} and C ≥ 0, such that limu→0+uηk(1,u)= C, then for ε ∈ [0,min{p,q}(1−
η)− 1), kr(ε) :=

∫ ∞
0 k(1,u)u

−(1+ε)/rdu are positive constants satisfying kp(ε) = kp + o(1)
(ε→0+; r = p,q), and expression (1.5) is valid. Hence k(x, y) satisfies condition (ii) of
Theorem 1.1 and suits using Theorem 1.3.

Proof. For fixed x > 0, ε ≥ 0, and r = p,q, the functions k(x, t)(x/t)(1+ε)/r = k(x, t)(x/
t)1/r(x/t)ε/r are still decreasing in t ∈ (0,∞). Since limu→0+uηk(1,u) = C and uηk(1,u)
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is positive and continuous in (0,1], there exists a constant L > 0, such that uηk(1,u) ≤
L (u∈ [0,1]). Setting u= 1/v in the following second integral, since k(1,1/v)= vk(v,1),
one finds

0 < kp(ε)=
∫ 1

0
k(1,u)u−(1+ε)/pdu+

∫ ∞

1
k(1,u)u−(1+ε)/pdu

=
∫ 1

0
k(1,u)u−(1+ε)/pdu+

∫ 1

0
k(v,1)v(1+ε)/p−1dv

=
∫ 1

0

[
uηk(1,u)

][
u−(1+ε)/p−η +u(1+ε)/p−η−1

]
du

≤ L
∫ 1

0

(
u−(1+ε)/p−η +u(1+ε)/p−η−1

)
du= L

[(
1
q
− ε

p
−η
)−1

+
(
1+ ε

p
−η
)−1]

.

(2.1)

Hence the integral kp(ε)=
∫ ∞
0 k(1,u)u

−(1+ε)/pdu is a positive constant. Since by (2.1), one
obtains

0≤ ∣∣kp(ε)− kp
∣∣=

∣∣∣∣
∫ 1

0
k(1,u)

(
u−(1+ε)/p−u−1/p +u(1+ε)/p−1−u−1/q

)
du
∣∣∣∣

≤
∫ 1

0

[
uηk(1,u)

]∣∣u−(1+ε)/p−η−u−1/p−η +u(1+ε)/p−1−η−u−1/q−η
∣∣du

≤ L
∫ 1

0

[∣∣u−(1+ε)/p−η−u−1/p−η
∣∣+

∣∣u−1/q−η−u(1+ε)/p−1−η
∣∣]du

= L
[∣∣∣∣
∫ 1

0

(
u−(1+ε)/p−η−u−1/p−η

)
du
∣∣∣∣+

∣∣∣∣
∫ 1

0

(
u−1/q−η−u(1+ε)/p−1−η

)
du
∣∣∣∣
]

= L
[∣∣∣∣
(
1
q
− ε

p
−η
)−1

−
(
1
q
−η
)−1∣∣∣∣+

∣∣∣∣
(
1
p
−η
)−1

−
(
1+ ε

p
−η
)−1∣∣∣∣

]
.

(2.2)

Then |kp(ε)− kp|→0 (ε→0+) and kp(ε)= kp + o(1) (ε→0+). Similarly, kq(ε) is also a pos-
itive constant and kq(ε) = kq + o(1) = kp + o(1) (ε→0+). Hence kr(ε) is a positive con-
stant with kr(ε)= kp + o(1) (ε→0+; r = p,q). Since for ε ∈ [0,min{p,q}(1− η)− 1) and
r = p,q, one obtains

0 <
∞∑

m=1

1
m1+ε

∫ 1

0
k(m, t)

(
m

t

)(1+ε)/r
dt =

∞∑

m=1

1
m2+ε

∫ 1

0
k
(
1,

t

m

)(
m

t

)(1+ε)/r
dt

=
∞∑

m=1

1
m2+ε

∫ 1

0

(
t

m

)η
k
(
1,

t

m

)(
t

m

)−(1+ε)/r−η
dt

≤ L
∞∑

m=1

1
m

∫ 1

0

(
t

m

)−(1+ε)/r−η
d
(
t

m

)
= L

1− (1+ ε)/r−η

∞∑

m=1

1
m2−(1+ε)/r−η <∞,

(2.3)

and then (1.5) is valid. The lemma is proved. �

Note. In applying Lemma 2.1, if k(1,u) is continuous in [0,1], then one can set η = 0 and
does not consider the limit.
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If kλ(x, y) is the homogeneous function of −λ-order (λ > 0), then k(x, y) = kλ(x,
y)(xy)(1/2)(λ−1) is obviously homogeneous function of−1-order. Suppose that k(x, y) sat-
isfies the conditions of Lemma 2.1, setting ωr(x)= x(r/2)(1−λ) (r = p,q), since

∞∑

n=1

∞∑

m=1
kλ(m,n)ambn =

∞∑

n=1

∞∑

m=1
k(m,n)

(
ω
1/p
p (m)am

)(
ω
1/q
q (n)bn

)
;

∞∑

n=1

(
ω
1−p
q (n)

( ∞∑

m=1
kλ(m,n)am

)p

=
∞∑

n=1

[ ∞∑

m=1
k(m,n)

(
ω
1/p
p (m)am

)
]p

,

(2.4)

by (1.8), one has the following theorem.

Theorem 2.2. Let p > 1, 1/p + 1/q = 1, let the symmetric kernel kλ(x, y) be homog-
eneous function of−λ-order (λ > 0), and let the functions k(x, y)= kλ(x, y)(xy)

(1/2)(λ−1) sat-
isfy the conditions of Lemma 2.1. If ωr(x)= x(r/2)(1−λ) (r = p,q), am,bn ≥ 0, a= {am}∞m=1 ∈
l
p
ωp , b = {bn}∞n=1 ∈ l

q
ωq , such that ‖a‖p,ωp

= {∑∞
n=1n(p/2)(1−λ)a

p
n}1/p > 0,‖b‖q,ωq

=
{∑∞

n=1n(q/2)(1−λ)b
q
n}1/q > 0, then one has the following two equivalent inequalities:

∞∑

n=1

∞∑

m=1
kλ(m,n)ambn < kp‖a‖p,ωp

‖b‖q,ωq
;

{ ∞∑

n=1

(
ω
1−p
q (n)

( ∞∑

m=1
kλ(m,n)am

)p}1/p

< kp‖a‖p,ωp
,

(2.5)

where the constant factor kp =
∫ ∞
0 k(1,u)u

−1/pdt is the best possible.

3. Applications to some Hilbert-type inequalities

In the following, suppose that p > 1, 1/p+1/q = 1, ωr(n)= n(r/2)(1−λ) (r = p,q), am,bn ≥
0, a = {am}∞m=1 ∈ l

p
ωp , b = {bn}∞n=1 ∈ l

q
ωq , such that ‖a‖p,ωp

= {∑∞
n=1ωp(n)a

p
n}1/p > 0,

‖b‖q,ωq
= {∑∞

n=1ωq(n)b
q
n}1/q > 0, and one omits the words that the constant factors are

the best possible.
(a) Let kλ(x, y) = (1/(xα + yα)λ/α)(α > 0,0 ≤ 1− 2min{1/p,1/q} < λ ≤ 1 + 2min{1/p,

1/q}), and k(x, y) = (xy)(λ−1)/2/(xα + yα)λ/α. Then for fixed x > 0 and r = p,q,
((xt)(λ−1)/2/(xα + tα)λ/α)(x/t)1/r = (x(1/2)(λ−1)+1/r /(xα + tα)λ/α)(1/t)1/r+(1/2)(1−λ) are decreas-
ing in t ∈ (0,∞). Since k(1,u) = u(λ−1)/2/(1+ yα)λ/α is continuous in (0,1], there exists
η = (1/2)(1− λ) <min{1/p,1/q}, such that limu→0+uηk(1,u) = 1; setting t = uα in the
following, one obtains

kp =
∫ ∞

0

1
(
1+uα

)λ/α u
(λ−1)/2−1/pdu= 1

α

∫ ∞

0

1

(1+ t)λ/α
t(1/α)[(λ+1)/2−1/p]−1dt

= 1
α
B
(
1
α

(
λ+1
2

− 1
p

)
,
1
α

(
λ+1
2

− 1
q

))
=: kp

(
α,λ
)
.

(3.1)
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Then by (2.5), one has the following corollary.

Corollary 3.1. The following inequalities are equivalent:

∞∑

n=1

∞∑

m=1

ambn
(
mα +nα

)λ/α < kp(α,λ)‖a‖p,ωp
‖b‖q,ωq

;

{ ∞∑

n=1
n(p/2)(λ−1)

[ ∞∑

m=1

am
(
mα +nα

)λ/α

]p}1/p

< kp(α,λ)‖a‖p,ωp
.

(3.2)

In particular, (i) for α= 1, one has kp(1,λ)= B((λ+1)/2− 1/p, (λ+1)/2− 1/q) and

∞∑

n=1

∞∑

m=1

ambn

(m+n)λ
< B
(
λ+1
2

− 1
p
,
λ+1
2

− 1
q

)
‖a‖p,ωp

‖b‖q,ωq
; (3.3)

{ ∞∑

n=1
n(p/2)(λ−1)

[ ∞∑

m=1

am

(m+n)λ

]p}1/p

< B
(
λ+1
2

− 1
p
,
λ+1
2

− 1
q

)
‖a‖p,ωp

; (3.4)

(ii) for α = λ, one has kp(λ,λ) = (1/λ)B((1/λ)((λ+ 1)/2− 1/p),(1/λ)((λ+ 1)/2− 1/q))
and

∞∑

n=1

∞∑

m=1

ambn
mλ +nλ

<
1
λ
B
(
1
λ

(
λ+1
2

− 1
p

)
,
1
λ

(
λ+1
2

− 1
q

))
‖a‖p,ωp

‖b‖q,ωq
; (3.5)

{ ∞∑

n=1
n(p/2)(λ−1)

( ∞∑

m=1

am
mλ +nλ

)p}1/p

<
1
λ
B
(
1
λ

(
λ+1
2

− 1
p

)
,
1
λ

(
λ+1
2

− 1
q

))
‖a‖p,ωp

.

(3.6)

(b) Let kλ(x, y) = (ln(x/y)/(xλ − yλ)) (0 ≤ 1− 2min{1/p,1/q} < λ ≤ 1 + 2min{1/p,
1/q}), k(x, y) = (ln(x/y)/(xλ− yλ))(xy)(1/2)(λ−1). Since ln(t/x)/((t/x)λ − 1) is decreasing
in t ∈ (0,∞) (see [8]), then for fixed x > 0 and r = p,q,

ln(x/t)
xλ− tλ

(xt)(1/2)(λ−1)
(
x

t

)1/r
= x−(1/2)(λ+1)+1/r

ln(t/x)

(t/x)λ− 1

(
1
t

)1/r+(1/2)(1−λ)
(3.7)

are decreasing in t ∈ (0,∞). Since k(1,u) = (lnu)u(λ−1)/2/(uλ − 1) is continuous in
(0,1](k(1,1)= limu→1k(1,u)), and (1− λ)/2 <min{1/p,1/q}, there exists ε > 0, such that
η = (1/2)(1− λ) + ε <min{1/p,1/q}, and limu→0+uηk(1,u)= 0, then setting t = uλ in the
following, and using the formula as (see [9])

∫ ∞

0

ln t
t− 1

ta−1du=
[

π

sin aπ

]2
= [B(a,1− a)

]2
(0 < a < 1), (3.8)
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one obtains

kp =
∫ ∞

0

lnu
uλ− 1

u(λ−1)/2−1/pdu= 1

λ2

∫ ∞

0

ln t
t− 1

t1/2+(1/λ)(1/q−1/2)−1dt

=
[
1
λ
B
(
1
2
+
1
λ

(
1
q
− 1
2

)
,
1
2
+
1
λ

(
1
p
− 1
2

))]2
.

(3.9)

Then by (2.5), one has the following corollary.

Corollary 3.2. The following inequalities are equivalent:

∞∑

n=1

∞∑

m=1

ln(m/n)ambn
mλ−nλ

<
[
1
λ
B
(
1
2
+
1
λ

(
1
q
− 1
2

)
,
1
2
+
1
λ

(
1
p
− 1
2

))]2
‖a‖p,ωp

‖b‖q,ωq
;

(3.10)
{ ∞∑

n=1
n(p/2)(λ−1)

[ ∞∑

m=1

ln(m/n)am
mλ−nλ

]p}1/p

<

[
1
λ
B

(
1
2
+
1
λ

(
1
q
− 1
2

)
,
1
2
+
1
λ

(
1
p
− 1
2

))]2

‖a‖p,ωp
.

(3.11)

(c) Let kλ(x, y)= 1/max{xλ, yλ} (0≤ 1− 2min{1/p,1/q} < λ≤ 1+ 2min{1/p,1/q}),
and k(x, y)= (1/max{xλ, yλ})(xy)(1/2)(λ−1). Then for fixed x > 0 and r = p,q,

1
max

{
xλ, tλ

} (xt)(1/2)(λ−1)
(
x

t

)1/r
= x(1/2)(λ−1)+1/r

1
max

{
xλ, tλ

}
(
1
t

)1/r+(1/2)(1−λ)
(3.12)

are decreasing in t ∈ (0,∞). Since k(1,u)= (u(λ−1)/2/max{1,uλ}) (u∈ (0,1]) is continu-
ous in (0,1], there exists η= (1/2)(1− λ) <min{1/p,1/q}, and limu→0+uηk(1,u)= 1, one
finds

kp =
∫ ∞

0

1
max

{
1,uλ

}u(λ−1)/2−1/pdu=
∫ 1

0
u(λ−1)/2−1/pdu+

∫ ∞

1
u(λ−1)/2−λ−1/pdu

=
[(

λ− 1
2

+
1
q

)−1
+
(
λ− 1
2

+
1
p

)−1]
.

(3.13)

Then by (2.5), one has the following corollary.

Corollary 3.3. The following inequalities are equivalent:

∞∑

n=1

∞∑

m=1

ambn
max

{
mλ,nλ

} <
[(

λ− 1
2

+
1
q

)−1
+
(
λ− 1
2

+
1
p

)−1]
‖a‖p,ωp

‖b‖q,ωq
; (3.14)

{ ∞∑

n=1
n(p/2)(λ−1)

[ ∞∑

m=1

ln(m/n)am
max

{
mλ,nλ

}
]p}1/p

<
[(

λ− 1
2

+
1
q

)−1
+
(
λ− 1
2

+
1
p

)−1]
‖a‖p,ωp

.

(3.15)
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Remarks 3.4. (i) For p = q = 2 in (3.3), (3.5), (3.10), and (3.14), setting ω(n)= n1−λ (0 <
λ≤ 2), one has some Hilbert-type inequalities with a parameter (see [8, 10–12]):

∞∑

n=1

∞∑

m=1

ambn

(m+n)λ
< B
(
λ

2
,
λ

2

)
‖a‖2,ω‖b‖2,ω; (3.16)

∞∑

n=1

∞∑

m=1

ambn
mλ +nλ

<
π

λ
‖a‖2,ω‖b‖2,ω; (3.17)

∞∑

n=1

∞∑

m=1

ln(m/n)ambn
mλ−nλ

<
(
π

λ

)2
‖a‖2,ω‖b‖2,ω; (3.18)

∞∑

n=1

∞∑

m=1

ambn
max

{
mλ,nλ

} <
4
λ
‖a‖2,ω‖b‖2,ω. (3.19)

(ii) For λ = 1 in (3.17), (3.18), and (3.19), one has the following base Hilbert-type
inequalities (see [9]):

∞∑

n=1

∞∑

m=1

ambn
m+n

< π‖a‖2‖b‖2;

∞∑

n=1

∞∑

m=1

ln(m/n)ambn
m−n

< π2‖a‖2‖b‖2;

∞∑

n=1

∞∑

m=1

ambn
max{m,n} < 4‖a‖2‖b‖2.

(3.20)
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