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1. Introduction

Let

ulP=2y _ p
Lp,yu=—AH,pu—y1//p%, O<u< (Q> R (1.1)
p
be the Hardy operator on the Heisenberg group. We consider the following weighted
eigenvalue problem with a singular weight:

Lpuu= Af(E)ulP~u, in QCH",

1.2
u=0, on 0Q, (1.2)

where 1< p<Q=2n+2, AR, f(§) € Fp:={f: Q=R* | limge)~o(d? (&) f(&)/
(¥p(8)) =0, £(&) € Ly (Q\ {0})}, Qis a bounded domain in the Heisenberg group, and
the definitions of d(¢) and y, (&); see below. We investigate the weak solution of (1.2) and
the asymptotic behavior of the first eigenvalue for different singular weights as g increases
to ((Q — p)/p)’. Furthermore, we show that the first eigenvalue is simple and isolated, as
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well as the eigenfunctions corresponding to other eigenvalues change sign. Our proof is
mainly based on a Hardy inequality with remainder terms. It is established by the vec-
tor field method and an elementary integral inequality. In addition, we show that the
constants appearing in Hardy inequality are the best. Then we conclude a compact em-
bedding in the weighted Sobolev space.

The main difficulty to study the properties of the first eigenvalue is the lack of regu-
larity of the weak solutions of the p-sub-Laplacian in the Heisenberg group. Let us note
that the C* regularity for the weak solutions of the p-subelliptic operators formed by
the vector field satisfying Hérmander’s condition was given in [1] and the C** regularity
of the weak solutions of the p-sub-Laplacian Ap j in the Heisenberg group for p near 2
was proved in [2]. To obtain results here, we employ the Picone identity and Harnack
inequality to avoid effectively the use of the regularity.

The eigenvalue problems in the Euclidean space have been studied by many authors.
We refer to [3—11]. These results depend usually on Hardy inequalities or improved Hardy
inequalities (see [4, 12-14]).

Let us recall some elementary facts on the Heisenberg group (e.g., see [15]). Let H” be
a Heisenberg group endowed with the group law

n
ol = <x+x’,y+y’,t+t’+22(xiy{—x{yi)), (1.3)
i=1
Where E = (Z,t) = (-x)y)t) = (xlax2)---)xn)yl)---)yn)t)) z= (xa)/); X € [RVI’ y S [Rn) te [R)
n>1;& =(x',y',t') € R?*! This group multiplication endows H" with a structure of
nilpotent Lie group. A family of dilations on H" is defined as

8:(x, y,t) = (1x,7y,7°t), T>0. (1.4)

The homogeneous dimension with respect to dilations is Q = 2n + 2. The left invariant
vector fields on the Heisenberg group have the form
0 0 0 0o .
X,‘Zafxi-f—zyi*, Yi:aiy,-_zxig’ i=1,2,...,n. (1.5)
We denote the horizontal gradient by Vpy = (Xi,...,Xs, Y1,...,Y,), and write
divg (v1,v2,...,v2n) = 21 (Xivi + Yivesi). Hence, the sub-Laplacian Ay and the p-sub-
Laplacian Ay, are expressed by

n
A =>X}+Y?=Vy- Vg,
i=1 (1.6)

AH,pu = VH( | VHu|p72VHu) = diVH( | VHu|p72VHu), p >1,

respectively.
The distance function is

dEE) = ([(x—xV+(y—y )PP+t —t =20y =< -}, for £,8 e wn.
(1.7)
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If ¢ = 0, we denote
d(§) = d(£,0) = (lz1*+2)",  with 2] = (> +y%)"". (18)

Note that d(&) is usually called the homogeneous norm.
For d = d(§), it is easy to calculate

1 (lzlPx+ oyt p_lzl? _ Q-1
VHd_d3<|Z|2)/—xt , |VHd| —W—V/p, AH’pd—I//p7. (1.9)
Denote by By (R) = {§ € H" | d(£) < R} the ball of radius R centered at the origin. Let
Q1 = By(R,)\ By(R;) with 0 < R; < R, < o and u(€) = v(d(§)) € C2(Q,) be a radial
function with respect to d(). Then

e ., Q-1
Ampu =y |v'[* 2[(P—l)v +Q7v]. (1.10)

Let us recall the change of polar coordinates (x, y,t)—(p,6,61,...,02,-1) in [16]. If
u(&) = y,(&)v(d(£)), then

Ry
| ua - s | P v(p)dp, (111)

where sy = w, [{ (sin@)" P 246, w, is the 2n-Lebesgue measure of the unitary Euclidean
sphere in R?".

The Sobolev space in H” is written by DV (Q)={u: Q—R;u, |Vyul € LP(Q)}. DO P(Q)
is the closure of Cy’ () with respect to the norm || uIID[I),p ) = ([l VHuIPdE)l/P.

In the sequel, we denote by ¢, ¢;, C, and so forth some positive constants usually except
special narrating.

This paper is organized as follows. In Section 2, we prove the Hardy inequality with
remainder terms by the vector field method in the Heisenberg group. In Section 3, we
discuss the optimality of the constants in the inequalities which is of its independent
interest. In Section 4, we show some useful properties concerning the Hardy operator
(1.1), and then check the existence of solutions of the eigenvalue problem (1.2) (1< p <
Q) and the asymptotic behavior of the first eigenvalue as p increases to ((Q — p)/p). In
Section 5, we study the simplicity and isolation of the first eigenvalue.

2. The Hardy inequality with remainder terms

D’Ambrosio in [17] has proved a Hardy inequality in the bounded domain Q € H": let
p>1land p#Q.Foranyu e Dé’P(Q, |z|P/d?P), it holds that

CQ,pJ p|Zl, dé < J | Viu|Pdg, (2.1)

where Cq, = [(Q — p)/p|?. Moreover, if 0 € Q, then the constant Cq, is best. In this
section, we give the Hardy inequality with remainder terms on (, based on the careful
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choice of a suitable vector field and an elementary integral inequality. Note that we also
require that 0 € Q.

THEOREM 2.1. Letu € Dé’p(Q/ {0}). Then
(1) if p#Q and there exists a positive constant My such that supEEQd(f)el”"[0 := Ry < o0,
then for any R = R,

[ o [ S| s 22| 2 2 5]
(2.2)

moreover, if 2 < p < Q, then choose supEEQd(f) = Ry;
(2) if p = Q and there exits My such that supg_d(§)e"™ <R, then

P (P=1) lul?
JQWH”' df‘( p ) Jawp(dln(R/d))pdf' (2.3)

Before we prove the theorem, let us recall that

d(f)(P—Q)/(P—l) lfp-/‘éQ,

“md®  ifp=Q 24

I(d()) ={

is the solution of Ay at the origin, that is, Ay ,I'(d(£)) = 0 on Q\ {0}. Equation (2.4)
is useful in our proof. For convenience, write &B(s) = —1/In(s), s € (0,1), and A = (Q —
p)/p. Thus, for some positive constant M > 0,

0s%(@) <M, supdE)<R Ec€q (2.5)
R EeQ
Furthermore,
d RBrYd/R)Vyd — dRBY(p/R) Br*1(p/R)
(2 = =
Vu®R (R) y 7 , dp y P VyeR, (2.6)

b +
j %%l(s)ds - i[%y(b) — @ (a)]. 2.7)

Proof. Let T bea C' vector field on Q and let it be specified later. For any u € C3°(Q \ {0}),
we use Holder’s inequality and Young’s inequality to get

J (divHT)luIPdfz—pJ (T, V ) [ul P2 udé
Q Q

p (p—1/p
< p(JQ | vHu|Pd£) (JQITIP/(P‘I)IuIPdE> (2.8)

P - p/(p=1)1yy P
<[ |uultde+ (-1 [ mireDiuede
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Thus, the following elementary integral inequality:

J IvHulpdfzf [divyT = (p — DITI” P~ V] |ulPdé (2.9)
Q Q

holds.
(1) Let a be a free parameter to be chosen later. Denote

Il(%)_l+ppAl%(%>+a%2<%)’ na - Lo Lo () + 200 (),
(2.10)

and pick T(d) = A|A|P72(|Vyd|P~2V zd/dP~")I;. An immediate computation shows

p-2
divH(A|A|P*2—WHd| VHd)

dr-1
L dApyd—(p—1)|Vyd|”
_ 2 48H,p
_A|A|P ar
LQ-1-p+1)|Vyd|® | Vad|”
_ 2 — L amr
= AlAl dr = plAlf ar (2.11)
2.11
By (2.6),
P p-2
x V;fd["pA #(5) 2 (3)]
|A|P|de| L+ AlAJP- 2|v§d| I,
. P Viud
leHT_(p_1)|T|p/(p71):p|A|P%II+A|A|P72%IZ
|Vud|” o1
- (p-DIAP —— I L
p
|A|P|de| <p11+112—(p )I"/“”“).
(2.12)
We claim
. i /(p—1) |de{ ( 2<d)>
divgT— (p— DITPP=Y > |A|P 1 2pA2% (2.13)

In fact, arguing as in the proof of [13, Theorem 4.1], we set

£(s) 1= phi(s)+ 12<> (p-I" Y (s) (2.14)
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and M = M(R) := supgeg%(d(f)/R), and distinguish three cases

(i)
2-p)p-1)

1<p<2<Q, Q>W, (215)

(ii)
2<p<Q, a=0, (2.16)

(i)

2-p(p-1)
p>Q, a< 6p2AZ <0. (2.17)
It yields that

fo=1+2"1e o<am, (2.18)

2 pA2

(see [13]) and then follows (2.13). Hence (2.2) is proved.
(2) If p = Q, then we choose the vector field T(d) = ((p — 1)/p)P71(|VHd|P‘2VHd/
dP~1)BP~1(d/R). 1t gives

ot = (P (11 0 DI () (2
1

p ar dr
_ P;)P p(d)|de|P
1’( P A R ar
(2.19)
and hence
. ~1\?_rd\ |Vyd|”
C(p_TIe-n = (P 1) p(f) H 22
diveT = (p = DIT] (p v () L (2.20)
Combining (2.20) with (2.9) follows (2.3). O

Remark 2.2. The domain Q in (2.9) may be bounded or unbounded. In addition, if we
select that T(d) = A|A|P72(|Vyd|P~2V xd/dP~1), then

| Vud|?

| Vud|”
dr dr

p
divy'T — (p — DI TP = plA|p I HEL _ (5 1)japp =|A|P%.

(2.21)

Hence, from (2.9) we conclude (2.1) on the bounded domain Q and on H” (see [15]),
respectively.

We will prove in next section that the constants in (2.2) and (2.3) are best.

Now, we state the Poincaré inequality proved in [17].
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LEMMA 2.3. Let Q) be a subset of H" bounded in x; direction, that is, there exists R >0 such
that 0 <r = |x1| <R for & = (x1,%2,...»Xn, Y15+.> Ynrt) € Q. Then for any u € D(I)’P(Q),
then

CJQ|u|pdf < jo | Viu|Pde, (2.22)

where ¢ = ((p — 1)/pR)?.

Using (2.9) by choosing T = —((p — 1)/p)pf1 (Vyr/rP~1) immediately provides a dif-
ferent proof to (2.22).
In the following, we describe a compactness result by using (2.1) and (2.22).

THEOREM 2.4. Suppose p#Q and f(&) € F,. Then there exists a positive constant Cyqp
such that

Cf,Q,pJQf(f)\Mpdf < JQ | Viu|Pdé, (2.23)

and the embedding Dé’P(Q) — LP(Q, fd&) is compact.
Proof. Since f(&) € %), we have that for any € > 0, there exist § >0 and Cs > 0 such that

dr
sup —f(&) <k, FE) sy = Cs. (2.24)
By(®=aV¥p

By (2.1) and (2.22), it follows

jo FEulpde = jw) quIPdE+JQ\BH(6) Flulpde

ul? J -
<e€ —dé+C ulfd SCIJ VyulPdE,
JBH@% P EEC | o1 = Cra | | Vil e

(2.25)

then (2.23) is obtained.

Now, we prove the compactness. Let {u,,} < Dé’p (Q) be a bounded sequence. By re-
flexivity of the space Dé’p (Q) and the Sobolev embedding for vector fields (see [18]), it
yields

Um; = U weakly in Dé’P(Q), (2.26)
Um; — u strongly in LP(Q) '

for a subsequence {um, } of {u,} as j—oo. Write Cs = || f llL=(\By(s))- From (2.1),

Jnﬂum’7u|Pd€:JBH(a)f|um’7u|pd£+j )f|um"7u|pdSt

Q\By (8

sef wwdﬁcﬁf lum —u|PdE (227)
Beo) L dP OBy

< eCé}PJQ | Vi (tm; — ) |pdE+C5IQ|umj —ul|Pdé.
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Since {u,,} < Dé’p () is bounded, we have
J f|um1—u|pdEsEM+C5J |t — u| P dE, (2.28)
Q Q
where M >0 is a constant depending on Q and p. By (2.26),

i p
lim S —ul"dE < em. (2.29)

As € is arbitrary, liquoofgflum]. —u|Pdé = 0. Hence D(l)’p(Q) — LP(Q, fd&) is compact.
O

Remark 2.5. The class of the functions f (&) € %, has lower-order singularity than d~(£)
at the origin. The examples of such functions are

(a) any bounded function,

(b) in a small neighborhood of 0, (&) = wp(£)/dﬂ(f), 0<pB<p,

(c) f(&) = 1//1,(5)/(11’(5)(1n(l/d(f)))2 in a small neighborhood of 0.

3. Proof of best constants in (2.2) and (2.3)

In this section, we prove that the constants appearing in Theorem 2.1 are the best. To do
this, we need two lemmas. First we introduce some notations.
For some fixed small § > 0, let the test function (&) € Cg’(Q) satisfy 0 < ¢ < 1 and

. 0
(p(f):{l leEBH<0,E), (31)
0 if £ Q\Bg(0,9),

with |Vl <2|Vyd|/d. Let € > 0 small enough, and define

Ve(§) = 9(§)@e,  witha, = d‘A*e%"‘(é), Lok<?,
R p p
EIL J (3.2)
H -
her= [ o e (2)ds yer
LeMmma 3.1. For € >0 small, it holds
(i) ce "V <], (e) <Ce™ 17,y > -1,
(i) J,(e) = (pe/(y + 1))]y+1(€) + Oe(1), y > —1,
(iii) Jy(€) = O¢(1), y < — L.
Proof. By the change of polar coordinates (1.11) and 0 < ¢ < 1, we have
| Vid]|” ()i - anegyy(2 o
€)= JBHw) dope B \g) 4= <ol PR (3.3)

— —l+peop—y B)
SH p<5p %B (R dp.
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By (2.7) we know that for y < —1 the right-hand side of (3.3) has a finite limit, hence (iii)
follows from € —0.
To show (i), we set p = RtV€. Thus, dp = (1/€)RtV¢ " 1dr, BV (7€) = € 7B ¥(1), and

(6/R)* _ RrVeN 1
~1+pegp—y B) _ J 1/e\~1+pe —y( T )7 1Ve-1
he ssu| prtren (R dp=su|  (ReV) Py (T ) TRV

(8/R)
= sHRpeeflfy'[ P 1RBY (1) dT.
0
(3.4)
It follows the right-hand side of (i). Using the fact that ¢ = 1 in By (6/2),
Vud|? d ¢
Jy(€) = fBH(s/z)%%f’(E)df = suRPee 1 [P0 219y (1), (3.5)

and the left-hand side of (i) is proved.
Now we prove (ii). Let Q: = {£ e Qd&) >n},n>0,besmall and note the boundary
term

) P2
_I (‘/’ | Vid] VHd)%*Y*I(%)de-ﬁds—»o as n — 0. (3.6)
d=n

dQ-1-pe
From (2.6),
(P | Vud|P TP VdN . (d
Iod‘VH< dQ-1-pe )% ' l(ﬁ)df
_ o? | Vid|"’ i (d
-] e (vna vun o (3) ot 7
P|Vyd|? d
~ (y+1) Q%%‘V(ﬁ)dfz (y+ DJy ().
On the other hand,
(9P| Vud| " Vpd o (d
(Y 2
-2
_ 1 Ved| " (Vud, Vo) _1(5)
_PJQ"’P dQ-1-pe BT\ R)H®

(3.8)
Vud|?
+(1—Q+p€+Q—1)JQ¢P |dQH_p€| %‘V“<%>d£

Vud|? (Vyd, Vv d
:pjﬂq,p—l | Vud| delii HP) PBr-1 (E)d5+P€]y+l(€)-
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We claim that p[o¢? ' (IVd|?~2(Vud, Vae)/d =P )B-7-1(d/R)dE = Oc(1). In fact,
by (3.1) and (1.11),

1|de| VHd VHgD> 1(é>
JQ(PP dQ-1-pe B R d¢

p
< 2J | Vid] Byl

Bu(s) dPe

- 25HJ p-Qipegyy-1 <f
B ()
P
R

=2$HJ ppe—l%—y—l<
By ()

Using the estimate (i) follows that [ 5 p?¢ 'B~771(p/R)dp = Oc(1). Combining (3.7)
with (3.8) gives

) (3.9)
)

(y+1)],(€) = peJyr1(€) + Oc(1). (3.10)

This allows us to conclude (ii). O

We next estimate the quantity

ITVe] —J |V Ve|PdE - IAIPJ |de|P|V€| dé. (3.11)

LemMa 3.2. As €—0, it holds
(1) I(Ve) < (k(p = 1)/2)|AI1P 2] pe—2(€) + Oc(1);
(ii IBH |VHVE|pdE |A|p]p;<( )+O€(€1 P,
Proof. By the definition of V¢ (£), we see Vi Ve(&) = 9(§) VH@e + @ V. Using the ele-
mentary inequality
la+bl? < lal? +c,(lalP~ bl +1bIP), abeR¥™, p>1, (3.12)

one has

VaVel” =97 | Tu@c ] +,(| Vg | @co? ! | Vaac "+ Vugl”@c|?)

2Vyd - 2Vyd
s¢P|vH@6|P+cp(%we¢P*1|VH(DG|"1 (' L |) |@c | )
(3.13)
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Since Vi@ = —d A" 1B*(d/R)(A — € + kB (d/R)) V d, it follows

JQ | Vi Vel PdE < IBH(B) | VHd|P¢pd_Q+pE%_pK(%> 'A B (6 a K%(%)) ’pd&

+ch |Vid|? P“d‘Q*PG%‘P"<d>‘A—(e—x%(d))’pldf
pBH(5) HEL ¢ R R

+2Pcpj |Vid| Pd*QWE%*P"(é)df Ty + 1T, + T,
B (0) R
(3.14)
We claim that
I1;,I1;, = O¢(1). (3.15)
Indeed, since |A — (e — kB (d/R))| is bounded, using (3.1) we get
d dy\ |P7!
P _p—1 3-Q+peap—pr | & _ _ “u
mscf, Ivnalfertaerae () [a- (c-ma(g)) | a
< cj \VHd|Pd’Q+P€%’P“<é)d£, (3.16)
B (0) R

M, < cj | VHd|Pd’Q+P€%’P"(é)d£.
By(9) R

By (i) of Lemma 3.1, it derives IT;, IT, = O¢(1), as €—0.
From (3.14), (3.15) and the definition of ], (€), it clearly shows

HVel = [, 1VnVelPdE = |AIJp(€) = TLa = [A147,0(€)+ Oc(1) = Iy + (1),
(3.17)
where I3 = fBH(a)|VHdIPq)Pd‘Q*PE%‘P"(d/R)(|A — (e —«kMB(d/R))|F — |A|P)dE. For sim-

plicity, denote { = € — kB(d/R). Since { is small compared to A, we use Taylor’s expansion
to yield

A= -4 s —palarc+ B Djape . eas)
Thus, we can estimate IT3 by
115 < I3y + 115, + 1153, (319)
where
Iy = —pAlAIP’ZJ | de|P¢Pd*Q+PE%*PK(4) (e - K%(é))df,
By (8) R R

o= 20Dt eman(D)(caa(d)) s om

d

3
= P b 4-Qtpegp—px f)‘ _ (ﬁ)
s cJBH(6)|de| oPd-QHregy ( ) |e-nm(%)] e
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We will show that
131, I35 = Oc(1), as € — 0. (3.21)
In fact, using (ii) of Lemma 3.1 with y = —1 + px yields

I3 = —pAIAIP 72 (€] p(€) — K] pr-1(€))

3.22
= —pA|AIP7*(€]pe(€) — €]pc(€) + Oc(1)) = O¢(1). (3:22

Recalling (a —b)’ < (lal + |b])’ < c(|al® + |b|?), we obtain
I35 < c€]p(€) + cJpx-3(€) for € >0. (3.23)

From (i) and (iii) in Lemma 3.1 and the fact that 1 < px < 2 it follows IT33 = O¢(1). Using
(ii) of Lemma 3.1 twice (picky = px— 1> —1 and y = px — 2 > —1, resp.), we conclude
that

- PE ] 1wl s (@) (e (g oo (7))
s, = 5 |A| BH(8)|VHd| pPd B r)\€ 2ekP R +1* R R dé

1

( 71) B K— 1
- %IAIP 2|:€2]p1<(€) fZEK]pK71(€)+K2(p7 + R)JPH(G)]

-1
= % |A|P~2 (ezlpx(e) - EKEJPK(G) — €xpc-1(€)
px
2(p;cf 1) pe
px  pr-—
|AIP72] pr—2(€) + O¢(1).

PE . 1<e>+p1p,< 2(€)+Oe(1))

_k(p-1)
2
(3.24)

In virtue of (3.17), (3.19), (3.21), and (3.24) we deduce (i) of Lemma 3.2. By (3.17),
(3.24), and (i) of Lemma 3.2,

k(p—1
[, |TaVel e =11V + AR () = 411 Tpte) + 22 4172 o)+ OL)
(3.25)
Hence (ii) of Lemma 3.2 follows from (i) in Lemma 3.1. It completes the proof. O

We are now ready to give the proof of the best constants in Theorem 2.1.

Tueorem 3.3. Let 0 € Q be a bounded domain in H" and p#Q. Suppose that for some
constants B >0, D > 0, and 1 > 0, the following inequality holds for any u(&¢) € CF(Q\ {0}):

u

J |VHu|Pd£>BJ %' d dE+DJ p'd”—l,%’< )a. (3.26)
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Then,
(i) B < |Al?;
(ii) if B=|Al? and D >0, then 1 > 2;
(iii) if B= |AlP and 1 =2, then D < ((p — 1)/2p)|A|P~2.

Proof. Choose u(§) = Ve(&).
(i) By (ii) of Lemma 3.2, we have

5o e VaVel'ds |AI?pe(€) + Oc (€' %)
" TV Vel?/dr)dE ™~ [y, 5)¥p(lpd-A+eB=r(d/R)|P/dP)dE
_ JAIP(1+c€?)Jpe(€) + Oc(1)
- ]px(e) .

(3.27)

Note that Jc(€)— o0, as €0, s0 B < [A|P.
(ii) Set B = |A|? and assume by contradiction that ; < 2. Since px — ¢ > —1, using (i)
of Lemma 3.2 and (i) of Lemma 3.1 leads to

1(Ve) 1(Ve) (K(p_1)/2)|A|p_2]p;c72(€)+oe(l)
0<Dc< = <
Jawp(1Velp/dP) B (d/R)AE  Jpi—i(€) Jox—i(€)
Cel—px .
SWZCEZ — 0, ase—0,
(3.28)
which is a contradiction. Hence ¢ > 2.
(iii) If B = |A|P and 1 = 2, then by (i) of Lemma 3.2,
_ p-2
D < I(Ve) - (K(P 1)/2)|A] ]pK—2(€)+O€(1) (3.29)

]pk—Z(e) B ]pK—Z(E)

The assumption « > 1/p implies Jy,2(€)— o0, as €—0. Hence, by (i) of Lemma 3.1 we
conclude that D < (k(p —1)/2)|A|P~2, as €—0. Then letting k— 1/p, the proof is finished.
O

THEOREM 3.4. Set 0 € Q and p = Q. Suppose that there exist some constants D > 0 and
1> 0 such that the following inequality holds for all u(&) € Cg°(Q\ {0}):

P ul? o, (d
JQ |V PdE = DJpr v ( R)dE. (3.30)
Then,

(i) if D >0, then 1 = p;

(ii) if 1 = p, then D < ((p — 1)/p)*.

Proof. The proof is essentially similar to one of Theorem 3.3. Let the test function ¢ be
as before (see (3.1)). For € >0, k > (p — 1)/p, define V¢ = 9@ with @ = d*(—In(d/R))".
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Using (3.12) yields

J |VHVE|Pd£:J |9V @ + @ Vg |PdE
Q By (6)

SJ ¢P|VH@6|pd£+CpJ "0 | Ve |77 | Ve dE (3.31)
Bu(d) Bu(d)

+CPJ (D£|VH(P|Pd€:= 114 + 115 + Is.
By (3)
Arguing as in the proof of previous theorem and letting € -0, we have

15, IIg = O (1). (3.32)

Denoting by ¢!’ the coefficients of binormial expansion, we get

d dy|”
| Viae|” = |VHd|de€‘P%‘P“(§) 'e - x%(ﬁ) ‘
d d\\?
< de|PdP€*P%*PK(E) (e + x%(i)) (3.33)
= | Vd|arer (&) sl ocler (£
R i=0%i R .
Hence,

I < 30 L el 'ii] pei(e), (3.34)

where J,(€) = [o|Vud|P@PdP<~PRB7(d/R). By (ii) of Lemma 3.1 and the induction ar-
gument it holds

€71 i(e) = (K_ ;) (K_ %) . (K_pT?l)]pk,P(E)-f—Oe(l), i= 0,1,...,123—315.)

Now (i) of Lemma 3.1 and the assumption x > (p — 1)/p imply that . ,(€)— 0, as €0,
and

P
D < limsup IQ|VPHV€| dé
-0 JoWp(|VelP/dr)Br(d/R)dE

limea [P + 30 i (k—i/p) (k= i+ 1)/p) - -+ (k= (p — 1)/p) Upe—p(€) + Oc(1)
B E"Op ]px—p(E)

= |:Kp+2f=701CfKi<K— é) (K— %) e (K— ijlﬂ

The last expression converges to ((p — 1)/p)? as k—(p — 1)/p. The proof is over. O

(3.36)
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4. The weighted eigenvalue problem

This section is devoted to the problem (1.2) by using the Hardy inequality with remainder
terms.
We begin with some properties concerning the Hardy operator (1.1).

LemMma 4.1. Suppose that u(&) € Dé’p(Q) and p#Q. Then
(1) Ly is a positive operator if u < Cqp; in particular, if u = Cq,p, then v(§) =
dP=Q/p(&) is a solution of L ,u = 0;
(2) Ly is unbounded from below if u > Cqp.

Proof. (1) It is obvious from (2.1) that L, , is a positive operator.
We now suppose that u = Cq,, and verify that v = d'?~/? satisfies L, ,u = 0. For the

purpose, set v, = d(P~Q/p+e ¢ D(l)’p(Q) and A = (Q — p)/p. Since
vl =(e—A)d A1+ v =(e-A)e—A—1)d A2, (4.1)

it yields from (1.10) and (4.1) that

/P ’ -1,
_AH,pVE = _Wp|ve|p 2[(17— l)Ve + Qd Ve]

= —yp| (e —A)d A1 P [(p “1)(e—A)(e—A—1)d A
Q

+ -1 (€ —A)dﬁA*HE]

d
_ _wp(e —A)le 7A|p72d(7A71+E)(P*2)+(7A72+€)[(p7 DEe-—A-1)+Q—1]
— (e~ A)p-1)+Q- pl(€~ A)le — AlP2dAOE-1p
p-1
Ve

ar -

=—[(e-A)(p-1)+pA](e —A)le — AP *y,
(4.2)

Letting € —0, the conclusion follows.
(2) By the density argument, we select ¢(&) € Cy°(Q), ||l = 1, such that Cq, =

JalVuelP/([o(IzI2/dP)(|¢|P/dP)). Using the best constant of the inequality (2.1), one
has

1217 |¢17 21?1917 _

(pat ) = | 1Vl a5 < [ 1 Vms17 Co | 5 G = (43)

Denote u.(x, y,t) = 7¥P¢(8,(x, y,t)) and & = (x, y,t). Thus,

itz G, 3, 8)|IF, = jﬂ 722 (8,(x, 1)) | "dE = [Q 16(8:(x,3,0)) |P10dE =1, (4.4)

and (Lp utr,ur) = 7P(L,,¢,¢) < 0. This concludes the result. O

In order to prove the main result (Theorem 4.6 below) we need the following two
preliminary lemmas.
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LEmMa 4.2. Let {gy,} C LP(Q)(1 < p < o) be such that as m— oo,

gn — g weakly in LP(Q)),
gn— g a.e in Q. (45)

Then,

lim | ||gm||LP(Q llgm — g||LP(Q) ”gHIL)P(Q)' (4.6)

m— oo

The proof is similar to one in the Euclidean space (see [19, Chapter 1, Section 4]. We
omit it here.

LEmMMA 4.3. Suppose that {u,,} C D(I)’P(Q)(l < p < o) satisfies

Um — u  weakly in Dé’P(Q), 47)
Um — u  strongly in LY (Q), .

as m— oo, and
—Dpptim = fon+gm>  in D'(Q), (4.8)

where fy— f strongly in D=5 (Q)(p’ = p/(p — 1)), gm is bounded in M(Q) (the space of
Radon measures), that is,

[{gm @) | < CkllollL (4.9)

for all ¢ € D(Q) with supp(@) C K, where Ck is a constant which depends on the compact
set K. Then there exists a subsequence {um,} of {un} such that

Um; — u  strongly in D(l)’q(Q), Vq<p. (4.10)

Its proof is similar to one of [20, Theorem 2.1].

LemMA 4.4. Let p#Q and

1

dr (§) R ) }
5)_01//1,(5)“5)(%(5)) <oo, f(E) €LE(QV(03) . (411)

JP:={f:Q—»[R+

(i) If f(&) € Tp, then there exists A(f) >0 such that for all u € Dé’p(Q\ {0}), the
following holds:

JQ | Vyu|PdE > 'Q;p‘p JQ (&) |u| —dE+A(f J lul? (&) (4.12)

(ii) If £ (&) & T, and (dP(&)/y, (&) f(E)(In1/d( (£))? >0 as d(§)—0, then (4.12) is not

true.
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Proof. (i) If f(§) € J,, then

d 1 2
li a7\s) .. |
€0 seszipe) Vp f (5)( d(f)) (4.13)

Without any loss of generality we assume that R = 1 in (2.2). For the sufficiently small
€ >0, we have

Cyp

FO< By

in Bg(e€). (4.14)

Outside By (€), f(§) is also bounded. Hence there exists C(f) >0 such that

lul?
| urr@ds <o) | vyt e on g (4.15)
Taking A(f) = f) 1)/2p)|A|P~2 >0, (4.12) follows from (2.2).

(i) We write f(&) wph(f)/dp(&')(ln 1/d(§))?, where h(§)— oo as d(£)—0. Then, for
the sufficiently small € > 0, we select u(&) = V(&) = ¢(§)d=41€(E)B*(d(£)/R) and get
from (i) of Lemma 3.2,

1(Ve) 3 1(Ve)
Tpaier | Ve P FOE ™ [0 ¥p(IVelPh(E)/dP (In 1/d))dE

0<A(f) =

< I(Ve) < (K(p_1)/2)|A|p72]p;c72(6)+O€(1)
" K[,V (| VelP/dr(In 1/d)*)dE KsJpx—2(€)
cel=px C

< — — 0, asd,e—0
CK@El_P" Ks ’ ’

(4.16)

where K = infeep,(9)h(€). The impossibility shows that (4.12) cannot hold for f(£) ¢
3. O

Definition 4.5. Let A € R, u € D(l)’P(Q), and u # 0. Call that (A,u) is a weak solution of
(1.2) if

JQ V)PV s, Vi) dE 40% P 2uq dE = AJQf(E)IuIP‘Zugo dE (417)

for any ¢ € Cy(Q). In this case, we call that u is the eigenfunction of problem (1.2)
associated to the eigenvalue A.

THEOREM 4.6. Supposethat1 < p<Q, 0 < y <((Q=p)/p),and f(§) € Fp. The problem
(1 2) admits a positive weak solution u € DO (Q), corresponding to the first eigenvalue A =
AL(f) > 0. Moreover, as y increases to ((Q — p)/p)?, Mi(f)—=A(f) = 0 for f(§) € F), and

the limit A(f) >0 for f(§) € 3,. If f(&) ¢ T and wp1(£)dp(£)f(f (In 1/d(2))— oo, as
d(&)—0, then the limit A(f) =
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Proof. We define

p
Ju(u): = JQ | Viyul|? —yJQ%%. (4.18)

Obviously, J, is continuous and Géteaux differentiable on Dé’P (Q). By (2.1),

Ju() = JQ|VHu|p—%’PIQ|VHu|P - (1—%)JQ|VHu|p (4.19)

for 0 <y < ((Q— p)/p)?. Note that Co,, = ((Q— p)/p)* for 1 < p < Q. Hence J, is coer-
cive in Dé’P (€2). We minimize the function J,(u) over the mainfold M = {u € DO P(Q) |

Jalul? f(§)dE = 1} and let A, be the infimum. It is clear that A} >0 from Lemma 4.1.
Now, we choose a special minimizing sequence {u,} C M with fQ [um|? f(§)dE =1, and

],,(um)—vll and ] (um)—0 strongly in DO P (Q), when the component of] (ty) 1s re-
stricted to JL. The coercivity of J, implies that {u,,} is bounded and then there exists a
subsequence, still denoted by {u,,}, such that

um — u  weakly in Dé’P(Q),
U — u  weakly in L? (Q,y,d"?), (4.20)
Un — u  strongly in LP(Q),

as m—oo. By Theorem 2.4 in Section 2 we know that Dé’p (Q) is compactly embedded
in LP(Q, fd&), and it follows that Jil is weakly closed and hence u € Jl. Moreover, u,,
satisfies

—Ap i — wpﬁ V| 22 tts = A |t | P2 th f+ frnr 0 D (), (4.21)

where f,,—0 strongly in D~"#'(Q)) and A,,—A, as m—co. Letting g = v, (u/dP) |t4yn| P> 1hs
Al |2~y f , we check easily that g, is bounded in M(Q) and conclude almost ev-
erywhere convergence of Vyu,, to Vyu in Q by Lemma 4.3, and

Julttm) = 11V et |Fo ) = il [ ttml |25 pd )
= |V (tm — U)Hfﬂ(ﬂ)‘#”“m u||LP (Qypd- P)+||VHM||€P(Q)_V||u||€1’(0,wpd’p)+0(l)

> (Cop— )|t — ”||€p(g,wpd—p) +AH +o(1),
(4.22)

by applying Lemma 4.2 to u,, and Vgu,,, where 0(1)—0 as m—oco. Thus Cq > p, |ty —
ullfp(Q’%dfp)ao, and || Vg (4, — 1) II’EP(Q)—»O as m—oo. It shows that ], (u) = A}l and A = )u;.
Since J,(|ul) = J,(u), we can take u >0 in Q. By Lemma 4.3, u is a distribution solution
of (1.2) and since u € Dé’P (Q), it is a weak solution to eigenvalue problem (1.2) corre-
sponding to A = 1. Moreover, if f(§) € J), then by Lemma 4.4,

P _
() M= ing  JaUVuulT=Copyp(ull/dr))de

>0, (4.23)
ueDP(Q\{0}) Jolul? fd&
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as u increases to ((Q — p)/p)?. When f(§) & Jp, using Lemma 4.4 again, it follows that
(4.12) is not true and hence A( f) = 0. This completes the proof. O

Remark 4.7. The set Al is a C' manifold in Dy’ (Q). By Ljusternik-Schnirelman critical
point theory on C! manifold, there exists a sequence {1,,} of eigenvalues of (1.2), that
is, writing I, = {A C G | Ais symmetric, compact, and y(A) = m}, where p(A) is the
Krasnoselski’s genus of A (see [19]), then for any integer m > 0,

A = inrf sup J,(u) (4.24)

A€l yea

is an eigenvalue of (1.2). Moreover, lim,,—.c A, — c0.

5. Simplicity and isolation for the first eigenvalue

This section is to consider the simplicity and isolation for the first eigenvalue. We always
assume that f satisfies the conditions in Theorem 4.6. From the previous results we know
clearly that the first eigenvalue is

A= MO =inf ) Lue D@\ (), [ i f@dg =1} G

In what follows we need the Picone identity proved in [15].

ProrosiTION 5.1 (Picone identity). For differentiable functions u =0, v >0 on Q C H",
with Q a bounded or unbounded domain in H", then

L(u,v) = R(u,v) =0, (5.2)
with
L(u,v) = |VHu|P+(p— 1):[—5|VHV|P—p:i:11 |VHV|P_2VHL£-VHV,
R(u,v) = | Vyul|f - |VHv|p_2VH<V:l}jl)-VHV 5

for p > 1. Moreover, L(u,v) = 0 a.e. on Q if and only if Vi (u/v) = 0 a.e. on Q.

THEOREM 5.2. (i) /\}4 is simple, that is, the positive eigenfunction corresponding to /\L is
unique up to a constant multiple.

(ii) A, is unique, that is, if v > 0 is an eigenfunction associated with an eigenvalue A with
Jaf@)IvIPdE =1, then A = A,

(iii) Every eigenfunction corresponding to the eigenvalue A (0 < A#A,) changes sign in Q.

Proof. (i) Let u >0 and v > 0 be two eigenfunctions corresponding to A, in L. For suffi-
ciently small ¢ > 0, set ¢ = u?/(v+ e)f e D(l,’P(Q). Then

-1
JQ (Vv |7 (Vi Vi) dE = yjowp%(pdf+A;,J0f(£)vp-1¢d£. (5.4)
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Using Proposition 5.1 and (5.4),

0< JQL(u,v+£) = JQR(u,v+s)

= [ I muttae 19l (0 () v
= [ (el s @)war— [ (i en o)

(v+e)
- [ (e ar®)w (- (f)lpl)df.

The right-hand side of (5.5) tends to zero when e—0. It follows that L(u,v) = 0 and by
Proposition 5.1 there exists a constant ¢ such that u = cv.

(i) Let u > 0 and v > 0 be eigenfunctions corresponding to A, and A, respectively. Sim-
ilarly to (5.5), we have

L)oo

P W

Letting e—0 shows that (A — 1) [ f(§)u?d§ = 0, which is impossible for A > 1,,. Hence
A=A,
(iii) With the same treatment as in (5.6) we get

(5.5)

) (5.6)
dé > 0.

- A)IQ FE)uPdE = 0. (5.7)

Noting that [ f(§)uPd >0 and A > A, leads to a contradiction. So v must change sign
in Q. ]

LEMMA 5.3. Ifu e D(l)’p(Q) is a nonnegative weak solution of (1.2), then either u(¢) = 0 or
u(&) >0 forall& Q.

Proof. ForanyR >r, By(0,R) D By (0,7),letu e D(l)’p(Q) be a nonnegative weak solution
of (1.2). In virtue of Harnack’s inequality (see [1]), there exists a constant Cr > 0 such that

sup {u < Cp inf {u(é)}. 5.8
3P {u(6)} < e inf ()} (58)
This implies # = 0 or u >0 in Q. O

TueorEM 5.4. Every eigenfunction uy corresponding to A, does not change sign in C: either
u; >0o0ru; <0.

Proof. From the proof of existence of the first eigenvalue we see that there exists a positive
eigenfunction, that is, if v is an eigenfunction, then u; = |v| is a solution of the minimiza-
tion problem and also an eigenfunction. Thus, from Lemma 5.3 it follows that |v| > 0 and
then u; has constant sign. O
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LeMMA 5.5. For u € C(Q\ {0}) N D(l)’p(Q), let N be a component of {£€ € Q| u(§) >0}.
Then uly € Dy (N).

Proof. Let uy, € C(Q\ {0}) N Dé’p(Q) be such that u,,—u in D(l,’P(Q). Therefore, v, —u*
in D(l)’P(Q). Set vy, (&) = min{u,,(£),u(&)}, and let pr(&) € C(Q) be a cutoff function such
that

R
or(E) = 2’ (5.9)
1 ifd(é) =R,

with |Vyer| < C|Vyd|/d(&), for some positive constant C. Now, consider the sequence

W (&) = Pr(E)vin ()| . Since gr(§)vim(&) € C(Q), we claim that w,, € C(N') and w,, =0
on the boundary oN. In fact, if £ € dN and & = 0, then ¢g = 0, and so w,, = 0. If £ €
ON N Q and &#0, then u = 0 (since u is continuous except at {0}), and hence v,, = 0. If
& € 0Q, then u,, = 0 and so v,,, = 0. Therefore, w,, = 0 on N, and w,, € Dé’p(N). Noting

JQ | Vawm — Vi (pru) |PdE = JN | ORV Vi + Vi VPR — RV HU — UV PR |Pd&

< |lor (Varvan = Vi) [y + 1V 0R (vin = 1) 1
(5.10)

itis obvious that [ 4| Vyw, — VH(goRu)IPdE—»O, as m— co. That is w,,— @ruly in D(I)’P(N).
By (2.1),

JN | MVH§DR+([)RVHM— VHu|pd£

SI |<pRVHu—VHu|Pd£+J |MVH(pR|pdf
N NN{R/2<d<R}
(5.11)
SJ |<pRVHu—vHu|Pd5+cpj pw
N NA{R/2<d<R} dar
SJ |‘PRVH”—vHu|pd£+C1J | Viu|PdE,
N Nn{R/2<d<R}
which approaches 0, as R—0. Hence u|y € Dé’P (N). O

THEOREM 5.6. The eigenvalue A, is isolated in the spectrum, that is, there exists § > 0 such
that there is no other eigenvalues of (1.2) in the interval (AL,/\L +68). Moreover, if v is an
eigenfunction corresponding to the eigenvalue A+, and N'is a nodal domain of v, then

(CAIfll=) P < N1, (5.12)

where C is a constant depending only on Q and p.
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Proof. Let u; be the eigenfunction corresponding to the eigenvalue 1. Let {A,,} be a
sequence of eigenvalues such that A,,, > )L,ll and A, ™ A}J, and the corresponding eigenfunc-
tions u,—uy with [ f (&) |uy,|Pd€ = 1, that is, A,, and u,, satisfy

Lyt = A f (€) |t |ty (5.13)
Since

0<j |V st | P — yj Yoy 12dE =2, J FCE) |t PdE = A, (5.14)

it follows that u,, is bounded. By Lemma 4.3, there exists a subsequence (still denoted
by {um}) of {u,} such that u,, — u weakly in D(l)’p(Q), Uy —u strongly in LP(Q) and
Vuuy—Vyua.ein Q. Letting m— oo in (5.13) yields

Lpyu = A f(§)|ulP~*u. (5.15)

Therefore, u = +u;. Using (iii) of Theorem 5.2 we see that u,, changes sign. For conve-
nience, we assume that u = +u;. Then

[{E€eQlun<0}| —o0. (5.16)
Now, we check (5.13) with u,, = u,,,
AR S R A P L S W BT SR ERT)

Using the Hardy inequality and Sobolev inequality yields

() ol

Cap
< [ 1 Vhunl " [ E i P
I GIEL (5.18)

<1, J 174
<Al || P

<allf ool |mllBs [ 2 |79,

1051 = @l fll=)Y, Q= {E€Qu,<0}.

It contradicts with (5.16). Hence, there is no other eigenvalue of (1.2) in (A/i,/\; + ) for
d>0.
Next, we prove (5.12). Assume v >0 in N (the case v < 0 being treated similarly). In

view of Lemma 5.5, we have v|y € Dé’p (N). Define the function

o) - {v(g) if&e N,

5.1
0 ifEe Q\N. (5.19)
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Clearly, w(§) € D(l)’p (Q)). Taking w as a test function in (4.17) satisfied by v and arguing as
in (5.18), we have

(1- %p) PBumc < Af s | 17178 <ACIFll s V122 (5.20)

B}

for some constant C = C(Q, p) and hence (5.12) holds. O
CoROLLARY 5.7. Each eigenfunction has a finite number of nodal domains.

Proof. Let N'; be a nodal domain of an eigenfunction associated to some positive eigen-
value A. It follows from (5.12) that

101> YN | = (CUIfll=) P Y1 (5.21)
j J

The result is proved. U
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