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Let i be a nonnegative Radon measure on R¢ which satisfies the growth condition that
there exist constants Cy >0 and n € (0,d] such that for all x € R¢ and r > 0, u(B(x,7)) <
Cor", where B(x,r) is the open ball centered at x and having radius r. In this paper, the
authors establish the uniform boundedness for approximations of the identity introduced
by Tolsa in the Hardy space H'(u) and the BLO-type space RBLO (u). Moreover, the
authors also introduce maximal operators s (homogeneous) and Jl; (inhomogeneous)
associated with a given approximation of the identity S, and prove that J(; is bounded
from H' () to L'(x) and JM; is bounded from the local atomic Hardy space h.p (u) to
L'(u). These results are proved to play key roles in establishing relations between H'(u)
and hl;ff (4), BMO-type spaces RBMO (y) and rbmo (u) as well as RBLO (¢) and rblo

(@), and also in characterizing rbmo () and rblo (y).
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1. Introduction

Recall that a nondoubling measure 4 on R? means that y is a nonnegative Radon measure
which only satisfies the following growth condition, namely, there exist constants Cy >0
and n € (0,d] such that for all x € R? and r > 0,

#(B(x,r)) < Cor", (1.1)

where B(x,r) is the open ball centered at x and having radius r. Such a measure ¢ is not
necessary to be doubling, which is a key assumption in the classical theory of harmonic
analysis. In recent years, it was shown that many results on the Calderén-Zygmund theory
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remain valid for nondoubling measures; see, for example, [1-9]. One of the main moti-
vations for extending the classical theory to the nondoubling context was the solution
of several questions related to analytic capacity, like Vitushkin’s conjecture or Painlevé’s
problem; see [10-12] or survey papers [13-16] for more details.

In particular, Tolsa [8] constructed a class of approximations of the identity and used
it to develop a Littlewood-Paley theory with nondoubling measures in L?(y) with p €
(1,00) and establish some T'(1) theorems. The main purpose of this paper is to investi-
gate behaviors of approximations of the identity and some kind of maximal operators
associated with it at the extremal cases, namely, when p = 1 or p = co. To be precise, in
this paper, we first establish the uniform boundedness for approximations of the identity
in the Hardy space H!(u) of Tolsa [7, 9] and the BLO-type space RBLO(y) of Jiang [1],
respectively. We then introduce the homogeneous maximal operator .ils and inhomoge-
neous maximal operator Jls and prove that JAlg is bounded from H! () to L' () and s
is bounded from the local atomic Hardy space h;;ff () to L' (u). These results are proved
in [17] to play key roles in establishing relations between H'(x) and h.; (1), BMO-type
spaces RBMO(y) and rbmo(y) as well as BLO-type spaces RBLO(y) and rblo(u), and
also in characterizing rbmo(u) and rblo(u). An interesting open problem is if H!(u) and
h;{f (u) can be characterized by Ag and Mg, respectively.

The organization of this paper is as follows. In Section 2, we recall some necessary
definitions and notation, including the definitions and characterizations of the spaces
H'(u), RBLO(y), h;;ff (@), and approximations of the identity. Section 3 is devoted to
prove that approximations of the identity are uniformly bounded on H' (4) and RBLO(u).
In Section 4, we introduce the homogeneous maximal operator .ils and the inhomoge-
neous maximal operator Jls associated with a given approximation of the identity S,
and prove that .ils is bounded from H'(x) to L'(x) and Jls is bounded from h;;{f (1)
to L' (p).

Since the approximation of the identity in [8] strongly depends on “dyadic” cubes
constructed by Tolsa in [8, 9], it is expectable that properties of these “dyadic” cubes
will play a key role in the proofs of all these results in this paper. In [17], we introduce
a quantity on these “dyadic” cubes, which further clarifies the geometric properties of
“dyadic” cubes of Tolsa in [8, 9]; see Lemma 2.18 below. These properties together with
some known properties of “dyadic” cubes (see, e.g., [8, Lemmas 3.4 and 4.2]) indeed play
key roles in the whole paper.

We finally make some convention. Throughout the paper, we always denote by C a
positive constant which is independent of the main parameters, but it may vary from line
to line. Constant with subscript such as C; does not change in different occurrences. The
notation Y < Z means that there exists a constant C >0 such that Y < CZ, while Y 2 Z
means that there exists a constant C > 0 such that Y > CZ. The symbol A ~ B means that
A < B < A. Moreover, for any D C R9, we denote by y, the characteristic function of D.
We also set N = {1,2,...}.

2. Preliminaries

Throughout this paper, by a cube Q C R, we mean a closed cube whose sides are parallel
to the axes and centered at some point of supp(y), and we denote its side length by /(Q)
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and its center by xq. If u(R9) < o0, we also regard R? as a cube. Let a, 8 be two positive
constants, a € (1,00) and f € (a", ). We say that a cube Q is an (a, 8)-doubling cube if
it satisfies p(aQ) < Pu(Q), where and in what follows, given A > 0 and any cube Q, AQ
denotes the cube concentric with Q and having side length A/(Q). It was pointed out by
Tolsa (see [7, pages 95-96] or [8, Remark 3.1]) that if > a”, then for any x € supp(y)
and any R > 0, there exists some (a, 3)-doubling cube Q centered at x with /(Q) > R, and
that if § > a?, then for y-almost everywhere x € RY, there exists a sequence of (a,f3)-
doubling cubes {Qx}ken centered at x with [(Qx) — 0 as k — co. Throughout this paper,
by a doubling cube Q, we always mean a (2,2%+1)-doubling cube. For any cube Q, let Q
be the smallest doubling cube which has the form 2kQ with k e N U {0}.

Given two cubes Q, R C R?, let xq be the center of Q, and Qg be the smallest cube
concentric with Q containing Q and R. The following coefficients were first introduced
by Tolsa in [7]; see also [8, 9].

Definition 2.1. Given two cubes Q,R C R%, we define

8(Q,R)=max{JQ 1 g (x),J ld,u(x)}. @2.1)

nQ |x—xq|" # Ro\R |x—xg|"

We may treat points x € R as if they were cubes (with side length I(x) = 0). So, for
any x, y € R¥ and cube Q C R, the notation §(x, Q) and 8(x, y) make sense.
We now recall the notion of cubes of generations in [8, 9].

Definition 2.2. We say that x € R? is a stopping point (or stopping cube) if §(x,Q) < o
for some cube Q > x with 0 < [(Q) < co. We say that R¥ is an initial cube if §(Q,R?) < o
for some cube Q with 0 < [(Q) < . The cubes Q such that 0 < [(Q) < oo are called transit
cubes.

Remark 2.3. In [8, page 67], it was pointed out that if §(x, Q) < o for some transit cube
Q containing x, then §(x,Q") < co for any other transit cube Q' containing x. Also, if
8(Q,R%) < oo for some transit cube Q, then §(Q’,R¥) < oo for any transit cube Q'.

Let A be some big positive constant. In particular, we assume that A is much bigger
than the constants €, €;, and yy, which appear, respectively, in [8, Lemmas 3.1, 3.2, and
3.3]. Moreover, the constants A, €, €1, and yy depend only on Cy, 1, and d. In what
follows, for € >0 and a,b € R, the notation a = b + € does not mean any precise equality
but the estimate |a — b| < €.

Definition 2.4. Assume that R? is not an initial cube. We fix some doubling cube Ry C R¥.
This will be our “reference” cube. For each j € N, let R_; be some doubling cube concen-
tric with Ry, containing Ry, and such that §(Ro,Rj) = jA + €; (which exists because of
[8, Lemma 3.3]). If Q is a transit cube, we say that Q is a cube of generation k € Z if it is
a doubling cube, and for some cube R_; containing Q we have §(Q,R_;) = (j +k)A = ¢€,.
If Q = {x} is a stopping cube, we say that Q is a cube of generation k € Z if for some cube
R_; containing x we have §(Q,R_;) < (j+k)A+e;.

We remark that the definition of cubes of generations is proved in [8, page 68] to be
independent of the chosen reference {R_;} jenuio} in the sense modulo some small errors.
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Definition 2.5. Assume that R? is an initial cube. Then we choose R? as our “reference”
cube. If Q is a transit cube, we say that Q is a cube of generation k = 1, if Q is doubling
and S(QRY) =kA+¢€,. IfQ={x}isa stopping cube, we say that Q is a cube of gen-
eration k > 1 if 8(x,R?) < kA + €;. Moreover, for all k < 0, we say that R4 is a cube of
generation k.

In what follows, we also regard that R? is a cube centered at all the points x € supp(x).
Using [8, Lemma 3.2], it is easy to verify that for any x € supp(u) and k € Z, there exists
a doubling cube of generation k; see [8, page 68]. Throughout this paper, for any x €
supp(¢) and k € Z, we denote by Q. a fixed doubling cube centered at x of generation k.
By [18, Proposition 2.1] and Definition 2.5, it follows that for any x € supp(u), [(Qxx) —
00 as k — —oo.

Remark 2.6. We should point out that when R is an initial cube, cubes of generations in
[8] were not assumed to be doubling. However, by using [8, Lemma 3.2], it is easy to check
that doubling cubes of generations exist even in this case. Moreover, it is not so difficult
to verify that (2,29*1)-doubling cubes in [8] can be replaced by (p,p?*!)-doubling cubes
for any p € (1,0).

In [8], Tolsa constructed an approximation of the identity S = {Sx};_, related to
doubling cubes {Quk}rerd ez, Which consists of integral operators given by kernels
{Sk(x, y)}kez on RY X R satisfying the following properties:

(A-1) Sk(x,y) = Sk(y,x) for all x, y € R%;

(A-2) for any k € Z and any x € supp(u), if Qy is a transit cube, then

|| sCoyduty) =1 (22)

(A-3) if Qyx is a transit cube, then supp(Sk(x,-)) C Qyx—1;
(A-4) if Qe and Q,  are transit cubes, then there exists a constant C > 0 such that

C .
[1(Quk) +1(Qyp) + 1x— yI]"

0 < Sk(x,p) < (2.3)

(A-5) if Qx> Qv k> and Q, x are transit cubes, and x,x” € Qy, « for some xq € supp(u),
then there exists a constant C > 0 such that

|x —x"| 1

H(Qupk) [1(Quk) +1(Qyi) + Ix— 11"

Moreover, Tolsa also pointed out that (A-1) through (A-5) also hold if any of Q.k, Qx >
and Q) is a stopping cube, and that (A-1), (A-3) through (A-5) also hold if any of Q,
Qx k> and Q x coincides with R?, except that (A-2) is replaced by (A-2’). If Q. = R? for
some x € supp(u), then Sx = 0. In what follows, without loss of generality, for any x €
supp(u), we always assume that Q. is not a stopping cube, since the proofs for stopping
cubes are similar.

We next recall the notions of the spaces H!(y) and RBMO(y) in [9] and the space
RBLO(y) in [1].

| Sk(x, y) — Sk(x',y) | <C (2.4)
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Definition 2.7. Given f € Lj, (u), we set

Mo (f)(x) = sup

p~x

(2.5)

where the notation ¢ ~ x means that ¢ € L'(¢) N C'(R?) and satisfies
M) el < 1;
(i) 0< o(y) < /|y —x|" forall y € R%
(iii) V()| < 1/|y — x| for all y € R4, where V = (9/9x1,...,0/0x4).

Definition 2.8. The Hardy space H!(u) is the set of all functions f € L'(u) satisfying that
Jga fdu =0and Mo f € L' (u). Moreover, we define the norm of f € H'(u) by

1A o = 1 Wz + M (I - (2.6)

On the Hardy space, Tolsa established the following atomic characterization (see [7,
9]).
Definition 2.9. Letn>1and 1 < p < . A function b € L} (u) is called a p-atomic block
if
(i) there exists some cube R such that supp(b) C R;
(ii) Jpe b(x)dp(x) = 05
(iii) for j = 1,2, there exist functions a; supported on cubes Q; C R and numbers
Aj € R such that b = Aa; +Aza,, and

lajllpg < Q)1 [1+8(Q;R)] . (2.7)

We then let IblHlp( )= = A+ A2,

A function f € L'(u) is said to belong to the space H, ltb (p) if there exist p-atomic
blocks {b;}ien such that f = > b; with .72, |b; [ ite () < o0 The th (4) norm of f
is defined by || f ] HY () = inf {21_1 |b;l HY () }, where the infimum is taken over all the
possible decompositions of f in p-atomic blocks as above.

Remark 2.10. Tt was proved in [7, 9] that the definition of H;t’{; (u) in [7] is independent
of the chosen constant # > 1, and for any 1 < p < oo, all the atomic Hardy spaces Halt’b ()
coincide with H;* (u) with equivalent norms. Moreover, Tolsa proved that H;>* (u) co-
incides with H!(u) with equivalent norms (see [9, Theorem 1.2]). Thus, in the rest of

this paper, we identify the atomic Hardy space Halt’f (1) with H'(u), and when we use the
atomic characterization of H'(u), we always assume 7 = 2 and p = o in Definition 2.9.

Definition 2.11. Letn € (1,00). A function f € L} (u) is said to be in the space RBMO (1)
if there exists some constant C > 0 such that for any cube Q centered at some point of

supp(u),

1 ~
03 o [0 =)l duty) = & (.9
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and for any two doubling cubes Q C R,

|mo(f) —mr(f)] < C[1+8(QR)], (2.9)

where mq( f) denotes the mean of f over cube Q, namely, mq(f) = (1/u(Q)) fQ f(y)du(y).
Moreover, we define the RBMO(y) norm of f by the minimal constant C as above and
denote it by || f[rBMO()-

Remark 2.12. It was proved by Tolsa [7] that the definition of RBMO(y) is indepen-

dent of the choices of 7. As a result, throughout this paper, we always assume 7 = 2 in
Definition 2.11.

The following space RBLO(y) was introduced in [1]. It is obvious that L*(u)
C RBLO(u) € RBMO().

Definition 2.13. A function f € L} () is said to belong to the space RBLO(y) if there
exists some constant C > 0 such that for any doubling cube Q,

] L et s o < & o10)

and for any two doubling cubes Q C R,
mq(f) —mr(f) < C[1+8(QR)]. (2.11)

The minimal constant C as above is defined to be the norm of f in the space RBLO(u)
and denote it by [ f[[rpLO()-

Remark 2.14. Let 57 € (1,00). It was proved in [17] that we obtain an equivalent norm of
RBLO(y) if (2.10) and (2.11) in Definition 2.13 are, respectively, replaced by that there ex-
ists a nonnegative constant C such that for any cube Q centered at some point of supp(y),

@ JQ [f(x) - essénff(y)]d‘u(x) <C, (2.12)
and for any two doubling cubes Q C R,
essQinff(y)—essRinff(y)s(Nf[1+6(Q,R)]. (2.13)

If R? is not an initial cube, letting {R_ itio be as in Definition 2.4, we then define
the set 9 = {Q C R¥: there exists a cube P C Q and j € N U {0} such that P C R_; with
8(P,R_;) < (j+1)A+e}. If RY is an initial cube, we define the set %@ = {Q C R?: there
exists a cube P € Q such that §(P,R%) < A+¢€,}.

Remark 2.15. In [17], it was pointed out that if Q € 9, then any R containing Q is also in
% and the definition of the set % is independent of the chosen reference {R_;}jenuio) in
the sense modulo some small error (the error is no more than 2€; + €y); see also [8, page
68]. Moreover, it was also proved in [17] that if 4 is the d-dimensional Lebesgue measure
on R¥, then for any cube Q C R, Q € ¥ if and only if [(Q) > 1.
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In [17], we used the set & to introduce the local Hardy spaces h;;ﬁ)q (u), p e (1,00],in
the sense of Goldberg [19].

Definition 2.16. For a fixed 7 € (1,00) and p € (1,00], a function b € L}, (u) is called a
p-atomic block if it satisfies (i), (ii), and (iii) of Definition 2.9. A function b € L, (1)
is called a p-block if it only satisfies (i) and (iii) of Definition 2.9. In both cases, we let
1Bl = Zjo1 A1

Moreover, a function f € L!(y) is said to belong to the space h;;‘g,”(#) if there exist

p-atomic blocks or p-blocks {b;}; such that f = >;b; and >; |bi|h1,€ W < % where b;
atb,n

is a p-atomic block if supp(b;) C R; with R; ¢ 9, while b; is a p-block if supp(b;) C R;
1, . .

and R; € 9. We define the hatﬁn(‘u) norm of f by letting ”f”hf\iﬁ,ﬂ(u) =inf{>; |bi|h;§§,,,(ﬂ)}’

where the infimum is taken over all possible decompositions of f in p-atomic blocks or

p-blocks as above.

Remark 2.17. Tt was proved in [17] that the definition of h;;ﬁyﬂ(y) is independent of the
chosen constant # > 1, and for any 1 < p < oo, all the atomic Hardy spaces hi;ﬁyq(‘u) co-

incide with h;;f: ,(#) with equivalent norms. Thus, in the rest of this paper, we always
assume # = 2 and p = oo in Definition 2.16.

In what follows, for any cube R and x € R nsupp(u), let Hi be the largest integer
k such that R C Q.. The following properties of Hy play key roles in the proofs of all
theorems in this paper, whose proofs can be found in [17].

LemMa 2.18. The following properties hold.

(a) For any cube R and x € RN supp(u), Qumz+1 C 3R and 5R C Q1.

(b) For any cube R, x € RN supp(u) and k € Z with k = Hg +2, Qyx C (7/5)R.

(c) For any cube R C R4 and X,y € Rnsupp(p), |Hg — Hﬁl <1

(d) IfR¥ is not an initial cube, then for any cube R and x € R N supp(u), Hy < 1 when
R € % and Hy > 0 when R & 9. If R? is an initial cube, then 0 < Hy < 1 for any
cube R € 9 and x € RN supp(p).

(e) For any cube R and x € R N supp(u), there exists a constant C >0 such that
O(R, Qxpz) < Cand 8(Qxmz+1,R) < C.

3. Uniform boundedness in H!(¢) and RBLO(y)

This section is devoted to establishing the boundedness for approximations of the identity
in the spaces H!(¢) and RBLO(u).

THEOREM 3.1. For any k € Z, let Sk be as in Section 2. Then there exists a constant C >0
independent of k such that for all f € H'(u),

||Sk(f)||H1(,4) < Cllf e - (3.1)

Proof. We use some ideas from [20]. By the Fatou lemma, to show Theorem 3.1, it suffices
to prove that for any co-atomic block b = Zﬁzlljaj as in Definition 2.9, /M (Sk(b)) €

L'(u) and Mo (Sk(D)) 11wy S Z§=1 |Ajl, where (e is the maximal operator as in
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Definition 2.7. Moreover, if k < 0 and R is an initial cube, then Sy = 0, and Theorem 3.1
holds automatically in this case. Therefore, we may assume that R¥ is not an initial cube
when k < 0. Using the notation as in Definition 2.9 and choosing any xy € supp(y) N R,
we now consider the following two cases: (1) k < Hy’; (2) k > Hp + 1.

In case (1), write

[t (Sk(0)) 1,y = LRM@(skw))(x)dy(x) + jW\SR cL=I+IL (32)

Since Jlg is sublinear, we have that

2
< 31101, dto(S1(a)) )t
(3.3)

2
= S0, o(si(a)) o XNl mnen
j=1 j=1 8

R\2Q;

By (A-2) and (A-4), we see that for any x € 2Q;, j = 1,2,and ¢ ~ x,

[ o08ap0ducn| = [| | o8::2) a,(2) | dut@hdu(r) = - (30

which implies that M (Sk(a;))(x) < |la;llr~ (). This together with (2.7) further yields

2 2
< > A illagll e u(2Q)) < > TAj] (3.5)
j=1 j=1

On the other hand, for any x € 8R\ 2Q; and z € Q;, j = 1, 2, [x — z| ~ |x — x;|, where
x;j denotes the center of Q;. This observation together with the fact that for any x, y,z €
R4, if |y —z| < (1/2)|x — z|, then |x — z| < 2|x — y|. The properties (A-2) and (A-4) imply
that for any x € 8R\ 2Q;, ¢ ~x and z € Q;,

go(y)nd () + Sk(%Zid ()
ly—zl=(1/2)lx—z| |y — 2| ly—zl<(1/2)lx—z| |x =y

< ¢(y) Sk(y,2)
~ J\y z|=( dy(y)+JIy—zI<( )

—2l=(1/2)|x—2 |x —z|" 12)|x—2| |x —z|"
1
~x x|
j

JW 9(1)Sk(y,2)dp(y) < J

(3.6)
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From this fact and (2.7), it then follows that

[Lowsi@) 0| < | la@l [ p0sioadudne)

1 1 1
< — Mg )<
~ | _xj | n H"HHL“(;A)#(Q]) ~ |x—xj |n 1+6(Qj,R).
(3.7)
Thus, for any x € 8R\ 2Q;,
Mo (k) (0) S 1 (3.8)
ORI~y —x "1+ 6(QR) ‘
Moreover, by [8, Lemma 3.1 (a) and (d)], we obtain
8(2Q;,8R) < 8(Q;,8R) S 1+8(Qj,R) +8(R,8R) < 1+8(Q;,R). (3.9)
Therefore, it follows that
2 5(2Qj,8R) _ ¢
; 71+8(Q], ; (3.10)
To estimate I1, by the observation that [ga Sk(b)(x)du(x) = 0, we write
II < J sup J Sk(b)(y —¢(x0) ldu(y) ‘ du(x)
RA\8R prox
< J supf [Sk(B) (D) | |9(y) = 9(x0) | du(y)dp(x) (3.11)
R4\8R p~x J2R
[ swp| [ S0000) - 900 () | dute) = 11+ 1
R\8R p~x RI\2R

Notice that for any y € 2R and x € 2" R\ 2"R with m > 3, |x — x| > [(2™2R), and
[xo — yl < 2+/dI(R), which implies that ly —xol < |xo — x|. This fact together with the
mean value theorem yields that for any ¢ ~ x,

|)’—xo\

- (3.12)
|x0 - x|

lo(y) —o(x0) | S

Moreover, let N; be the smallest integer k such that 2R C 2kQ ;. Because {Sy }« are bounded
on L?(u) uniformly, (A-4) together with the Hélder inequality, [8, Lemma 3.1], (3.12),
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and (2.7) leads to

2 0
RN fsup . 1@ o) gt

+supf |Sk(a;) (D] [o(y) = ¢(x0) Idu(y)}dﬂ(x)
p~x J2Q;

SIS [ ] 8 o)
szl m—3J 2" R2"R [] 2’“R " (Jareg Jo 1y — ZI”

12 ) 1/2
+[p(2Q;)] [J’zQ‘|Sk(‘1j)(}’)| du(y)] 7gdu(x)

2 ) .
p(2m*1R) J J ||a]||L°°(/,¢)

. ————du(z)du(y)

; Z: 1(2mR)] “{ 2. 211Q\2Q; Jq; 1y —zI” ulz)duly

+ [#(ZQJ)]I/Z[IQj |aj(y) Izd.u(y)] m}

2 21+1Q
<5 o] S 420 1) uaqy)]
j=1 i)

i=1

2 1+6(2Qj,2R)
SZIMJ (W ) z|l|

(3.13)
To estimate I1,, we write
II b)xomiag\gm-1 d
= ijm St (B)mesrin 1) (6)dx)
D | 1800 | 90 i) ()
me3 2"‘“R\2"‘Rq)~x omt2R\2m-1R
(3.14)

3] Lo SO L) = g0) )
m“R\ZmR(pNX [Rd\z +2R

+ J supj |Sk(B)(Y) | [ @(y) = ¢ (x0) | du(y)du(x)
2 2m=1R\2R

im3 J 2MHR\2MR g J 2m

=FE,+E,+E;+E,.
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Since Jlg is bounded from H'(u) to L' (1) (see [9, Lemma 3.1]) and bounded on L* (u),
then it is bounded on L?(y) for any p € (1, ) by an argument similar to the proof of [7,
Theorem 7.2]. The only difference is that in the current case, we do not need to invoke the
sharp operator [l* in [7, equation (6.4)]. On the other hand, by (A-3) and (A-1), we have
supp(Sk(b)) C UyerQy k-1, which together with k < Hp’ and [8, Lemma 4.2 (c)] further
implies that supp(Sk(b)) C Qy, k—2. These facts together with the Holder inequality lead
to

o0 1/2
Er< {J [J‘/td>(5k(b)X2m+2R\2mIR)(X)]zd#(x)} [u(2m1R)]"?
2m+IR\2mR

(3.15)
) 1/2
<34 Sib))]’d (x)} 2"IR)]”.
mz_s{ (2m2R\271R) N (Qup k-2) [ I'du [ut ]
Let my be the largest integer and m; be the smallest integer satisfying
2R C2Qxk C Qxpk—2 C2™R. (3.16)

Then [8, Lemma 3.1] along with the facts that [(2™R) ~ [(2Qy,x) and that [(2™R) ~
I(Qyy k—2) yields

5(2m°R,2m1R) <1+ 6(2Qx0,k,Qx0,k_2) <L (3.17)
If m>my+1, then Qy k-2 N (2™2R\ 2" R) = @, and if m < mg — 2, then
(Quk-2\2Qux) N (2™2R\ 2" 'R) = @. (3.18)

It then follows that

m 172
E < J Se(b)(x)]*d 2Ry
1S mZS{ (272R\271R)N(2Qug ) [ K )(x)] #(x)} [‘u( )]

my
+ 2

1/2
{j [Sk(bxx)]zdy(x)} [u(2mR)]"2.
meme—1 L @m2R27 T R)IN(Qugh-2\2Qu4)

(3.19)
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Let us estimate the first term. By the vanishing moment of b together with (A-5), (A-1),
and R C Qy, x for k < Hy,

[Sk(b)(x)| < JR | Sk(x,2) = Sk (x,x0) | | b(2) | du(z)
B e
R Z(on,k) [Z(on,k) + |X() —X| ]

IR)IBI L o)
- l(on,k) [Z(ng,k) + |x0 _x| ]"

7du(z) (3.20)

For any x € 2R\ 2"~ 1R with m > 3, if x € 2Qy 4, then |x — x| < 1(Qx, k). This obser-
vation together with (3.20) implies that

1/2
{ j [sk(bxx)]zdu(x)}
(2m2R\2m=1R)N2Qu &

1/2
1
5 l(R)||b|L1(y){ JZ"‘*ZR\Z"HR |xx|2(n+1)d‘u(x)} (3.21)
0 —

[u(2m+2R)]"
(R)llbl\v(y)i[l(z R

Moreover, another application of (3.20) leads to that

12
1l [Sie0 o |
@ 2R\27 1 R)N (Qup-2\2Qupk)
o (3.22)
1 [u(2"R)]"
< bl J _ L 4 < bl ER
Sblle (m{ SR |x0—x|2" #(x)} S bl [1(27R)]
Combining these estimates above, by (1.1), we obtain that
my l(R)[,t(Z'””R H(2m+2R) }
E; S 1Bl { 7,1
1 L (p) mZ:3 [l(sz +1 m%} sz]
(3.23)

0o

S [1+8(2Qu s> Quoe—2) 11101111 ) Z

where in the last-to-second inequality, we use the following fact that for any cube R,

m+1
Z a (imR ) ~1+8(2™R,2™R). (3.24)

mmol
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Similarly, it follows from (3.17), (3.20), (3.24), (1.1), and SUP o(x0) < 1/]x — xo|"
that

T

2m+IR\2mR (p~x

IR)IBI L o

mH2R\2m-IR Z QXU |X0 - )’|

<Mmm{zj (R) lwﬂwwmm>

2mHIR\2MR |x0 —x|" szﬂk\zmﬂR)szm,k |x0—y

- i

m=my—1

adu(y)du(x)

2R\ 2mR | X — x|

xj S
(2”‘*2R\2m’lR)ﬁ(on,kfz\zon,k) |x0 - )’|

ny I(R 2m+2R ny 2m+1R 2
St 2, g+, & fimpoeeu @[S 2 1Y
m= m=mo— =

du(y)du(x)}

(3.25)

Now we estimate Es. Recalling that supp(Sk(b)) C Qy k-2 C 2"™ R, we see

Es = ZJ

Jw\m [Sk @Y | o) = p(x0) [ dp(y)du(x).  (3.26)

mHR\sz ¢~x

For any m < m; — 3, any x € 2" 'R\ 2"Rand y € 2"*'R\ 2'R with i > m +2, it is easy to
see that

|xo — x| = 2™I(R), ly —x| 2 2"I(R). (3.27)

Using (3.20) again, we have

sup [Sk(B)(D) | [9(y) = ¢(x0) | du(y)

p~x JRA\2MH2R

[

<

i=m+2

bl !
HHum Z‘[ 444J&447@@> (3.28)

12mR)]" 5, J e R2iRNQgr-2 1(Qxyk) [ %0 — ¥ ]

J IR)IBII L o) < Lo,
@R Nk Qi) [%0 — y|" Ny —xI" | x0 — x|

7 )d#(y)

11171 ) = J I(R)
< —— 1 —————du(y).
~ [1(2mR) ] Z (2#1R\2iR) wT ()

=2 R0k | x0 = ¥

I(R) }
+ —————du(y) ¢.
J 2R\ 2R)IN(Qugr-212Qs00) [(Quy k) | X0 — 7| Y
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Therefore, from (3.17), (3.20), (3.24), and (1.1), it follows that

‘u 2m+1R) m13J l(R)
E; < bl ———d
> 5 bl { Z [1(2mR)]" ,%2 (21 R\2IR)N2Qu |xo—y|nJrl k)

mp— 3 m+1 m173
(2m*+R
Py # )
[1(2mR)]"

m=my—1

J R ——du(y)
2R\ 2R)IN(Qur-2\2Qs0k) | X0 — V|

LR) 7 d.u(y)}

P szﬂR\szm(Qm,kfz\2Qx0,k) 1(Quk) | x0 = |

i=m+2

my—2 H(ZMHR) m;—3
mzza [12R)]"

m;—3 -3

-3 m m
- HHR)IR) u(2m1R) ™M
S bl { o 0
e ;3, %,2 1(2/R)] ! Z [l(sz)] i=%+l [

H(21+1R)
(2iR)]"

m=my—1

-2 mo 21+1R —2mi— 21+1R I(R
3 D S s |

m=3 i=m+2 m=3 i=my

2
S bl [1+6(2Qui Qui2) 17 < S 4]
j=1
(3.29)

where in the third-to-last inequality, we used the facts that if i < myg, then [(2'R) < I(Qy, )
and that if m < mgy — 2, then I[(2"R) < I(Qy,k)-

Now we estimate E4. Notice that if m < mq + 1, then (2™ 'R\ 2R) N (Quo k-2 \ 2Qxp k) =
@. Therefore, by supp(Sk(b)) C Qx, k-2, we have

E4 z J2m+1R\2mR Qr~x «[(2'" TR\2R)N2Qxq k | Sk(b)(y) | | <P(}/) - q)(xO) | d[/l(y)dﬂ(-x)

mp—1

+ > J supJ . (3.30)
2mH R\2MR prvix J (27T R\2R) N(Qug k- Z\Zngk)

m=moy+2

(&)

+ > J supj - =ht Lt
—my ¥ 2MIR\2MR v J (27T R\2ZR) N (Qug k-2 \2Qxg k)

m

Observing that (3.12) holds for any y € 2" 'R\ 2R and x € 2"*'R\ 2R with m > 3, by
(3.12), (3.20), and (1.1), we see that

supj 1S DY) | [9(y) = @(x0) | dp(y)
prx J (2 TR\2R)N2Qu ¢
SJ [ Sk(b) () |7(on ;)1+1d.”()’)
(27 TR\2R)N2Qu | x0 — x|
IRl 1 IRl
S——4 J adu(y) S =28
|x = x|"" Jam RN [H(Quk) + %0 = 7] %0 — x|

(3.31)



D. Yang and D. Yang 15

From this fact and (1.1), it follows that

T S bl Zj

2
B ] (3.32)
m+IR\2'”R|x0—x| +1 [’t ];| ]|

On the other hand, since (3.27) holds for any x € 2"*1R\ 2R and y € 2" 'R\ 2R
with m > 3, by (3.17), (3.20), and (3.24) together with Definition 2.7 (ii),

J < met I J 16121 [(R)
2 o a J2m R 2R ) @ R 2RI N(Qug 2120000 Qo) | %0 — ¥ |
1 1 )
X + = |d d
“y_xw o —x] u(y)du(x) (3.33)
< |1bl| mil MJ # i
= L' () s [1(2mR)]" Quok 2\2Qux | X0 — y| =

Finally, using (3.27), (3.12), (3.17), (3.20), (1.1), and the fact that for any y € Qy, k-2,
[xo — y| S1(2™R), we have

S bl 1(2™R)
< J J #n d d X
~ :z 2R 2R J Qo 212000k %0 = 1" |x0 — x| ™! u(y)du(x)
, (3.34)
i l(zmlR)‘u(Z'"HR
S bl Z WSZ

Combining the estimates for J;, J», and J5 completes the proof of Theorem 3.1 in case (1).

In case (2), we further consider the following two subcases. Subcase (i) k > Hy’ + 1
and for all y € Rnsupp(¢), R ¢ Q1. In this subcase, it is easy to see that for any y € R,
Qy k-1 C 4R, which together with supp(Sk(b)) C UycrQ, -1 implies that supp(Sk(b)) C
4R.Let I and IT be as in case (1). We also have || Mo (Sk(b))[Ip1(y < I+I1Tand I S Zj:l [A;].
On the other hand, since supp(Sk(b)) C 4R, similar to the estimate for I} in case (1) with
2R replaced by 4R, we obtain

~o

me s [ S0 190 - plo) |k S 3 11 (3.39)

d\8R Qrx

Subcase (ii) k = Hy’ + 1 and there exists some y; € R N supp(y) such that R C Qyk-1.
In this subcase, by applying [8, Lemma 4.2], we see that supp(S(b)) C U,erQyx-1 C
Qyo,kfz C on,k73- Then

HMM&wMM@=L kma&wmm@unj .-=F +F.  (3.36)

RI\4Qxg k-3
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Arguing as in the estimate for II; in case (1) with 2R replaced by Q,, -3 again, we have
F, < 25:1 [A;]. On the other hand, by the fact that Il is sublinear, we obtain

2 2
F| < A-J Mo (Sk(a;))(x)du(x) + )LJ s =L+ L. 3.37
1 J§| ]| e cD( k( ;))( ) [4( ) ];| ]| fQugpr\20; 1 2 ( )

Since the argument of I; in case (1) still works for L;, it suffices to show L, < Z§:1 [A;].

However, because R C Qy,x—1, we obtain that k < H}’ + 1. This fact together with

Lemma 2.18(c) leads to that k < Hy’ + 2. Then by the assumption that Hy’ + 1 < k to-
gether with [8, Lemma 3.1] and Lemma 2.18(e) implies § (R, Qy,k—2) S 1+ 0(R, O )+
8(Qy, 10> Quok—2) S 1. Moreover, another application of [8, Lemma 3.1] yields

8(2Qj>4on,k—2) = S(Qj:4ng,k—2)
S1+6(Q)5R) +8(R, Quyk—2) +0(Quk—2-4Qx, k-2) (3.38)
S 1+ 8(QJ,R)

Therefore, arguing as in case (1), we have

S 19(2Q4Q0k2) _ <
< | ISR PRXkTLT - )
j= j=
which completes the proof of Theorem 3.1. O

For any k € Z, from Theorem 3.1, the linearity of S, the fact that (H! (1)) * = RBMO(u),
and a dual argument, it is easy to deduce the uniform boundedness of Sx in RBMO(u).
We omit the details.

CoROLLARY 3.2. For any k € Z, let Sy be as in Section 2. Then there exists a constant C >0
independent of k such that for all f € RBMO(u),

ISk (N)Irsmoqw = Cll f lIremo)- (3.40)

We now consider the uniform boundedness of Sx in RBLO(y). To this end, we first
establish the following lemma, which is a version of [18, Lemma 3.1] for RBLO(y).

LemMA 3.3. There exists a constant C >0 such that for any two cubes Q C R and f €
RBLO(y),

du(y) < C[1+8(Q R fllrbLoGo- (3.41)

J ‘f(y) —essinf 5 f(y) ‘
R [ly-xl+HQ]"
Proof. The proof of this lemma can be conducted as that of [18, Lemma 3.1]. Alterna-

tively, since RBLO(¢) € RBMO(y), we can also deduce it from [18, Lemma 3.1] as below.
From Definition 2.13, it is easy to see that for any f € RBLO(y) and cube Q,

mg(f) - essigff(y) < |l f lIrBLOG)- (3.42)
ye
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Therefore, an easy computation involving [18, Lemma 3.1] and (1.1) yields

J | f(y) —essinf, 51 (y)]
R [y -xl +1Q]

| f(y) —my(f)] me(f) —essinf 5/ (y) (3.43)
< _d A
L[ly—xa|+l<cz>] 0+ | [y — x| +1Q)]

S 1+8QR Il f lIrsro)»

du(y)

which completes the proof of Lemma 3.3. O

THEOREM 3.4. For any k € Z, let Sk be as in Section 2. Then Sy is uniformly bounded on
RBLO(u), namely, there exists a nonnegative constant C independent of k such that for all
f € RBLO(u),

1Sk () rprog = CILf IrsLog- (3.44)

Proof. Without loss of generality, we may assume that || f [lrpro() = 1. We only need to
consider the case that R is not an initial cube, since if R is an initial cube, then for
any k € N, the argument is similar; and for any k < 0, Sx = 0, and Theorem 3.4 holds
automatically in this case. To this end, it suffices to show that for any doubling Q,

ﬁ JQ [Sk(f)(x) - essQinfSk(f)(y)]dy(x) <1, (3.45)

and for any two doubling cubes Q C R,

mq(Sk(f)) — mr(Sk(f)) S1+8(QR). (3.46)

To show (3.45), let us consider the following two cases:
(i) there exists some xy € Q N supp(y) such that Q C Qy, x—2;

(ii) for any x € Q Nsupp(p), Q € Qui—2-
In case (i), for each x € Q,

Sk(f)(x) = essinf Si()(7) = [S(f)(x) — essinf f(7) | + [ essinf f(y) - essinfSk(£)(7) ]

=L +15.
(3.47)
It then follows from (A-3), (A-4), and Lemma 3.3 that
f(y) —essinfq,, f(y)
L< | - ‘dy(y) <1 (3.48)

Q-1 [|X_y‘+l(Qx,k)]n

On the other hand, in this case, for any x, y € Q N supp(u), we have that Q,x and Q, x are
contained in Qyk—4 by [8, Lemma 4.2], which together with (2.13) and [8, Lemma 3.1]
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further yields
inf —essinf
\esgig f(y) —esgin ]

< ’ essinf f(y) —essinff(y)‘ + ‘ essinf f(y) —essinff(y)’
Quk Qu -4 Qu -4 Qyk (3 49)
S1+0(Quk> Quk—a) +8(Qy k> Quk—s) )

(
S 1+ 8(Qy,k1 Qy,k73) + S(Qy,k73> Qx,k74)
(

S1+8(Qyp-3Qpi—s5) S 1.

By this observation, (A-2) through (A-4) and Lemma 3.3, similar to the proof of (3.48),
we see that for any y € Q N supp(p),

Sk(f)(y)—esgi?ff(Z)

SJ ) Sk(y,w) ’f(w) —esgj?ff(z)‘dy(w)

y k-1

< J Sk(y,w) ‘f(w) - essinff(z)‘dy(w) + ' essinf f(z) — essinff(z)) <L
Qy,kfl Qy,k Quk Qy,k
(3.50)

Taking the infimum over all doubling cubes containing y, we have I, < 1, which com-
pletes the proof of case (i).

In case (ii), it easy to see that for any y € Q N supp(u), k = Hé + 3. Then by Lemma
2.18(b), for any y € Q nsupp(u), Qy k-1 C (7/5)Q. Therefore, for any x,y € Q,

S = SUNO) =[Sk~ essinf £ | + [esginf £ = $i(A)] =1+
(7/5)Q rk
(3.51)

From the Tonelli theorem, (A-1), (A-2), (2.12), and the doubling property of Q, it follows
that

1 1 '
u(Q chhd”(x) ) J(7/5)Q 'f(w) - i%%%ff(y) dp(w) S 1. (3.52)

On the other hand, (3.48) implies that , < 1, which verifies (3.45).
Now we estimate (3.46). As in the proof of (3.45), we consider the following three
cases:
(i) there exists some xy € Q N supp(u) such that R C Qy, x—2;
(i) for any x € Q Nsupp(), Q ¢ Qui—2;
(iii) for any x € Q N supp(u), R ¢ Qyx—2, and there exists some xy € Q N supp(u)
such that Q C Qy, k-2-
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In case (i), (3.49) together with (3.48) leads to

mQ(Sk(f)) *MR(Sk(f))

ﬂ(Q) y(R J J (H]du(x)duly)

< Q)0 Jols { (1)~ essinf [ (2)| + [essinf [ (2) — essinff (2)|
+ SN0 - essinf £()| Futiduty) 51
y’ (3.53)

In case (ii), Lemma 2.18(b) implies that for any x € Q N supp(y), Q-1 C gQ. By [8,
Lemma 3.1] and Remark 2.14,

<

essinf f(2) - essinf f(2)
z€(7/5)Q ze(7/5)R

essinf f(z) — essmff(z) ‘
ze(7/5)Q

<1+38(Q,R).

essmff — essinf f(z)
z€(7/5)R

(3.54)
This fact and the Tonelli theorem yield

mQ(Sk(f>) - mR(Sk(f))
) #(Q u(R) J J |Sk(f)(x) = Sk(f)(p) | du(x)du(y)

= @i Jo 1[5

f)(x) — essinf f(z)| +
ze(7/5)Q

essinf f(2) - essinf f(2)
z€(7/5)Q ze(7/5)R

+ 'Sk(f)( )—essmff z)'} x)du(y) S1+8(Q,R).
z€(7/5)R (3 55)

Finally, in case (iii), by [8, Lemma 3.1(e)] and the fact that for any x € Q nsupp(u),
Qxk—1 C (7/5)R, and Qy, k-2 C Qyk—3, we have that for any x € Q N supp(y),

essmff(z —essinf f(z)| < 1+6(ka, )

ze(7/5)R

7
,S I+ 8(Qx,k: on,k—Z) +4 <ng,k—2: gR) (356)

< 148(Quio Quis) +8(Q,§R) <1+8(QR).
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From this, the Tonelli theorem, and (3.48), we deduce that

mq(Sk(f)) — mr(Sk(f))

#(Q) u(R) J J ‘H ) = essmff(z isgégff —Zees(s?i/g%f(z)

| esinf £(2) - Si(F))| futidutn) S 1+6(QR),

ze(7/5)R

(3.57)

which completes the proof of Theorem 3.4. O

4. Maximal operators in H' (1) and hl;y” (1)

In this section, let S = {Sk}kecz be an approximation of the identity as in Section 2. We
then consider the following maximal operators: for any locally integrable function f,
define

Ms(f)(x) = iup [Sk(f)(x)],
(SVA
Ms(f)(x) = sup | Se(f)(x) .

keN

(4.1)

Obviously, Ms(f)(x) < Ms(f)(x) for all x € R, which together with [8, Remark 8.1]
further implies the following lemma.

LemMma 4.1, Let p € (1,00]. Then there exists a constant C, > 0 such that for all f € LP(u),

s (NIzo ey = HMs (1) < Coll fllzon (4.2)
and there exists a constant C > 0 such that for all f € L'(u) and all A >0,

p({x e R : Ms(f)(x) >A}) < u({x € RO ils(f)(x) >A}) < §||f||L1<H) (4.3)

~

The following result further shows that Jls is bounded from H! (1) to L' (u).

THEOREM 4.2. There exists a nonnegative constant C such that for all f € H'(u),

[ts(] 1y < CILF i o (4.4)

Proof. Let b = Adya; + A,a, be any oo-atomic block as in Definition 2.9. By the Fatou
lemma, to prove Theorem 4.2, it suffices to show that

s (811 < 11|+ A2 ] (4.5)
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Since Jlg is sublinear, we write

[ its)@duco)

j Jl}tg(b)(x)dy(x)+J Js(b) (x)du(x)
4R RI\4R

2 2
< Sl st s S [t A0
=L+5L+15.
(4.6)

Recall that J(s is bounded on L?(u) by Lemma 4.1. From the Holder inequality and
(2.7), it then follows that

IA

2 1/2
S NI L, bitste) @ duco | 101"

j=1

I

A
Mo

2 2 1/2
IljlﬂQ_ [aj(x)] d#(x)} [1(2Q))] (4.7)

1

J

2 2
S D Al u(2Q)) < Z
j=1 j=1

which is the desired result.
For j = 1,2, let x; be the center of Q;. Notice that for any x ¢ 2Q;and y € Q;, [x — y| ~
|x — x;|. From this fact, the Holder inequality, (A-4) and (2.7), it follows that

lai(n)| ||aj||L°°(y)H(Qj)< 1 1
Nj - W DS S s Y

Therefore, by (3.9),

<i |A;]6( 2Q],4R
~ 1+68(Qj,R)

j=1

2
< z (4.9)

We now estimate I5. Fix any xo € R N supp(u). It follows from Lemma 2.18(a) that
4R C Q,, y0_;. We then write

I = de\q s () (x)du(x) +J o =F 4+ F. (4.10)

Q0 4R
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By Lemma 2.18(a) again, we see that Q1041 C 4R. From this fact, (A-4), (2.7), and the
fact that for any x € 4Rand y € R, [x — xo| ~ |x — y|, it follows that

2
la;(y)]
F, S ) |JX0HW S JQ] el adu(y)du(x)

j=

ful

: @l u(Q))
ng | ! | QX() HRO \QX() H§0+1 |X — X0 | H (411)
2 Hy? )
S-‘ z |A]| Z 8(QXu,i+l)QxU,i) 5 Z |/\ |
j=1 i=HP -1 izl

By the vanishing moment of b, for any x € R%\ Q, ;w_, and any k € Z,

15000 = [ 184067 = Skxx0) 50 | duy)

> (4.12)
=ML, 18k ) = Suleso) | ay(0) du(y)
=1 i
We claim that for any y € Qj, j = 1,2, for any integer i > 2 and k > Hp’ —i+3,
supp (Sk(+ ) = Sk(+,%0)) C Qg0 _is1- (4.13)

In fact, by (A-3) and the fact that {Qy} is decreasing in k, supp(Sk(-,y) — Sk(+,x0)) C
(Qyr=1Y Quyk-1) C(Qy 0 iy U Qq g0 _iyp)- Since i = 2, then y € Q; together with the
decreasing property of {Qyk}« in k implies that y € Q, y%_;,,. From this fact and [8,
Lemma 4.2 (c)], it follows that Q, y=0_;;, C Qy yo_;yy. Thus, the above claim (4.13)
holds.

Observe that Qj C Qyx for k < Hp' —i+2, j = 1,2. Then (A-1) and (A-5) imply that
for any y € Qj,

-yl 1 - I(R) 1

on,k) [ Qi) + [x—x0]1" — HQu 0 —is2) |x—xo|"
(4.14)

| Sk(x, ) = Sk (x,%0) | < l(
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Therefore, from the fact that [rsb(y)du(y) = 0, (4.13), and the last inequality above, it
follows that

R=3 JQXO e, S 15 2
2 0
SEMIZ]: il 150 5
x [a;(y) | du( )dﬂ(x) (4.15)

2 > I(R
SN ;j B Lo

Q0 -1\ Quy 120 i1 l(on,H;O—m) |x—x0|

]:1 x0.Hp" —i
2 00 2
]:1 i=2 X05 HR —i+2 j=1
Therefore, Iy < Z?zl |A;], which completes the proof of Theorem 4.2. O

We now establish the boundedness of Jilg from h;;ff (u) to L' (u).

THEOREM 4.3. There exists a nonnegative constant C such that for all f € hl (w),

||MS(f)||L1( = CHf”hl‘b () (4.16)

Proof. By the Fatou lemma, to prove Theorem 4.3, it suffices to show that for any oco-
atomic block or co-block b = 25:1 Ajaj as in Definition 2.16, we have

[

sl S 2. 1A ] (4.17)

If b is co-atomic block as in Definition 2.16, then by the fact that Msb(x) < Mgb(x) for
all x € R4 and (4.5), we see

2

||Ms(b)||y(”) < Z |/\j | (4.18)
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Let b be an co-block as in Definition 2.16. By Definition 2.16, there exists R € 9 such that
supp(b) C R. Write

jR sup | Sk(b)(x) | du(x)

? keN

IA

2 2 2
]gi |l LQ sup |Sk(aj)(x)|dy(x)+j§i |21 J4R\2Qj . +J§1 N J{R ..

i keN d\4R

Ji+12+]s.
(4.19)

Since the argument of estimates for I; and I, in the proof of Theorem 4.2 also works in
the current situation, we then have that J; + ]/, < zﬁzl Al

To estimate /3, fix any xo € R N supp(u). Notice that for any x € R? \ 4R and any y €
Qj, j = 1,2, [x — y| ~ |x — xo|. From this fact, Definition 2.16, and (A-4), it follows that
for j=1,2and any x € R9\ 4R,

lajleoi(@) _ 1

n ~ n-
|x — x| | x —xo|

la;j(y)]

| n

du(y) < (4.20)

sup | Sk(a;)(x)| < sup

keN keNYQj |
On the other hand, since R € 9%, by Lemma 2.18(d), we obtain that Hy’ < 1. This observa-
tion together with [8, Lemma 4.2] in turn implies that for any k € Nand y € R N supp(y),
Qyk-1 C Qo1 C Qy o5 It then follows that supp(Sk(b)) C Q, g0, for any k € N.
Moreover, Lemma 2.18(a) yields Q, y%,; C 4R. Therefore, we obtain that

2
<> A Sk(a;)(x)|d
k<g|ALM££|MM@Hym

(4.21)
2 2
1
< ”J‘ <Y A,
J§| ]| on,H§°—2\4R|x_x0|n g J§| ]|
which completes the proof of Theorem 4.3. O
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