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1. Introduction

A capital letter (such as T) means a bounded linear operator on a complex Hilbert space
�. For p > 0, an operator T is said to be p-hyponormal if (T∗T)p ≥ (TT∗)p, where T∗

is the adjoint operator of T . An invertible operator T is said to be log-hyponormal if
log(T∗T)≥ log(TT∗). If p = 1, T is called hyponormal, and if p = 1/2 T is called semi-
hyponormal. Log-hyponormality is sometimes regarded as 0-hyponormal since (Xp −
1)/p→ logX as p→ 0 for X > 0.

See Martin and Putinar [1] and Xia [2] for basic properties of hyponormal and semi-
hyponormal operators. Log-hyponormal operators were introduced by Tanahashi [3],
Aluthge and Wang [4], and Fujii et al. [5] independently. Aluthge [6] introduced p-
hyponormal operators.

As generalizations of p-hyponormal and log-hyponormal operators, many authors in-
troducedmany classes of operators. Aluthge andWang [4] introducedw-hyponormal op-
erators defined by | ˜T| ≥ |T| ≥ |( ˜T)∗|, where the polar decomposition of T is T =U|T|
and ˜T = |T|1/2U|T|1/2 is called Aluthge transformation of T . For p > 0 and r > 0, Ito [7]
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introduced class wA(p,r) defined by

(
∣

∣T∗
∣

∣

r|T|2p∣∣T∗∣∣r
)r/(p+r) ≥ ∣∣T∗∣∣2r ,

(

|T|p∣∣T∗∣∣2r|T|p
)s/(p+r) ≤ |T|2p. (1.1)

Note that the two exponents r/(p+ r) and p/(p+ r) in the formula above satisfy r/
(p+ r) + p/(p+ r)= 1, Yang and Yuan [8] introduced class wF(p,r,q).

Definition 1.1 (see [8, 9]). For p > 0, r > 0, and q ≥ 1, an operatorT belongs to classwF(p,
r,q) if

(

|T∗∣∣r|T|2p∣∣T∗∣∣r
)1/q≥∣∣T∗∣∣2(p+r)/q, |T|2(p+r)(1−1/q) ≥

(

|T|p∣∣T∗∣∣2r|T|p
)(1−1/q)

.

(1.2)

Denote (1− q−1)−1 by q∗ when q > 1 because q and (1− q−1)−1 are a couple of conju-
gate exponents. It is clear that class wA(p,r) equals class wF(p,r, (p+ r)/r).

w-hyponormality equals wA(1/2,1/2) [7]. Ito and Yamazaki [10] showed that class
wA(p,r) coincides with class A(p,r) (introduced by Fujii et al. [11]) for each p > 0 and
r > 0. Consequently, class wA(1,1) equals class A (i.e., |T2| ≥ |T|2, introduced by Fu-
ruta et al. [12]). Reference [9] showed that class wF(p,r,q) coincides with class F(p,r,q)
(introduced by Fujii and Nakamoto [13]) when rq ≤ p+ r.

Recently, there are great developments in the spectral theory of the classes of operators
above. We cite [8, 14–22]. In this paper, we will discuss several spectral properties of class
wF(p,r,q) for p > 0, r > 0, p+ r ≤ 1, and q ≥ 1.

In Section 2, we prove that Riesz idempotent Eλ of T with respect to each nonzero iso-
lated point spectrum λ is selfadjoint and Eλ� = ker(T − λ) = ker(T − λ)∗. In Section 3,
we will show that each classwF(p,r,q) operator has SVEP (single-valued extension prop-
erty) and Bishop’s property (β). In Section 4, we show that Weyl’s theorem holds for class
wF(p,r,q).

2. Riesz idempotent

Let σ(T), σp(T), σjp(T), σa(T), σja(T), and σr(T) mean the spectrum, point spectrum,
joint point spectrum, approximate point spectrum, joint approximate point spectrum,
and residual spectrum of an operator T , respectively (cf. [8, 23]). σXiar (T) and σiso(T)
mean the set σ(T)− σa(T) and the set of isolated points of σ(T), see [23, 2].

If λ∈ σiso(T), the Riesz idempotent Eλ of T with respect λ is defined by

Eλ =
∫

∂�
(z−T)−1dz, (2.1)

where � is an open disk which is far from the rest of σ(T) and ∂� means its boundary.
Stampfli [24] showed that if T is hyponormal, then Eλ is selfadjoint and Eλ� = ker(T −
λ) = ker(T − λ)∗. The recent developments of this result are shown in [16, 17, 20, 22],
and so on.

In this section, it is shown that when λ �= 0, this result holds for class wF(p,r,q) with
p + r ≤ 1 and q ≥ 1. It is always assumed that λ ∈ σiso(T) when the idempotent Eλ is
considered.
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Theorem 2.1. Let T belong to class wF(p,r,q) with p+ r ≤ 1, λ= |λ|eiθ ∈�, and λp+r =
|λ|p+reiθ , then the following assertions hold.

(1) If λ �= 0, then Eλ = Eλ(p,r) and Eλ� = ker(T − λ) = ker(T − λ)∗, where Eλ(p,r)
is the Riesz idempotent of T(p,r) = |T|pU|T|r (the generalized Aluthge transfor-
mation of T) with respect to λp+r .

(2) If λ= 0, then kerT = E0�= E0(p,r)�= ker(T(p,r)).

Reference [21] gave an example that the operator T is w-hyponormal, E0 is not selfad-
joint, and kerT �= kerT∗.

An operator T is said to be isoloid if σiso(T)⊆ σp(T), is said to be reguloid if (T − λ)�,
is closed for each λ∈ σiso(T).

Theorem 2.2. If T belongs to classwF(p,r,q) with p+ r ≤ 1, then T is isoloid and reguloid.

To give proofs, we prepare the following results.

Theorem 2.3 (see [14]). Let λ �= 0, and let {xn} be a sequence of vectors. Then the following
assertions are equivalent.

(1) (T − λ)xn→ 0 and (T∗ − λ)xn→ 0.
(2) (|T|− |λ|)xn→ 0 and (U − eiθ)xn→ 0.
(3) (|T|∗ − |λ|)xn→ 0 and (U∗ − e−iθ)xn→ 0.

Theorem 2.4 (see [8]). If T is a class wF(p,r,q) operator for p+ r ≤ 1 and q ≥ 1, then the
following assertions hold.

(1) If Tx = λx, λ �= 0, then T∗x = λx.
(2) σa(T)−{0} = σja(T)−{0}.
(3) If Tx = λx, Ty = μy and λ �= μ, then (x, y)= 0.

Theorem 2.5 (see [9]). If T is a class wF(p,r,q) operator, then there exists α0 > 0, which
satisfies

∣

∣T(p,r)
∣

∣

2α0 ≥ |T|2α0(p+r) ≥ ∣∣(T(p,r))∗∣∣2α0 . (2.2)

Lemma 2.6. IfT belongs to classwF(p,r,q) for p+ r≤1, λ=|λ|eiθ∈�, and λp+r=|λ|p+reiθ ,
then ker(T − λ)= ker(T(p,r)− λp+r).

Proof. Weonly prove ker(T − λ)⊇ ker(T(p,r)− λp+r) because ker(T − λ)⊆ ker(T(p,r)−
λp+r) is obvious by Theorems 2.3-2.4.

If λ �= 0, let 0 �= x ∈ ker(T(p,r)− λp+r). By Theorem 2.5, T(p,r) is α0-hyponormal and
we have

∣

∣T(p,r)
∣

∣x = |λ|p+rx = ∣∣(T(p,r))∗∣∣x,
∣

∣T(p,r)
∣

∣

2α0 −∣∣(T(p,r))∗∣∣2α0 ≥ ∣∣T(p,r)∣∣2α0 −|T|2α0(p+r) ≥ 0.
(2.3)

Hence (|T(p,r)|2α0 −|T|2α0(p+r))x = 0,

∥

∥|T|2α0(p+r)x−|λ|2α0(p+r)x∥∥

≤ ∥∥|T|2α0(p+r)x−∣∣T(p,r)∣∣2α0x∥∥+∥∥∣∣T(p,r)∣∣2α0x−|λ|2α0(p+r)x∥∥= 0.
(2.4)
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On the other hand, (T(p,r))∗x = |λ|p+re−iθx implies that |T|rU∗x = |λ|re−iθx, T∗ =
|λ|e−iθx. Therefore,

∥

∥(T − λ)x
∥

∥

2 = ‖Tx‖2− λ(x,Tx)− λ(Tx,x) + |λ|2‖x‖2

= ∥∥|T|x∥∥2− λ
(

T∗x,x
)− λ

(

x,T∗x
)

+ |λ|2‖x‖2 = 0.
(2.5)

If λ= 0, let 0 �= x ∈ kerT(p,r), then x ∈ ker|T| = kerT by Theorem 2.5 so that ker(T
− λ)⊇ ker(T(p,r)− λp+r). �

Lemma 2.7 (see [18, 25]). If A is normal, then for every operator B, σ(AB)= σ(BA).

Let � be the set of all strictly monotone increasing continuous nonnegative functions
on �+ = [0,∞). Let �0 = {Ψ∈� :Ψ(0)= 0}. For Ψ∈�0, the mapping ˜Ψ is defined by
˜Ψ(ρeiθ)= eiθΨ(ρ) and ˜Ψ(T)=UΨ(|T|).

Theorem 2.8 (see [26]). If Ψ∈�0, then for every operator T , σja(˜Ψ(T))= ˜Ψ(σja(T)).
Lemma 2.9. Let T belong to class wF(p,r,q) with p + r ≤ 1, λ = |λ|eiθ ∈ �, T(t) =
U|T|1−t+t(p+r), and τt(ρeiθ)= eiθρ1+t(p+r−1), where t ∈ [0,1]. Then

σa
(

T(t)
)= τt

(

σa(T)
)

, σXiar

(

T(t)
)= τt

(

σXiar (T)
)

, σ
(

T(t)
)= τt

(

σ(T)
)

. (2.6)

Proof. We only need to show that σa(T(t)) = τt(σa(T)) by homotopy property of the
spectrum [2, page 19].

Since T belongs to class wF(p,r,q) with p + r ≤ 1, T(t) belongs to class wF(p/(1 +
t(p+ r − 1)),r/(1+ t(p+ r − 1),q)) with p/(1+ t(p+ r − 1)) + r/(1+ t(p+ r − 1))≤ 1. By
Theorems 2.4(2) and 2.8,

σa
(

T(t)
)−{0} = σja

(

T(t)
)−{0} = τt

(

σja(T)−{0}
)= τt

(

σa(T)
)−{0}. (2.7)

On the other hand, if 0∈ σa(T), then there exists a sequence {xn} of unit vectors such
that U|T|xn→ 0. Hence |T|xn =U∗U|T|xn→ 0, so that |T|1/(2m)xn→ 0 for each positive
integerm by induction. Take a positive integerm(t) such that 1/(2m(t))≤ 1+ t(p+ r− 1),
then

|T|1+t(p+r−1)xn = |T|1+t(p+r−1)−1/(2m(t))|T|1/(2m(t))xn −→ 0 (2.8)

and 0 ∈ σa(T(t)). It is obvious that if 0 ∈ σa(T(t)), then 0 ∈ σa(T) because of p + r ≤ 1.
Therefore σa(T(t))= τt(σa(T)). �

Theorem 2.10 (see [15]). If T is p-hyponormal or log-hyponormal, then Eλ is selfadjoint
and Eλ�= ker(T − λ)= ker(T − λ)∗.

Riesz and Sz.-Nagy [27] gave the the formula Eλ�= {x ∈� : ‖(T − λ)nx‖1/n→ 0}.
Lemma 2.11. For any operator T , |T|p ker(T − λ)⊆ |T|pEλ�⊆ Eλ(p,r)� for p+ r = 1.
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Proof. Let x ∈ Eλ, by the formula above we have

∥

∥

(

T(p,r)− λ
)n|T|px∥∥1/n = ∥∥|T|p(T − λ)nx

∥

∥

1/n −→ 0. (2.9)

Hence |T|px ∈ Eλ(p,r)�. �

Lemma 2.12. If T belongs to class wF(p,r,q) with p+ r ≤ 1, then

kerT = E0�= E0(p,r)�= ker
(

T(p,r)
)

. (2.10)

Note that λp+r∈σiso(T(t)) if λ∈σiso(T) by Lemma 2.9, so the notion E0(p,r) in Lemma
2.11 is reasonable.

Proof. Since T(p,r) is α0-hyponormal by Theorem 2.5, we only need to prove that E0�⊆
E0(p,r)� for E0� ⊇ E0(p,r)� holds by Lemma 2.6 and Theorem 2.10. We may also as-
sume that p+ r = 1 by Lemma 2.6.

It follows from Lemma 2.11 that

|T|pE0(p,r)�⊆ |T|pE0�⊆ E0(p,r)�, (2.11)

thus E0(p,r)� is reduced by |T|p.
Let x ∈ E0� and x = x1 + x2 ∈ E0(p,r)�⊕ (E0(p,r)�)⊥. Then |T|px ∈ |T|pE0� ⊆

E0(p,r)�, |T|px1 ∈ E0(p,r)�, |T|px2 ∈ (E0(p,r)�)⊥ by (2.11), and E0(p,r)� is reduced
by |T|p.

Thus |T|px2=|T|px− |T|px1∈E0(p,r)�, |T|px2∈E0(p,r)�∩(E0(p,r)�)⊥ so that
x2 ∈ ker|T|p ⊆ ker(T(p,r))= E0(p,r)�, x ∈ E0(p,r)�. �

Proof of Theorem 2.1. We only need to prove (1) for (2) holds by Lemma 2.12.
Since σ(T(p,r))= σ(U|T|p+r)= {eiθρp+r : eiθρ∈ σ(T)} by Lemmas 2.7 and 2.9, λp+r ∈

σiso(T(p,r)). Hence

(

Eλ(p,r)�
)⊥ = ker

(

Eλ(p,r)
)= (I −Eλ(p,r)

)

� (2.12)

by Theorem 2.10, so λp+r �∈ σ(T(p,r)|(Eλ(p,r)�)⊥). By Theorem 2.4(1) and Lemma 2.6, we
have T = λ⊕T22 on �= Eλ(p,r)�⊕ (Eλ(p,r)�)⊥, where T22 = T|(ker(T−λ))⊥ .

Since ker(T − λ) is reduced by T , T22 also belongs to class wF(p,r,q) and T22(p,r)=
T(p,r)|(Eλ(p,r)�)⊥ so that λ �∈ σ(T22) because λp+r �∈σ(T22(p,r)). HenceT − λ= 0⊕ (T22−
λ) and ker(T − λ)∗ = ker(T − λ)⊕ ker(T22− λ)∗ = ker(T − λ).

Meanwhile, Eλ =
∫

∂�(z− λ)−1⊕ (z−T22)−1dz = 1⊕ 0= Eλ(p,r). �

Proof of Theorem 2.2. We only need to prove that T is reguloid for T being isoloid follows
by Theorem 2.1 easily.

If λ∈ σiso(T), then �= Eλ�+ (I −Eλ)�, where Eλ�, and (I −Eλ)� are topologically
complemented [28, page 94]. By T = T|Eλ� + T|(I−Eλ)� on � = Eλ� + (I − Eλ)� and
Theorem 2.1, we have

(T − λ)�= (T∣∣(I−Eλ)�− λ
)(

I −Eλ
)

�. (2.13)

Therefore (T − λ)� is closed because σ(T|(I−Eλ)�)= σ(T)−{λ}. �
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3. SVEP and Bishop’s property (β)

Definition 3.1. An operator T is said to have SVEP at λ∈� if for every open neighbor-
hood G of λ, the only function f ∈H(G) such that (T − λ) f (μ) = 0 on G is 0 ∈H(G),
where H(G) means the space of all analytic functions on G.

When T have SVEP at each λ∈�, say that T has SVEP.

This is a good property for operators. If T has SVEP, then for each λ ∈ �, λ− T is
invertible if and only if it is surjective (cf. [29, 18]).

Definition 3.2. An operator T is said to have Bishop’s property (β) at λ ∈ � if for every
open neighborhood G of λ, the function fn ∈H(G) with (T − λ) fn(μ)→ 0 uniformly on
every compact subset of G implies that fn(μ)→ 0 uniformly on every compact subset
of G.

When T has Bishop’s property (β) at each λ∈�, simply say that T has property (β).

This is a generalization of SVEP and it is introduced by Bishop [30] in order to develop
a general spectral theory for operators on Banach space.

Theorem 3.3. Let p and r be positive numbers. If p+ r = 1, then T has SVEP if and only
if T(p,r) has SVEP, T has property (β) if and only if T(p,r) has property (β). In particular,
every class wF(p,r,q) operator T with p+ r ≤ 1 has SVEP and property (β).

This result is a generalization of [18]. Lemma 3.4 and the relations between T and its
transformation T(p,r) are important:

T(p,r)|T|p = |T|pU|T|r|T|p = |T|pT ,
U|T|rT(p,r)=U|T|r|T|pU|T|r = TU|T|r . (3.1)

Lemma 3.4 (see [18]). Let G be open subset of complex plane � and let fn ∈ H(G) be
functions such that μ fn(μ)→ 0 uniformly on every compact subset of G, then fn(μ)→ 0
uniformly on every compact subset of G.

Proof of Theorem 3.3. We only prove that T has property (β) if and only if T(p,r) has
property (β) because the assertion that T has SVEP if and only if T(p,r) has SVEP can be
proved similarly.

Suppose that T(p,r) has property (β). Let G be an open neighborhood of λ and let
fn ∈H(G) be functions such that (μ−T) fn(μ)→ 0 uniformly on every compact subset of
G. By (3.1), (T(p,r)− μ)|T|p fn(μ)= |T|p(T − μ) fn(μ)→ 0 uniformly on every compact
subset of G. Hence T fn(μ)=U|T|r|T|p fn(μ)→ 0 uniformly on every compact subset of
G for T(p,r) has property (β), so that μ fn(μ)→ 0 uniformly on every compact subset of
G, and T having property (β) follows by Lemma 3.4.

Suppose that T has property (β). Let G be an open neighborhood of λ and let fn ∈
H(G) be functions such that (μ−T(p,r)) fn(μ)→ 0 uniformly on every compact subset
of G. By (3.1), (μ−T)(U|T|r fn(μ)) = U|T|r(μ−T(p,r)) fn(μ)→ 0 uniformly on every
compact subset of G. Hence T(p,r) fn(μ)→ 0 uniformly on every compact subset of G
for T has property (β) so that μ fn(μ)→ 0 uniformly on every compact subset of G, and
T(p,r) having property (β) follows by Lemma 3.4. �
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4. Weyl spectrum

For a Fredholm operator T , indT means its (Fredholm) index. A Fredholm operator T is
said to be Weyl if indT = 0.

Let σe(T), σw(T), and π00(T) mean the essential spectrum, Weyl spectrum, and the set
of all isolated eigenvalues of finite multiplicity of an operator T , respectively (cf. [28, 17]).

According to Coburn [31], we say that Weyl’s theorem holds for an operator T if
σ(T)− σw(T)= π00(T). Very recently, the theorem was shown to hold for several classes
of operators including w-hyponormal operators and paranormal operators (cf. [17, 32,
20]).

In this section, we will prove that Weyl’s theorem and Weyl spectrum mapping theo-
rem hold for class wF(p,r,q) operator T with p + r ≤ 1. We also assume that p + r = 1
because of the inclusion relations among class wF(p,r,q) [9].

Theorem 4.1. Let T belong to class wF(p,r,q) with p+ r = 1 and letH(σ(T)) be the space
of all functions f analytic on some open set G containing σ(T), then the following assertions
hold.

(1) Weyl’s theorem holds for T .
(2) σw( f (T))= f (σw(T)) when f ∈H(σ(T)).
(3) Weyl’s theorem holds for f (T) when f ∈H(σ(T)).

This is a generalization of the related assertions of [17].

Theorem 4.2. Let T belong to class wF(p,r,q) with p+ r = 1, then the following assertions
hold.

(1) Ifm2(σ(T))= 0 wherem2 means the planar Lebesgue measure, then T is normal.
(2) If σw(T)= 0, then T is compact and normal.

Theorem 4.2(1) is a generalization of [26] and (2) is a generalization of [24].
To give proofs, the following results are needful.

Theorem 4.3 [9]. Let p > 0, r > 0, and q ≥ 1, s≥ p, t ≥ r. If T is a classwF(p,r,q) operator
and T(s, t) is normal, then T is normal.

Lemma 4.4. If T belongs to class wF(p,r,q) with p+ r = 1 and is Fredholm, then indT ≤ 0.

This result can be regarded as a good complement of Theorem 2.1.

Proof. Since T is Fredholm, |T|p is also Fredholm and ind(|T|p)= 0. By (3.1),

indT = ind
(|T|pT)= ind

(

T(p,r)|T|p)= ind
(

T(p,r)
)

. (4.1)

Hence, indT ≤ 0 for ind(T(p,r))≤ 0 by Theorem 2.5. �

Proof of Theorem 4.1. (1) Let λ∈ σ(T)− σw(T), then T − λ is Fredholm, ind(T − λ)= 0,
and dimker(T − λ) > 0.
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If λ is an interior point of σ(T), there would be an open subset G⊆ σ(T) including λ
such that ind(T −μ)= ind(T − λ)= 0 for all μ∈G [28, page 357]. So dimker(T −μ) > 0
for all μ∈ G, this is impossible for T has SVEP by Theorem 3.3 [29, Theorem 10]. Thus
λ∈ ∂σ(T)− σw(T), λ∈ σiso(T) by [28, Theorem 6.8, page 366], and λ∈ π00(T) follows.

Let λ ∈ π00(T), then the Riesz idempotent Eλ has finite rank by Theorem 2.1, and
λ∈ σ(T)− σw(T) follows.

(2) We only need to prove that σw( f (T)) ⊇ f (σw(T)) since σw( f (T)) ⊆ f (σw(T)) is
always true for any operators.

Assume that f ∈ H(σ(T)) is not constant. Let λ �∈ σw( f (T)) and f (z)− λ = (z −
λ1)···(z− λk)g(z), where {λi}k1 are the zeros of f (z)− λ in G (listed according to multi-
plicity) and g(z) �= 0 for each z ∈G. Thus

f (T)− λ= (T − λ1
)···(T − λk

)

g(T). (4.2)

Obviously, λ∈ f (σw(T)) if and only if λi ∈ σw(T) for some i. Next we prove that λi �∈
σw(T) for every i∈ {1, . . . ,k}, thus λ �∈ f (σw(T)) and σw( f (T))⊇ f (σw(T)).

In fact, for each i, T − λi is also Fredholm because f (T)− λ is Fredholm. By Theorem
2.1 and Lemma 4.4, ind(T − λi) ≤ 0 for each i. Since 0 = ind( f (T)− λ) = ind(T − λ1) +
···+ ind(T − λk), ind(T − λi)= 0 and λi �∈ σw(T) for each i.

(3) By Theorem 2.2, T is isoloid and it follows from [33] that

σ
(

f (T)
)−π00

(

f (T)
)= f

(

σ(T)−π00(T)
)

. (4.3)

On the other hand, f (σ(T)−π00(T))= f (σw(T))= σw( f (T)) by (1)-(2). The proof is
complete. �

Proof of Theorem 4.2. (1) By α0-hyponormality of T(p,r) and Putnam’s inequality for
α0-hyponormal operators [26], T(p,r) is normal. Hence, (1) follows by Theorem 4.3.

(2) Since σw(T) = 0, σ(T) − {0} = π00(T) ⊆ σiso(T) by Theorem 4.1(1). Hence
m2(σ(T))= 0 and T is normal by (1).

Next to prove that T is compact, we may assume that σ(T)−{0} is a countable infinite
set for σ(T)−{0} ⊆ σiso(T). Let σ(T)−{0} = {λn}∞1 with |λ1| ≥ |λ2| ≥ ··· ≥ 0 and λ0 =
limn→∞ |λn|, then λ0 = 0. Since every Eλn has finite rank by Theorems 2.1 and 4.1, for
every ε > 0,

⊕

|λn|>ε Eλn also has finite rank. Therefore T is compact [28, page 271]. �
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[15] M. Chō and K. Tanahashi, “Isolated point of spectrum of p-hyponormal, log-hyponormal op-
erators,” Integral Equations and Operator Theory, vol. 43, no. 4, pp. 379–384, 2002.
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