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1. Introduction

In 1994, Hassouni and Moudafi [1] introduced and studied a class of variational inclu-
sions and developed a perturbed algorithm for finding approximate solutions of the vari-
ational inclusions. Since then, Adly [2], Ding [3], Ding and Luo [4], Huang [5, 6], Huang
et al. [7], Ahmad and Ansari [8] have obtained some important extensions of the results
in various different assumptions. For more details, we refer to [1–29] and the references
therein.

In 2001, Huang and Fang [16] were the first to introduce the generalized m-accretive
mapping and give the definition of the resolvent operator for the generalizedm-accretive
mappings in Banach spaces. They also showed some properties of the resolvent operator
for the generalized m-accretive mappings in Banach spaces. For further works, we refer
to Huang [15], Huang et al. [19] and Huang et al. [20].

Recently, Huang and Fang [17] introduced a new class of maximal η-monotone map-
ping in Hilbert spaces, which is a generalization of the classical maximal monotone map-
ping, and studied the properties of the resolvent operator associated with the maximal
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η-monotone mapping. They also introduced and studied a new class of nonlinear varia-
tional inclusions involving maximal η-monotone mapping in Hilbert spaces.

Motivated and inspired by the research work going on in this field, we introduce and
study a new class of generalized nonlinear set-valued quasivariational inclusions involv-
ing generalized m-accretive mappings in Banach spaces, which include many variational
inclusions studied by others in recent years. By using the properties of the resolvent op-
erator associated with generalized m-accretive mappings, we establish the equivalence
between the generalized nonlinear set-valued quasivariational inclusions and the fixed
point problems, and some new perturbed iterative algorithms, prove that its proximate
solution converges to its exact solution in real Banach spaces. The results presented in this
paper extend and improve the corresponding results in the literature.

2. Preliminaries

Throughout this paper, we assume that X is a real Banach space equipped with norm
‖ · ‖, X∗ is the topological dual space of X , CB(X) is the family of all nonempty closed
and bounded subset ofX , 2X is a power set of X ,D(·,·) is the Hausdorff metric on CB(X)
defined by

D(A,B)=max

{
sup
u∈A

d(u,B), sup
v∈B

d(A,v)

}
∀A,B ∈ CB(X), (2.1)

where d(u,B)= infv∈B d(u,v) and d(A,v)= infu∈A d(u,v).
Suppose that 〈·,·〉 is the dual pair between X and X∗, J : X → 2X

∗
is the normalized

duality mapping defined by

J(x)= { f ∈ X∗ : 〈x, f 〉 = ‖x‖2,‖x‖ = ‖ f ‖}, x ∈ X , (2.2)

and j is a selection of normalized duality mapping J .

Definition 2.1. A single-valued mapping g : X → X is said to be k-strongly accretive if
there exists k > 0 such that for any x, y ∈ X , there exists j(x− y)∈ J(x− y) such that

〈
g(x)− g(y), j(x− y)

〉≥ k‖x− y‖2. (2.3)

Definition 2.2. A single-valued mapping N : X ×X → X is said to be γ-Lipschitz contin-
uous with respect to the first argument if there exists a constant γ > 0 such that

∥∥N(x,·)−N(y,·)∥∥≤ γ‖x− y‖ ∀x, y ∈ X. (2.4)

In a similar way, we can define Lipschitz continuity of N(·,·) with respect to the second
argument.

Definition 2.3. A set-valued mapping S : X → 2X is said to be ξ-D-Lipschitz continuous if
there exists ξ > 0 such that

D
(
S(x),S(y)

)≤ ξ‖x− y‖ ∀x, y ∈ X. (2.5)
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Definition 2.4. A mapping η : X ×X → X∗ is said to be
(i) accretive if for any x, y ∈ X ,

〈
x− y,η(x, y)

〉≥ 0; (2.6)

(ii) strictly accretive if for any x, y ∈ X ,

〈
x− y,η(x, y)

〉≥ 0, (2.7)

and equality holds if and only if x = y;
(iii) α-strongly accretive if there exists a constant α > 0 such that

〈
x− y,η(x, y)

〉≥ α‖x− y‖2 ∀x, y ∈ X ; (2.8)

(iv) β-Lipschitz continuous if there exists a constant β > 0 such that

∥∥η(x, y)∥∥≤ β‖x− y‖ ∀x, y ∈ X. (2.9)

Definition 2.5 [16]. Let η : X ×X → X∗ be a single-valued mapping. A set-valued map-
pingM : X → 2X is said to be

(i) η-accretive if for any x, y ∈ X ,

〈
u− v,η(x, y)

〉≥ 0, u∈M(x), v ∈M(y); (2.10)

(ii) strictly η-accretive if for any x, y ∈ X ,

〈
u− v,η(x, y)

〉≥ 0, u∈M(x), v ∈M(y), (2.11)

and equality holds if and only if x = y;
(iii) μ-strongly η-accretive if there exists a constant μ > 0 such that

〈
u− v,η(x, y)

〉≥ μ‖x− y‖2 ∀x, y ∈ X , u∈M(x), v ∈M(y); (2.12)

(iv) generalized m-accretive if M is η-accretive and (I + ρM)(X) = X for any ρ > 0,
where I is the identity mapping.

Remark 2.6. If X is a smooth Banach space, η(x, y) = J(x − y) for all x, y in X , then
Definition 2.5 reduces to the usual definitions of accretiveness of the set-valued mapping
M in smooth Banach spaces.

Lemma 2.7 [30]. Let X be a real Banach space and let J : X → 2X
∗
be the normalized duality

mapping. Then for any x, y ∈ X ,

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉 ∀ j(x+ y)∈ J(x+ y). (2.13)
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Lemma 2.8 [16]. Let η : X ×X → X be a strictly accretive mapping and letM : X → 2X be a
generalizedm-accretive mapping. Then the following conclusions hold:

(1) 〈x−y,η(u,v)〉≥0∀(y,v)∈graph(M) implies (x,u)∈graph(M), where graph(M)=
{(x,u)∈ X ×X : x ∈M(u)};

(2) the mapping (I + ρM)−1 is single-valued for any ρ > 0.

Based on Lemma 2.8, we can define the resolvent operator for a generalized m-accre-
tive mappingM as follows:

JMρ (z)= (I + ρM)−1(z) ∀z ∈ X , (2.14)

where ρ > 0 is a constant and η : X ×X → X∗ is a strictly accretive mapping.

Lemma 2.9 [16]. Let η : X ×X → X∗ be a δ-strongly accretive and τ-Lipschitz continuous
mapping. LetM : X → 2X be a generalizedm-accretive mapping. Then the resolvent operator
JMρ forM is τ/δ-Lipschitz continuous, that is,

∥∥JMρ (u)− JMρ (v)
∥∥≤ τ

δ
‖u− v‖ ∀u,v ∈ X. (2.15)

3. Variational inclusions

In this section, by using the resolvent operator for the generalized m-accretive mapping
and the results obtained in Section 2, we introduce and study a new class of general-
ized nonlinear set-valued quasivariational inclusion problem involving generalized m-
accretive mappings, and prove that its proximate solution converges strongly to its exact
solution in real Banach spaces.

Let S,T ,G : X → CB(X) andM(·,·) : X ×X → 2X be set-valuedmappings such that for
any given t ∈ X ,M(t,·) : X → 2X is a generalizedm-accretive mapping. Let g : X → X and
N(·,·) : X ×X → X be nonlinear mappings. For any f ∈ X , we consider the following
problem.

Find x ∈ X , w ∈ S(x), y ∈ T(x), z ∈G(x) such that

f ∈N(w, y) +M
(
z,g(x)

)
, (3.1)

which is called the generalized nonlinear set-valued quasivariational inclusion problem
involving generalizedm-accretive mappings.

Some special cases of problem (3.1) are as follows.
(I) If S,T ,G : X → X is a single-valuedmapping, then problem (3.1) reduced to find-

ing x ∈ X such that

f ∈N
(
S(x),T(x)

)
+M

(
G(x),g(x)

)
, (3.2)

which is called the nonlinear quasivariational inclusion problem.
(II) IfX=H is a Hilbert space and η(u,v)=u−v, then problem (3.1) becomes the usual

nonlinear quasivariational inclusion with a maximal monotone mappingM.

Remark 3.1. For a suitable choice of S, T , G, N , M, g, f , and the space X , a number
of known classes of variational inequalities (inclusion) and quasivariational inequalities
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(inclusion) can be obtained as special cases of generalized nonlinear set-valued quasivari-
ational inclusion (3.1).

Lemma 3.2. Problem (3.1) has a solution (x,w, y,z), where x ∈ X ,w ∈ S(x), y ∈ T(x),
z ∈G(x) if and only if (p,x,w, y,z), where p ∈ X , is a solution of implicit resolvent equation

p = g(x)− ρ
(
N(w, y)− f

)
, g(x)= JM(z,·)

ρ (p), (3.3)

where JM(z,·)
ρ = (I + ρM(z,·))−1 and ρ > 0 is a constant.

Proof. This directly follows from the definition of JM(z,·)
ρ . �

Now Lemma 3.2 and Nadler’s theorem [31] allow us to suggest the following iterative
algorithm.

Algorithm 3.3. Assume that S,T ,G : X → CB(X), andM(·,·) : X ×X → 2X are set-valued
mappings such that for any given t ∈ X ,M(t,·) : X → 2X is a generalized m-accretive map-
ping and g : X → X is a strongly accretive and Lipschitz continuous mapping. Let N(·,·) :
X × X → X be a nonlinear mapping. For any f ∈ X and for given p0 ∈ X , x0 ∈ X and
w0 ∈ S(x0), y0 ∈ T(x0), z0 ∈ G(x0), compute the sequences {pn}, {xn}, {wn}, {yn}, and
{zn} defined by the iterative schemes

g
(
xn
)= JM(zn,·)

ρ pn,

wn ∈ S
(
xn
)
,
∥∥wn−wn+1

∥∥≤ (1+ (1+n)−1
)
D
(
S
(
xn
)
,S
(
xn+1

))
,

yn ∈ T
(
xn
)
,
∥∥yn− yn+1

∥∥≤ (1+ (1+n)−1
)
D
(
T
(
xn
)
,T
(
xn+1

))
,

zn ∈G
(
xn
)
,
∥∥zn− zn+1

∥∥≤ (1+ (1+n)−1
)
D
(
G
(
xn
)
,G
(
xn+1

))
,

pn+1 = (1− λ)pn + λ
(
g
(
xn
)− ρN

(
wn, yn

)
+ ρ f

)
+ λen,

n= 0,1,2, . . . , (3.4)

where 0 < λ≤ 1 is a constant and en ∈ X is the errors while considering the approximation
in computation.

If S,T ,G : X → X are single-valued mappings, then Algorithm 3.3 can be degenerated
to the following algorithm for problem (3.2).

Algorithm 3.4. For any f ∈ X and for given p0 ∈ X , x0 ∈ X , we can obtain sequences
{pn}, {xn} satisfying

g
(
xn
)= JM(G(xn),·)

ρ pn,

pn+1 = (1− λ)pn + λ
(
g
(
xn
)− ρN

(
S
(
xn
)
,T
(
xn
))

+ ρ f
)
+ λen,

n= 0,1,2, . . . , (3.5)

where 0 < λ≤ 1 is a constant and en ∈ X is the errors while considering the approximation
in computation.

Remark 3.5. If we choose suitable S, T , G, N ,M, g, and the space X , then Algorithm 3.3
can be degenerated to a number of algorithm for solving variational inequalities (inclu-
sions).
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Theorem 3.6. Let X be a real Banach space. Let η : X × X → X∗ be δ-strongly accre-
tive and τ-Lipschitz continuous, let S,T ,G : X → CB(X) be α, β and γ-D-Lipschitz con-
tinuous, respectively, let g : X → X be k-strongly accretive and ξ-Lipschitz continuous. Let
N(·,·) : X ×X → X be r, t-Lipschitz continuous with respect to the first and second argu-
ments, respectively. LetM : X ×X → 2X be such that for each fixed t ∈ X ,M(t,·) is a gener-
alizedm-accretive mapping. Suppose that there exist constants ρ > 0 and μ > 0 such that for
each x, y,z ∈ X ,

∥∥JM(x,·)
ρ (z)− J

M(y,·)
ρ (z)

∥∥≤ μ‖x− y‖, (3.6)

ρ <

√
k+1.5−μ2γ2− bξ

b(rα+ tβ)
, bξ <

√
k+1.5−μ2γ2, b= τ

δ
, (3.7)

lim
n→∞

∥∥en∥∥= 0,
∞∑
n=0

∥∥en+1− en
∥∥ <∞. (3.8)

Then there exist p,x ∈ X , w ∈ S(x), y ∈ T(x), z ∈ G(x) satisfy the implicit resolvent equa-
tion (3.3) and the iterative sequences {pn}, {xn}, {wn}, {yn}, and {zn} generated by
Algorithm 3.3 converge strongly to p, x, w, y, and z in X , respectively.

Proof. From condition (3.6), Lemma 2.9, and γ-Lipschitz continuity of G, we have

∥∥JM(zn+1,·)
ρ pn+1− JM(zn,·)

ρ pn
∥∥

≤ ∥∥JM(zn+1,·)
ρ pn+1− JM(zn,·)

ρ pn+1
∥∥+∥∥JM(zn,·)

ρ pn+1− JM(zn,·)
ρ pn

∥∥
≤ μ
∥∥zn+1− zn

∥∥+ τ

δ

∥∥pn+1− pn
∥∥

≤ μγ
(
1+

1
n

)∥∥xn+1− xn
∥∥+ τ

δ

∥∥pn+1− pn
∥∥.

(3.9)

Since g is k-strongly accretive mapping, from Algorithm 3.3, Lemma 2.7, and (3.9), for
any j(xn+1− xn)∈ J(xn+1− xn), we have

∥∥xn+1− xn
∥∥2 = ∥∥xn+1− xn +

(
g
(
xn+1

)− g
(
xn
))− (JM(zn+1,·)

ρ pn+1− JM(zn,·)
ρ pn

)∥∥2
≤ ∥∥JM(zn+1,·)

ρ pn+1−JM(zn,·)
ρ pn

∥∥2−2〈g(xn+1)−g(xn)+xn+1−xn, j(xn+1−xn)〉
≤
(
μγ
(
1+

1
n

)∥∥xn+1− xn
∥∥+ τ

δ

∥∥pn+1− pn
∥∥)2

− 2
〈
g
(
xn+1

)− g
(
xn
)
, j
(
xn+1− xn

)〉− 2
〈
xn+1− xn, j

(
xn+1− xn

)〉
≤
(
2μ2γ2

(
1+

1
n

)2
− 2k− 2

)∥∥xn+1− xn
∥∥2 + 2

τ2

δ2
∥∥pn+1− pn

∥∥2,
(3.10)
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which implies

∥∥xn+1− xn
∥∥≤ b√

k+1.5−μ2γ2
(
1+ (1/n)

)2
∥∥pn+1− pn

∥∥, (3.11)

where b = τ/δ.
SinceN is r, t-Lipschitz continuous with respect to the first, second arguments, respec-

tively, S, T are α,β-Lipschitz continuous, respectively, and g is ξ-Lipschitz continuous, by
(3.4), we obtain

∥∥pn+2− pn+1
∥∥= ∥∥(1− λ)pn+1 + λ

[
g
(
xn+1

)− ρN
(
wn+1, yn+1

)
+ ρ f

]
+ λen+1−

{
(1− λ)pn + λ

[
g
(
xn
)− ρN

(
wn, yn

)
+ ρ f

]
+ λen

}∥∥
≤ (1− λ)

∥∥pn+1− pn
∥∥+ λ

∥∥g(xn+1)− g
(
xn
)∥∥

+ λρ
(∥∥N(wn+1, yn+1

)−N
(
wn, yn+1

)∥∥+∥∥N(wn, yn+1
)−N

(
wn, yn

)∥∥)
+ λ
∥∥en+1− en

∥∥≤ (1− λ)
∥∥pn+1− pn

∥∥
+ λ
[
ξ + ρ

(
1+

1
n

)
(rα+ tβ)

]∥∥xn+1− xn
∥∥+ λ

∥∥en+1− en
∥∥.

(3.12)

It follows from (3.11) and (3.12) that

∥∥pn+2− pn+1
∥∥≤

(
1− λ+

λb
[
ξ + ρ

(
1+ (1/n)

)(
rα+ tβ

)]
√
k+1.5−μ2γ2

(
1+ (1/n)

)2
)∥∥pn+1− pn

∥∥+ λ
∥∥en+1− en

∥∥

= [1− λ
(
1−hn

)]∥∥pn+1− pn
∥∥+ λ

∥∥en+1− en
∥∥

= θn
∥∥pn+1− pn

∥∥+ λ
∥∥en+1− en

∥∥,
(3.13)

where

θn = 1− λ
(
1−hn

)
, hn = b

[
ξ + ρ

(
1+ (1/n)

)
(rα+ tβ)

]
√
k+1.5−μ2γ2

(
1+ (1/n)

)2 . (3.14)

Letting

θ = 1− λ(1−h), h= b
[
ξ + ρ(rα+ tβ)

]
√
k+1.5−μ2γ2

, (3.15)

we know that hn → h and θn → θ as n→∞. It follows from (3.7) and 0 < λ ≤ 1 that 0 <
h < 1 and 0 < θ < 1, and so there exists a positive number θ∗ ∈ (0,1) such that θn < θ∗ for
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all n≥N . Therefore, for all n≥N , by (3.13), we now know that

∥∥pn+2− pn+1
∥∥≤ θ∗

∥∥pn+1− pn
∥∥+ λ

∥∥en+1− en
∥∥

≤ θ∗
(
θ∗
∥∥pn− pn−1

∥∥+ λ
∥∥en− en−1

∥∥)+ λ
∥∥en+1− en

∥∥
= θ2∗

∥∥pn− pn−1
∥∥+ λθ∗

∥∥en− en−1
∥∥+ λ

∥∥en+1− en
∥∥

≤ ··· ≤ θn+1−N∗
∥∥pN+1− pN

∥∥+ n+1−N∑
i=1

θi−1∗ λ
∥∥en+1−(i−1)− en+1−i

∥∥,
(3.16)

which implies that for anym> n > N , we have

∥∥pm− pn
∥∥≤ m−1∑

j=n

∥∥pj+1− pj

∥∥

≤
m−1∑
j=n

θ
j+1−N
∗

∥∥pN+1− pN
∥∥+m−1∑

j=n

j+1−N∑
i=1

θi−1∗ λ
∥∥en+1−(i−1)− en+1−i

∥∥.
(3.17)

Since 0 < λ ≤ 1 and θ∗ ∈ (0,1), it follows from (3.8) and (3.17) that limm,n→∞‖pm −
pn‖ = 0, and hence {pn} is a Cauchy sequence in X . Let pn → p as n→∞. From (3.11),
we know that sequence {xn} is also a Cauchy sequence in X . Let xn→ x as n→∞.

On the other hand, from the Lipschitzian continuity of S, T , G, and Algorithm 3.3, we
have

∥∥wn−wn+1
∥∥≤ (1+ 1

n+1

)
D
(
S
(
xn
)
,S
(
xn+1

))≤ (1+ 1
n+1

)
α
∥∥xn− xn+1

∥∥,
∥∥yn− yn+1

∥∥≤ (1+ 1
n+1

)
D
(
T
(
xn
)
,T
(
xn+1

))≤ (1+ 1
n+1

)
β
∥∥xn− xn+1

∥∥,
∥∥zn− zn+1

∥∥≤ (1+ 1
n+1

)
D
(
G
(
xn
)
,G
(
xn+1

))≤ (1+ 1
n+1

)
γ
∥∥xn− xn+1

∥∥.

(3.18)

Since {xn} is a Cauchy sequence, from (3.18), we know that {wn}, {yn}, and {zn} are also
Cauchy sequences. Let wn→w, yn→ y, and zn→ z as n→∞. From Algorithm 3.3,

pn+1 = (1− λ)pn + λ
(
g
(
xn
)− ρN

(
wn, yn

)
+ ρ f

)
+ λen. (3.19)

By the assumptions and limn→∞‖en‖ = 0, we have

p = g(x)− ρ
(
N(w, y)− f

)
,

g
(
xn
)= JM(zn,·)

ρ pn =⇒ g(x)= JM(z,·)
ρ p.

(3.20)

From (3.20), we have p, x, w, y, z satisfy the implicit resolvent equation (3.3).
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Now we will prove thatw ∈ S(x), y ∈ T(x), and z ∈G(x). In fact, since wn ∈ S(xn) and

d
(
wn,S(x)

)≤max

{
d
(
wn,S(x)

)
, sup
v∈S(x)

d
(
S
(
xn
)
,v
)}

≤max

{
sup

u∈S(xn)

(
u,S(x)

)
, sup
v∈S(x)

d
(
S
(
xn
)
,v
)}

=D
(
S
(
xn
)
,S(x)

)
,

(3.21)

we have

d
(
w,S(x)

)≤ ∥∥w−wn

∥∥+d
(
wn,S(x)

)≤ ∥∥w−wn

∥∥+D
(
S
(
xn
)
,S(x)

)
≤ ∥∥w−wn

∥∥+ γ
∥∥xn− x

∥∥−→ 0.
(3.22)

This implies that w ∈ S(x). Similarly, we know that y ∈ T(x) and z ∈ G(x). This com-
pletes the proof. �

If S,T ,G : X → X are single-valued mappings, then Theorem 3.6 can be degenerated to
the following theorem.

Theorem 3.7. Let X , g, η, N(·,·), M(·,·) be the same as in Theorem 3.6, and let S,T ,G :
X → X be α,β,γ-Lipschitz continuous single-valued mappings, respectively. If conditions
(3.6)–(3.8) hold, then the sequences {xn} generated by Algorithm 3.4 converges strongly to
the unique solution x of problem (3.2).

Proof. By Theorem 3.6, problem (3.2) has a solution x ∈ X and xn → x as n→∞. Now
we prove that x is a unique solution of problem (3.2). Let x∗ ∈ X be another solution of
problem (3.2). Then

g
(
x∗
)= JM(G(x∗),·)

ρ m
(
x∗
)
, m

(
x∗
)= g

(
x∗
)− ρ

(
N
(
S
(
x∗
)
,T
(
x∗
))− f

)
. (3.23)

We have

∥∥x− x∗
∥∥2 = ∥∥x− x∗ +

(
g(x)− g

(
x∗
))− (JM(G(x),·)

ρ m(x)− JM(G(x∗),·)
ρ m

(
x∗
))∥∥2

≤ ∥∥JM(G(x),·)
ρ m(x)− JM(G(x∗),·)

ρ m
(
x∗
)∥∥2− 2

〈
g(x)− g

(
x∗
)
+ x− x∗, j

(
x− x∗

)〉
≤ (∥∥JM(G(x),·)

ρ m(x)− JM(G(x∗),·)
ρ m(x)

∥∥+∥∥JM(G(x∗),·)
ρ m(x)− JM(G(x∗),·)

ρ m
(
x∗
)∥∥)2

− 2
〈
g(x)− g

(
x∗
)
, j
(
x− x∗

)〉− 2
〈
x− x∗, j

(
x− x∗

)〉

≤
(
μ
∥∥G(x)−G

(
x∗
)∥∥+ τ

δ

∥∥m(x)−m
(
x∗
)∥∥)2− 2(k+1)

∥∥x− x∗
∥∥2

≤ 2
(
μ2γ2− k− 1

)∥∥x− x∗
∥∥2 + 2

τ2

δ2
∥∥m(x)−m

(
x∗
)∥∥2.

(3.24)
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This implies that

∥∥x− x∗
∥∥≤ b√

k+1.5−μ2γ2

∥∥m(x)−m
(
x∗
)∥∥, (3.25)

where b = τ/δ. Furthermore,∥∥m(x)−m
(
x∗
)∥∥= ∥∥g(x)− g

(
x∗
)− ρ

(
N
(
S(x),T(x)

)−N
(
S
(
x∗),T

(
x∗
)))∥∥

≤ ∥∥g(x)− g
(
x∗
)∥∥+ ρ

(∥∥N(S(x),T(x))−N
(
S
(
x∗
)
,T(x)

)∥∥
+
∥∥N(S(x∗),T(x))−N

(
S
(
x∗
)
,T
(
x∗
))∥∥)

≤ [ξ + ρ(rα+ tβ)
]∥∥x− x∗

∥∥.
(3.26)

Combining (3.25) and (3.26), we have

∥∥x− x∗
∥∥≤ b

[
ξ + ρ(rα+ tβ)

]
√
k+1.5−μ2γ2

∥∥x− x∗
∥∥= h

∥∥x− x∗
∥∥, (3.27)

where

h= b
[
ξ + ρ(rα+ tβ)

]
√
k+1.5−μ2γ2

. (3.28)

It follows from (3.7) that 0 < h < 1 and so x = x∗. This completes the proof. �
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