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Abstract
This manuscript focuses on a class of stochastic functional differential equations
driven by time-changed Brownian motion. By utilizing the Lyapunov method, we
capture some sufficient conditions to ensure that the solution for the considered
equation is η-stable in the pth moment sense. Subsequently, we present some new
criteria of the η-stability in mean square by using time-changed Itô formula and proof
by contradiction. Finally, we provide some examples to demonstrate the effectiveness
of our main results.
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1 Introduction
At present, the time-changed semimartingale theory has attracted much attention because
of its widespread applications in cell biology, hydrology, physics, and economics [19].
Since Kobayashi [10] investigated stochastic calculus of the time-changed semimartin-
gales, there have been a lot of authors working on the stochastic differential equations
with the time-changed Brownian motion or Lévy processes. For example, we refer to
[7, 9, 13, 20] for the numerical approximation scheme and to [2, 18] for the averaging
principle. Particularly, an increasing number of experts devoted themselves to research
the stability in significant senses for various SDEs with the time-changed semimartingales.
For example, see [21, 22] for the stability in probability; [16, 17] for the moment stability
and path stability; [25–27] for the asymptotic stability; and [12, 28] for the exponential
stability.

Meanwhile, the η-stability is a valuable extension of certain well-known stability types
such as polynomial, exponential, and logarithmic stability, etc. The η-stability with respect
to the deterministic systems has attracted much attention from experts within a short
time because it leads to a new understanding on the long-time behavior of the solution.
For instance, see Choi et al. [3] for the linear dynamic equations; Damak et al. [5] for the
boundedness and η-stability of the perturbed equations; Ghanmi [8] for the practical η-
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stability; Xu and Liu [23] and Xu et al. [24] for the η-stability of the numerical solutions
of the pantograph equations; Damak et al. [6] for the converse theorem on practical η-
stability of nonlinear differential equations. Aslo Damak [4] and Mihit [15] worked on the
η-stability of some evolution equations in Banach spaces by using some Gronwall-type
inequalities.

However, according to the literature we reviewed, there is little literature on the η-
stability for stochastic systems. Employing the Lyapunov’s method, Caraballo et al. [1]
studied the η-stability for neutral stochastic pantograph differential equations driven by
Lévy noise, and Li et al. [11] explored the η-stability for stochastic Volterra–Levin equa-
tions. In our paper, we try to make a study of the h-stability of the following functional
SDE:

⎧
⎨

⎩

dy(t) = f (t, Et , yt) dt + u(t, Et , yt) dEt + g(t, Et , yt) dBEt , t ≥ 0,

y0(·) = ϕ ∈ C([–r, 0];Rd),
(1.1)

where Et is defined as the inverse of the β-stable subordinator with index 0 < β < 1,
yt = {y(t + ϑ) : ϑ ∈ [–r, 0]} is treated as a C([–r, 0];Rd)-valued process. Giving some co-
efficient conditions ensuring that the solution of (1.1) is h-stable in the pth moment by
using Lyapunov’s technique is our first major research aim.

Effectively, it is difficult to look for a Lyapunov’s function (functional) for time changed
stochastic systems. Meanwhile, the obtained conditions captured by making use of Lya-
punov’s function are generally shown on the basis of some differential inequalities, matrix
inequalities, and so on. There calculations are complicated and difficult to test. The sec-
ond aim of our paper is to study some new explicit conditions to ensure that the solution
of (1.1) possesses the η-stability in mean square under some hypotheses. In the proof, our
method takes advantage of the Itô formula and involves a proof by contradiction.

2 Preliminary
Let (�,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions. Assume that {D(t), t ≥ 0} is a càdlàg nondecreasing Lévy process, which
is named a subordinator, that starts at 0. Particularly, D(t) is called the β-stable subordi-
nator denoted by Dβ (t) if it is strictly increasing with the following Laplace transform:

E
(
e–λDβ (t)) = e–tλβ

, λ > 0,β ∈ (0, 1).

Define the generalized inverse of Dβ (t) as

Et := Eβ
t = inf

{
u > 0 : Dβ (u) > t

}
,

which is well known as the initial hitting time process. The time-change process Et is
nondecreasing and continuous. Define the special filtration as

Ft =
⋂

u>t

{
σ (Bv : 0 ≤ v ≤ u) ∨ σ (Ev : v ≥ 0)

}
,

where Bv is the standard Brownian motion and the notation σ1 ∨σ2 denotes the σ -algebra
generated by the union of σ -algebras σ1 and σ2. By the results in [14], we can deduce that
BEt is a square integrable martingale with respect to the filtration Gt = FEt .
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Let r > 0 and C := C([–r, 0];Rd) denote the family of all continuous functions φ from
[–r, 0] to R

d with the norm ‖φ‖C = sup–r≤s≤0 |φ(s)|.
Based on [26], we put forward the following hypotheses for ensuring the existence and

uniqueness of a solution for (1.1):
(H1) f , u : R+ ×R+ × C → R

d and g : R+ ×R+ × C →R
d×k are some measurable

functions and there is a positive constant K such that for all t1, t2 ≥ 0 and x, y ∈ C,

∣
∣f (t1, t2, x) – f (t1, t2, y)

∣
∣ ∨ ∣

∣u(t1, t2, x) – u(t1, t2, y)
∣
∣ ∨ ∥

∥g(t1, t2, x) – g(t1, t2, y)
∥
∥

≤ K‖x – y‖C .

(H2) If y(t) is a càdlàg Gt-adapted process, then

f (t, Et , yt), u(t, Et , yt), g(t, Et , yt) ∈L(Gt),

where L(Gt) denotes the class of càdlàg Gt-adapted processes.
To establish η-stability, we also demand the following assumption:

f (t1, t2, 0) ≡ 0, h(t1, t2, 0) ≡ 0, g(t1, t2, 0) ≡ 0. (2.1)

Referring to [26], we conclude that (1.1) has a unique Gt-adapted solution process y(t)
under the assumptions (H1) and (H2). Furthermore, equation (1.1) has a trivial solution
when the initial value is ξ ≡ 0.

Definition 2.1 A positive function η on R+ is called an η-type function if the following
assumptions are fulfilled:

(i) It is nondecreasing and continuously differentiable in R+.
(ii) η(0) = 1, limt→∞ η(t) = ∞, and J = supt>0 | η′(t)

η(t) | < ∞.
(iii) For all u ≥ 0 and v ≥ 0, one has η(u + v) ≤ η(u)η(v).

Definition 2.2 A solution y(t,ϕ) of (1.1) is called η-stable in the pth moment sense if, for
any initial data ϕ, there are positive constants δ > 0 and K > 0 such that for each t ≥ 0,

E
∣
∣y(t,ϕ)

∣
∣p ≤ KE‖ϕ‖Cη–δ(t). (2.2)

In particular, if p is equal to 2, y(t,ϕ) is said to be η-stable in mean square.

Remark 2.1 We remark that h-stability coincides with some known stability types when
h are some special functions. In fact, if h(t) = et , then η-stability is consistent with expo-
nential stability; if η(t) = 1 + t, then η-stability is consistent with polynomial stability, and
if η(t) = ln(e + t), then η-stability is consistent with logarithmic stability.

Remark 2.2 There exists an η-type function which tends to infinity faster than et . For
instance, η(t) = (1 + t)et is an η-type function and limt→+∞ (1+t)et

et = +∞.
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3 Main results
Let V ∈ C1,1,2(R+ × R+ × R

d,R), Vt1 (t1, t2, y) = ∂V (t1,t2,y)
∂t1

, Vt2 (t1, t2, y) = ∂V (t1,t2,y)
∂t2

, Vy(t1,

t2, y) = ( ∂V (t1,t2,y)
∂y1

, . . . , ∂V (t1,t2,y)
∂yd

) and Vyy(t1, t2, y) = ( ∂2V (t1,t2,y)
∂yi∂yj

)d×d be continuous for all
(t1, t2, y) ∈R+ ×R+ ×R

d . By Itô formula (see [21]), from (1.1) we have

dV (t1, t2, y) = J1V (t1, t2, y) dt + J2V (t1, t2, y) dEt + Vy(t1, t2, y)g(t1, t2, y) dBEt , (3.1)

where

J1V (t1, t2, y) = Vt1 (t1, t2, y) + Vx(t1, t2, y)f (t1, t2, y) (3.2)

and

J2V (t1, t2, y) = Vt2 (t1, t2, y) + Vx(t1, t2, y)u(t1, t2, y)

+
1
2

Tr
[
gT (t1, t2, y)Vyy(t1, t2, y)g(t1, t2, y)

]
.

(3.3)

Theorem 3.1 Let the hypotheses (H1) and (H2) hold. Assume that there is V ∈ C1,1,2(R+ ×
R+ ×R

d,R+) such that for any (t, Et , y(t)) ∈R+ ×R+ ×R
d ,

(i) c1|y(t)|p ≤ V (t, Et , y(t)) ≤ c2|y(t)|p,
(ii) J1V (t, Et , y(t)) ≤ –λV (t, Et , y(t)),
(iii) J2V (t, Et , y(t)) ≤ 0,

hold for the solution y(t) of (1.1), where p, c1, c2, and λ are some positive constants. If for
δ ∈ (0,λ/J), we can show

E
(∣
∣y(t)

∣
∣p) ≤ c2

c1
η–δ(t)E

(‖ϕ‖p
C
)
,

then the trivial solution of (1.1) is η-stable in mean square.

Proof Let δ ∈ (0,λ/J). Applying Itô formula to ηδ(t)V (t1, t2, y(t)), for every t ≥ 0, we obtain

ηδ(t)V
(
t1, t2, y(t)

)

= V
(
0, 0, y(0)

)
+

∫ t

0
ηδ(s)

[

δ
η′(s)
η(s)

V
(
s, Es, y(s)

)
+ Vt1

(
s, Es, y(s)

)

+ Vy
(
s, Es, y(s)

)
f (s, Es, ys)

]

ds

+
∫ t

0
hδ(s)

[

Vt2

(
s, Es, y(s)

)
+ Vy

(
s, Es, y(s)

)
u(s, Es, ys)

+
1
2

Tr
[
gT (s, Es, ys)Vyy

(
s, Es, y(s)

)
g(s, Es, ys)

]
]

dEs

+
∫ t

0
ηδ(s)Vy

(
s, Es, y(s)

)
g(s, Es, ys) dBEs .
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By condition (iii), we get

hδ(t)V
(
t1, t2, y(t)

)

≤ V
(
0, 0, y(0)

)
+

∫ t

0
hδ(s)

[

δ
h′(s)
h(s)

V
(
s, Es, y(s)

)
+ Vt1

(
s, Es, y(s)

)

+ Vy
(
s, Es, y(s)

)
f (s, Es, ys)

]

ds

+
∫ t

0
hδ(s)Vy

(
s, Es, y(s)

)
g(s, Es, ys) dBEs . (3.4)

Notice that

E

∫ t

0
hδ(s)Vy

(
s, Es, y(s)

)
g(s, Es, ys) dBEs = 0.

Then, taking expectations on both sides of (3.4), we have

E
[
hδ(t)V

(
t, Et , y(t)

)]
= E

[
V

(
0, 0, y(0)

)]

+ E

(∫ t

0
ηδ(s)

[

δ
η′(s)
η(s)

V
(
s, Es, y(s)

)
+ J1V

(
s, Es, y(s)

)
]

ds
)

.

By using Definition 2.1(ii), one has

E
[
ηδ(t)V

(
t, Et , y(t)

)] ≤ E
[
V

(
0, 0, y(0)

)]

+ E

(∫ t

0
ηδ(s)

[
δJV

(
s, Es, y(s)

)
+ J1V

(
s, Es, y(s)

)]
ds

)

.

Since δ ∈ (0,λ/J), according to condition (ii), one has

E
[
ηδ(t)V

(
t, Et , y(t)

)] ≤ E
[
V

(
0, 0, y(0)

)]
.

Furthermore, from condition (i), we can obtain

c1E
[
ηδ(t)

∣
∣y(t)

∣
∣p] ≤ E

[
ηδ(t)V

(
t, Et , y(t)

)] ≤ E
[
V

(
0, 0, y(0)

)] ≤ c2E
[‖ϕ‖p

C
]
.

Hence

E
[∣
∣y(t)

∣
∣p] ≤ c2

c1
η–δ(t)E

[‖ϕ‖p
C
]
.

The proof is complete. �

Remark 3.1 The authors of [28] showed that the solution of (1.1) without time delay is the
pth moment exponentially stable under (H1) and (H2) when the conditions (i)–(iii) are
satisfied. Thus, it follows from Remark 2.1 that our Theorem 3.1 generalizes Theorem 4.1
of [28].
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Remark 3.2 The authors of [26] showed that the solution for (1.1) with Markovian switch-
ing is the pth moment exponentially stable under (H1) and (H2) when the conditions
(i)–(iii) are satisfied. We remark that the solution of (1.1) with Markovian switching is
h-stable in the pth moment sense under (H1) and (H2) when the corresponding condi-
tions (i)–(iii) hold, which implies that our Theorem 3.1 expands Theorem 3.1 of [26] by
using Remark 2.1.

Next, we want to make use of Theorem 3.1 to establish the following corollary.

Corollary 3.1 Let the assumptions (H1)–(H2) hold. If there is a positive constant λ > 0
such that, for all t ≥ 0 and the solution x(t) of (1.1), one has

〈
y(t), f (t, Et , yt)

〉 ≤ –λ
∣
∣y(t)

∣
∣2 (3.5)

and

2
〈
y(t), u(t, Et , yt)

〉
+ Tr

[
gT (t, Et , yt)g(t, Et , yt)

] ≤ 0, (3.6)

then the trivial solution of (1.1) is η-stable in mean square.

Proof Let V (t, Et , y(t)) = |y(t)|2. One can obviously check that condition (i) in Theorem 3.1
holds for p = 2, c1 = c2 = 1, and

J1V
(
t, Et , y(t)

)
= 2

〈
y(t), f (t, Et , yt)

〉
,

J2V
(
t, Et , y(t)

)
= 2

〈
y(t), u(t, Et , yt)

〉
+ Tr

[
gT (t, Et , yt)g(t, Et , yt)

]
.

Thus, (3.5) and (3.6) respectively imply that the conditions (ii) and (iii) hold. The proof is
complete. �

And now we are going to study some new conditions ensuring the η-stability for (1.1). At
this time, we need to introduce some functions. Let κ(ϑ , t) : [–r, 0] ×R+ →R

d be increas-
ing in ϑ for all t ∈R+. Besides, we also assume that κ(θ , t) is normalized to be continuous
from the left in ϑ on [–r, 0]. Let

L(ϕ, t) :=
∫ 0

–r
ϕ(ϑ) d

[
κ(ϑ , t)

]
, t ≥ 0, (3.7)

be a locally bounded Borel-measurable function in t for each ϕ ∈ C([–r, 0];Rd). In our
case, the integral in (3.4) is the Riemann–Stieltjes integral.

Theorem 3.2 Let ζ (·) : R+ → R be a locally bounded Borel-measurable function. If for
any t ∈R+ and ϕ ∈ C([–r, 0];Rd), one has

2
〈
ϕ(0), f (t, Et ,ϕ)

〉 ≤ ζ (t)
∣
∣ϕ(0)

∣
∣2 +

∫ 0

–r

∣
∣ϕ(ϑ)

∣
∣2 d

[
κ(t,ϑ)

]
(3.8)

and

2
〈
ϕ(0), u(t, Et ,ϕ)

〉
+ Tr

[
gT (t, Et ,ϕ)g(t, Et ,ϕ)

] ≤ 0, (3.9)
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then the solution of (1.1) is η-stable in the mean square sense if there exists β > 0 such
that for any t ∈ R+,

ζ (t) +
∫ 0

–r
ηβ (–s) d

[
κ(t, s)

] ≤ –β . (3.10)

Proof To prove the above conclusion, we will divide the value range of J into two, namely
J ∈ (0, 1] and J ∈ (1, +∞). The specific proof process is as follows:

Case 1. Suppose J ∈ (0, 1]. Fix K > 1 and let ϕ ∈ C([–r, 0];Rd) be such that E‖ϕ‖2
C > 0. We

denote y(t) := y(t,ϕ), t ≥ –r, where y(t,ϕ) is the solution of (2.1). Denote Y (t) := E|y(t)|2,
t ∈ R+ and Z(t) := KE‖ϕ‖2

Cη–β (t), t ≥ 0. For convenience, we define η(t) = η(0) = 1 for
t ∈ [–r, 0]. Next, we can conclude that Y (t) < Z(t) for t ∈ [–r, 0] since K > 1 and E‖ϕ‖2

C > 0.
We shall show

Y (t) ≤ Z(t), ∀t ∈R+. (3.11)

To the contrary, we assume that there exists t1 > 0 such that Y (t1) > Z(t1). Let t∗ := inf{t >
0 : Y (t) > Z(t)}. By continuity of Y (t) and Z(t), we have

Y (t) ≤ Z(t), t ∈ [
0, t∗], Y

(
t∗) = Z

(
t∗) (3.12)

and

E
∣
∣y(tn)

∣
∣2 > KE‖ϕ‖2

Cη–β (tn),

for some tn ∈ (t∗, t∗ + 1
n ), n ∈N.

Choosing 0 < δ < β and applying Itô formula to V (t, y) = ηδ(t)|y(t)|2, one has

ηδ(t)
∣
∣y(t)

∣
∣2 =

∣
∣ϕ(0)

∣
∣2 +

∫ t

0
δηδ(s)

η′(s)
η(s)

∣
∣y(s)

∣
∣2 ds + 2

∫ t

0
ηδ(s)

〈
y(s), f (s, Es, ys)

〉
ds

+ 2
∫ t

0
ηδ(s)

〈
y(s), u(s, Es, ys)

〉
dEs + 2

∫ t

0
ηδ(s)

〈
y(s), u(s, Es, ys)

〉
dBEs

+
∫ t

0
ηδ(s) Tr

[
gT (s, Es, ys)g

(
(s, Es, ys)

)]
dEs.

Utilizing the standard property of the Itô integral, one has

E

(∫ t

0
hδ(s)

〈
y(s), g(s, Es, ys)

〉
dBEs

)

= 0.

From (3.8), (3.9), and the Fubini theorem, we get

ηδ(t)E
∣
∣y(t)

∣
∣2 ≤ ∣

∣ϕ(0)
∣
∣2 +

∫ t

0
ηδ(u)E

∣
∣y(u)

∣
∣2(Jδ + ζ (u)

)
ds

+
∫ t

0
ηδ(u)

(∫ 0

–r
E

∣
∣y(u + ϑ)

∣
∣2 d

[
κ(u,ϑ)

]
)

du.
(3.13)
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Let K1 := KE‖ξ‖2. Since κ(u,ϑ) is nondecreasing in ϑ on [–r, 0], from (3.11) we know that

∫ 0

–r
E

∣
∣y(u + ϑ)

∣
∣2 d

[
κ(u,ϑ)

] ≤ K1

∫ 0

–r
η–β (u + ϑ) d

[
κ(u,ϑ)

]
,

for any u ≤ t∗.
If u + ϑ ≤ 0, then u ≤ –ϑ . Since η is increasing in R+, we have

η–β (u)ηβ (–ϑ) ≥ 1 = η–β (u + ϑ).

If u + ϑ ≥ 0, by Definition 2.1(iii), we also have

η–β (u + ϑ) ≤ η–β (u)ηβ (–ϑ).

So, we get for each t∗ ≥ s that

∫ 0

–r
E

∣
∣y(s + ϑ)

∣
∣2 d

[
κ(u,ϑ)

] ≤ K1

∫ 0

–r
η–β (u)ηβ (–ϑ) d

[
κ(u,ϑ)

]
.

Then, combining (3.10) and (3.13), we get for any u ≤ t∗,

ηδ(t)E
∣
∣y(t)

∣
∣2 ≤ ∣

∣ϕ(0)
∣
∣2 + K1

∫ t

0
ηδ–β (u)

(
δ + ζ (u)

)
du

+
∫ t

0
ηδ–β (u)

(∫ 0

–r
ηβ (–ϑ)d

[
κ(u,ϑ)

]
)

du

≤ ∣
∣ξ (0)

∣
∣2 + K1

∫ t

0
hδ–β (s)(δ – β) ds.

Noticing that J ∈ (0, 1], we have –η(u) ≤ η′(u). Since δ – β < 0, we obtain

ηδ(t)E
∣
∣y(t)

∣
∣2 ≤ E

∣
∣ϕ(0)

∣
∣2 + K1

∫ t

0
(δ – β)ηδ–β–1(u)η′(u) du.

Due to the fact that K > 1, we have

ηδ
(
t∗)

E
∣
∣y

(
t∗)∣∣2 ≤ ∣

∣ϕ(0)
∣
∣2 + K1

[
ηδ–β

(
t∗) – 1

]

=
(∣
∣ϕ(0)

∣
∣2 – K‖ϕ‖2

C
)

+ KE‖ϕ‖2
Cηδ–β

(
t∗)

< KE‖ϕ‖2
Cηδ–β

(
t∗).

Thus, E|y(t∗)|2 < KE‖ϕ‖2
Cη–β (t∗), which conflicts with (3.12). Hence,

E
∣
∣y(t)

∣
∣2 ≤ KE‖ϕ‖2

Cη–β (t), for each t ≥ 0.

Consequently, the solution of (1.1) is η-stable in the mean square sense.
Case 2. Suppose J ∈ (1, +∞). Choose 0 < δ < β

J . By a simple calculation, we know that
0 < Jδ–β

J(δ–β) < 1. Fix K > J(δ–β)
Jδ–β

> 1 and let ϕ ∈ C([–r, 0];Rd) be such that E‖ϕ‖2
C > 0. In a

similar manner, we can also show that for each t ∈R+,

Y (t) ≤ Z(t). (3.14)
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To the contrary, we assume that there exists t1 > 0 such that X(t1) > Z(t1). Let t∗ := inf{t >
0 : Z(t) < Y (t)}. By continuity of Y (t) and Z(t),

Y (t) ≤ Z(t), t ∈ [
0, t∗], Y

(
t∗) = Z

(
t∗), (3.15)

and

E
∣
∣y(tn)

∣
∣2 > KE‖ϕ‖2

Cη–β (tn),

for some tn ∈ (t∗, t∗ + 1
n ), n ∈N.

Applying the Itô formula to V (t, y) = ηδ(t)|y(t)|2, we get for all t ≤ t∗,

ηδ(t)E
∣
∣y(t)

∣
∣2 ≤ E

∣
∣ϕ(0)

∣
∣2 + K1

∫ t

0
ηδ–β (u)

(
Jδ + ζ (u)

)
du

+
∫ t

0
ηδ–β (u)

(∫ 0

–r
ηβ (–ϑ)d

[
κ(u,ϑ)

]
)

du

≤ E
∣
∣ϕ(0)

∣
∣2 + K1

∫ t

0
ηδ–β (u)(Jδ – β) du.

Noticing that J ∈ (1, +∞), we have –η(s) ≤ 1
J η

′(s). Since Jδ – β < 0, we get

ηδ(t)E
∣
∣y(t)

∣
∣2 ≤ E

∣
∣ϕ(0)

∣
∣2 + K1

∫ t

0

Jδ – β

J
ηδ–β–1(u)h′(u) du

= E
∣
∣ϕ(0)

∣
∣2 + K1

Jδ – β

J(δ – β)
[
ηδ–β

(
t∗) – 1

]
.

Noticing that 0 < Jδ–β

J(δ–β) < 1 and using the fact that K > J(δ–β)
Jδ–β

, one has

ηδ
(
t∗)

E
∣
∣y

(
t∗)∣∣2 ≤ E

∣
∣ϕ(0)

∣
∣2 + K1η

δ–β
(
t∗) – K

Jδ – β

J(δ – β)
E‖ϕ‖2

C

=
(

E
∣
∣ϕ(0)

∣
∣2 – K

Jδ – β

J(δ – β)
E‖ϕ‖2

C

)

+ KE‖ϕ‖2
Cηδ–β

(
t∗)

< KE‖ϕ‖2
Cηδ–β

(
t∗).

Thus, E|y(t∗)|2 < KE‖ϕ‖2
Cη–β (t∗), which conflicts with (3.15). Hence,

E
∣
∣y(t)

∣
∣2 ≤ KE‖ϕ‖2

Cη–β (t), for each t ≥ 0.

Consequently, the solution of (1.1) is h-stable in the mean square sense.
The proof is complete. �

Corollary 3.2 Let �(·, ·) : [–r, 0] × R+ → R+, ζi(·), ri(·) : R+ → R, i = 0, 1, 2, . . . , m with
0 := r0(t) ≤ r1(t) ≤ r2(t) ≤ · · · ≤ rm(t) ≤ r, t ∈ R+, be locally bounded Borel-measurable
functions. If for each t ∈R+ and ϕ ∈ C([–r, 0];Rd) one has

2
〈
ϕ(0), f (t, Et ,ϕ)

〉 ≤
m∑

i=1

ζi(t)
∣
∣ϕ

(
–ri(t)

)∣
∣2 +

∫ 0

–r
�(t, s)

∣
∣ϕ(s)

∣
∣2 ds (3.16)
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and

2
〈
ϕ(0), u(t, Et ,ϕ)

〉
+ Tr

[
gT (t, Et ,ϕ)g(t, Et ,ϕ)

] ≤ 0, (3.17)

then the solution of (1.1) is η-stable in the mean square sense if there exists β > 0 such
that for each t ∈ R+,

m∑

i=1

ηβ
(
ri(t)

)
γi(t) +

∫ 0

–r
ηβ (–u)�(t, u) du ≤ –β . (3.18)

Proof Define the following functions for t ≥ 0, u ∈ [–r, 0]:

ui(u, t) :=

⎧
⎨

⎩

0, if u ∈ [–r, –ri(t)],

γi(t), if u ∈ (–ri(t), 0],

κ(u, t) :=
n∑

i=1

ui(u, t) +
∫ u

–r
�(r, t) dr.

By the properties of the Riemann–Stieltjes integrals, for any ϕ(·) ∈ C([–r, 0];Rd), we have

∫ 0

–r
ϕ(u) d

[∫ u

–r
�(r, t) dr

]

=
∫ 0

–r
ϕ(u)�(u, t) du, t ∈R+,

Then for any t ∈R+, ϕ(·) ∈ C([–r, 0];Rd),

∫ 0

–r
φ(u) d

[
κ(u, t)

]
=

m∑

i=1

ζi(t)ϕ
(
–ri(t)

)
+

∫ 0

–r
ϕ(u)�(u, t) du.

Hence, (3.16) implies that (3.6) holds, and (3.18) implies that (3.10) holds. According to
Theorem 3.1, we can immediately derive our desired result. The proof is complete. �

Corollary 3.3 Let ζ be a constant and ν(·) : [–r, 0] →R+ an increasing function. If for any
t ∈R+ and ϕ ∈ C([–r, 0];Rd), one has

2
〈
ϕ(0), f (t, Et ,ϕ)

〉 ≤ ζ
∣
∣ϕ(0)

∣
∣2 +

∫ 0

–r

∣
∣ϕ(ϑ)

∣
∣2 d

[
ν(ϑ)

]
(3.19)

and

2
〈
ϕ(0), u(t, Et ,ϕ)

〉
+ Tr

[
gT (t, Et ,ϕ)g(t, Et ,ϕ)

] ≤ 0, (3.20)

then the solution of (1.1) is η-stable in the mean square sense if

ζ + ν(0) – ν(–r) < 0. (3.21)

Proof By (3.21) and the continuity of η(t), we can show that for a sufficiently small β > 0
one has the following inequality:

ζ + ηβ (r)
[
ν(0) – ν(–r)

]
< –β .
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Since ν(·) is increasing, we obtain

ζ +
∫ 0

–r
ηβ (–ϑ) d

[
ν(ϑ)

] ≤ ζ + ηβ (r)
[
ν(0) – ν(–r)

]
< –β ,

which implies that (3.10) holds. The proof is complete. �

From Corollaries 3.2 and 3.3, we can immediately obtain the following Corollary 3.4.

Corollary 3.4 Let ri(·) : R+ → R, i = 0, 1, 2, . . . , m with 0 := r0(t) ≤ r1(t) ≤ r2(t) ≤ · · · ≤
rm(t) ≤ r, t ∈R+, be locally bounded Borel-measurable functions. Assume that there exist
constants ζi, i = 0, 1, 2, . . . , m and a Borel-measurable function μ : [–r, 0] → R+ such that
for any t ∈R+ and ϕ ∈ C([–r, 0];Rd),

2
〈
ϕ(0), f (t, Et ,ϕ)

〉 ≤
m∑

i=1

ζi
∣
∣ϕ

(
–ri(t)

)∣
∣2 +

∫ 0

–r
μ(u)

∣
∣ϕ(u)

∣
∣2 du (3.22)

and

2
〈
ϕ(0), u(t, Et ,ϕ)

〉
+ Tr

[
gT (t, Et ,ϕ)g(t, Et ,ϕ)

] ≤ 0. (3.23)

Then, the solution of (1.1) is h-stable in the mean square sense if

m∑

i=0

ζi +
∫ 0

–r
μ(u) du < 0. (3.24)

Remark 3.3 In fact, the assumptions (3.8) and (3.9) are generalizations of some existing
conditions. According to the information we have found in the reported literature, even
for deterministic differential equations, the assumptions (3.8) and (3.9) have not been used
to research the η-stability in mean square of stochastic systems. Our results are of in-
novative value and they provide advantage when studying applications of “mixed” delay
time-changed SDEs, including the point, variable, and distributed delay.

Remark 3.4 The conditions of Theorems 3.1 and 3.2 highlight the dominant role of the
drift term “dt” in the study of the η-stability for a time-changed system. In the meantime,
it indicates that “dEt” and “dBEt ” are relatively less important.

Now, we intend to present an example to explain the statement in Remark 3.4. We con-
sider the following two time-changed SDEs:

dy(t) = –y(t) dt + cy(t) dEt + dy(t) dBEt (3.25)

and

dy(t) = y(t) dt + cy(t) dEt + dy(t) dBEt . (3.26)

By Corollary 3.4, we conclude that the time-changed equation (3.25) is h-stable if 2c +
d2 ≤ 0, while we cannot conclude that the time-changed equation (3.26) is h-stable no
matter what c and d are.
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4 Some examples
Example 4.1 Consider the following functional stochastic differential equation driven by
the time-changed Brownian motion:

dy(t) =
(
f0

(
t, y(t)

)
+ f1(t, y(t)

)
dt + u(t, Et)y(t) dEt + g(t, Et)y(t) dBEt (4.1)

with y0(·) = ξ ∈ C([–r, 0];Rd). Assume that there exists a continuous function ζ (·) :
[–r, 0] →R+ such that for all t ≥ 0, y ∈R

d , and ϕ ∈ C([–r, 0];Rd),

yT f0(t, y) ≤ α|y|2, (4.2)

∣
∣f1(t,ϕ)

∣
∣ ≤

∫ 0

–r
ζ (ϑ)

∣
∣ϕ(t + ϑ)

∣
∣dϑ , (4.3)

and for all t1, t2 > 0,

2u(t1, t2) + g2(t1, t2) ≤ 0. (4.4)

According to [26], we can draw the conclusion that the null solution of (4.1) is mean square
exponentially stable if

α +
√

r
(∫ 0

–r

(
ζ (u)

)2 du
)1/2

< 0. (4.5)

Notice that (4.2) and (4.3) mean that

ϕ(0)T f (t,ϕ) ≤
(

α +
1
2

∫ 0

–r
ζ (u) du

)
∣
∣ϕ(0)

∣
∣2 +

1
2

∫ 0

–r
ζ (u)

∣
∣ϕ(u)

∣
∣2 du.

By Corollary 3.4, the null solution of (4.1) is η-stable in mean square if (4.4) holds and

α +
∫ 0

–r
ζ (s) ds < 0. (4.6)

Notice that

∫ 0

–r
ζ (u) du ≤ √

r
(∫ 0

–r

(
ζ (u)

)2 du
)1/2

,

owing to Hölder inequality. So, (4.6) is weaker than (4.5).

Example 4.2 In order to further explain the applicability of our main conclusions, we care-
fully consider the following scalar linear stochastic differential equation with variable de-
lay:

dy(t) =
(
–c(t)y(t) + d(t)y

(
t – h1(t)

))
dt + G(t, Et)y(t) dEt + H(t, Et)y(t) dBEt , (4.7)

where c, d, h1 are continuous functions on R+ and h1(t) ≤ r for some r > 0.
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Let

f (t,ϕ) := –c(t)ϕ(0) + d(t)ϕ
(
–h1(t)

)

for t ≥ 0, ϕ ∈ C([–r, 0];R). Then, for all t ≥ 0, ϕ ∈ C([–r, 0];R), one has

2ϕ(0)f (t,ϕ) = –2c(t)
∣
∣ϕ(0)

∣
∣2 + 2d(t)ϕ(0)ϕ

(
–h1(t)

)

≤ –2c(t)
∣
∣ϕ(0)

∣
∣2 +

∣
∣d(t)

∣
∣
(
ϕ2(0) + ϕ2(–h1(t)

))
.

(4.8)

Next, referring to Corollary 3.2, one can conclude that if there is a positive constant λ such
that for each t ≥ 0,

–2c(t) +
∣
∣d(t)

∣
∣ + ηζ

(
h1(t)

)∣
∣d(t)

∣
∣ ≤ –λ, (4.9)

and for any t1, t2 > 0,

2G(t1, t2) + H2(t1, t2) ≤ 0, (4.10)

then the null solution of (4.7) is η-stable in the mean square sense.
On the other hand, due to continuity,

–c(t) +
∣
∣d(t)

∣
∣ ≤ 0 (4.11)

means that (4.9) holds with some sufficiently small ζ > 0. Hence, as long as (4.10) and
(4.11) hold, one can derive that the null solution of (4.7) is h-stable in the mean square
sense.

Example 4.3 Lastly, we intend to investigate the following distributed delay equation for
t ≥ 0:

dy(t) =
(

–c(t)y(t)+
∫ 0

–r
y(t +ϑ) d

[
κ(ϑ)

]
)

dt –G(t, Et)x(t) dEt +H(t, Et)x(t) dBEt , (4.12)

where κ(t) has bounded variation on [–r, 0] and c(t) is a continuous function.
Denote ζ (t) := c(t) – Var[–r,0]κ(·), t ≥ 0. According to [26], the null solution of (4.12) is

asymptotically stable in mean square provided that for all t, s > 0,

–2G(t, s) + H2(t, s) ≤ 0 (4.13)

and

ζ := inf
u≥0

ζ (u) > 0. (4.14)

In fact, one can also be certain that the null solution of (4.12) is h-stable in mean square
if (4.13) and (4.14) hold. Let

f (t,ϕ) := –c(t)ϕ(0) +
∫ 0

–r
ϕ(ϑ) d

[
κ(ϑ)

]
,
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for t ≥ 0, ϕ ∈ C([–r, 0];R). Define V (u) := Var[–r,u]κ(·), u ∈ [–r, 0]. Then V (u) is increasing
on [–r, 0]. We obtain by the properties of the Riemann–Stieltjes integral

∣
∣
∣
∣

∫ 0

–r
ϕ(0)ϕ(ϑ) d

[
κ(ϑ)

]
∣
∣
∣
∣ ≤

∫ 0

–r

∣
∣ϕ(0)ϕ(ϑ)

∣
∣d

[
V (ϑ)

]
.

Thus,

ϕ(0)f (t,ϕ) ≤ –c(t)ϕ2(0) +
∫ 0

–r

∣
∣ϕ(0)ϕ(ϑ)

∣
∣d

[
V (ϑ)

]

≤
(

–c(t) +
1
2

∫ 0

–r
d
[
V (ϑ)

]
)

ϕ2(0) +
1
2

∫ 0

–r
ϕ2(ϑ) d

[
V (ϑ)

]
.

According to Theorem 3.2, the null solution of (4.12) is η-stable in mean square if (4.13)
is satisfied and there is a positive constant δ > 0 such that for all t ≥ 0,

–c(t) +
1
2

∫ 0

–r
d
[
V (ϑ)

]
+

1
2

∫ 0

–r
ηδ(–ϑ) d

[
V (ϑ)

] ≤ –δ. (4.15)

It follows from (4.14) that for each t ∈R+,

–c(t) + V (0) ≤ –ζ .

Setting δ ∈ (0, ζ

2 ) sufficiently small, we can immediately derive that 1
2 (ηδ(r) – 1)V (0) < ζ

2 ,
and, for each t ∈R+, we get

–c(t) +
1
2

V (0) +
1
2
ηδ(r)V (0) ≤ –

ζ

2
≤ –δ.

Noticing that V (t) is increasing, we can immediately know that
∫ 0

–r ηδ(–ϑ) d[V (ϑ)] ≤
ηδ(r)V (0). So, one obtains, for any t ∈R+,

–c(t) +
1
2

∫ 0

–r
d
[
V (ϑ)

]
+

1
2

∫ 0

–r
ηδ(–ϑ) d

[
V (ϑ)

] ≤ –c(t) +
1
2

V (0) +
1
2
ηδ(r)V (0) ≤ –δ.

5 Conclusion
In this paper, by using the time-changed Itô formula and proof by contradiction, we gained
some new criteria of the η-stability in mean square for the stochastic functional differential
equation driven by time-changed Brownian motion. Three concrete examples were given
to illustrate the validity of our main conclusions. Hopefully, in the future, we can continue
our study of the η-stability in mean square for other special stochastic equations.
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