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Abstract
Recent research indicates the need for improved models of physical phenomena with
multiple shocks. One of the newest methods is to use differential inclusions instead of
differential equations. In this work, we intend to investigate the existence of solutions
for anm-dimensional system of quantum differential inclusions. To ensure the
existence of the solution of inclusions, researchers typically rely on the Arzela–Ascoli
and Nadler’s fixed point theorems. However, we have taken a different approach and
utilized the endpoint technique of the fixed point theory to guarantee the solution’s
existence. This sets us apart from other researchers who have used different methods.
For a better understanding of the issue and validation of the results, we presented
numerical algorithms, tables, and some figures. The paper ends with an example.
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1 Introduction
It can be said that the study and extension of fractional calculus (FC) is pioneering the
research in the field of nonlinear analysis in the 21st century. In other words, there is a
general consensus among researchers to use fractional differential equations to model dif-
ferent natural and physical phenomena. Of course, this is not only due to the capabilities of
fractional operators but also experimental data, and evidence confirms the capabilities of
these operators in better interpretation of problems in engineering, biology, physics, etc.
[1]. FC is a branch of mathematics in which derivative and integral operators are defined
for arbitrary fractional orders. This fractional order causes the most significant feature of
fractional operators, i.e., nonlocality. A detailed report on the properties of these operators
can be found in the books of Podlubny and Kilbas [2, 3]. Viscosity, heat flow, and hereditary
polarization in dielectrics are among the results of physicists’ approach to the issue of non-
locality [4]. However, other areas have different approaches to this issue. Mathematicians
also focused on generalizing, expanding, and introducing new fractional operators for use
in modeling various phenomena. The most famous of these are the Riemann–Liouville,
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Caputo, Hadamard, Caputo–Hadamard, q-Caputo, ψ-Caputo, Atangana–Baleanu (AB),
and Hilfer operators. For the latest results of these collaborative efforts, see [5–17]. Re-
gardless of the type of fractional operator used, it is a more powerful model that has higher
interpretation accuracy and less error, so the use of computers and software packages in
presenting models has been of interest to researchers. Therefore, it is momentous to work
in a field where it is possible to use computer algorithms for complex calculations. In the
sequel, we also provide this space with the help of quantum calculus and time scales.

In 1910, Frank Hilton Jackson laid the foundations of quantum calculus (QC) by intro-
ducing two new operators, q- and h-derivatives [18, 19]. In his definition of a derivative,
he removed the concept of a limit, and this caused a discrete space to be prepared for the
analysis of problems. The characteristics of these two operators have been investigated in
detail by Kac and Cheung in [20]. The q-derivative was more popular than the other, and
it did not take long for it to be noticed by researchers in the fields of mathematics and
physics. In recent years, the quantum derivative operator has been used due to the simul-
taneous use of FC capabilities and the possibility of providing algorithms for calculations
in fractional modeling. For example, the most recent results can be seen in [21–24].

It is clear that finding the solution and its exclusivity for inclusions is a fundamental
issue, that is why the theoretical investigation and knowledge of the properties of multi-
functions is momentous. Here the fixed point theory with the help of inequalities plays
a significant role in finding the solutions. The most recent results related to the fixed
point of set-valued mappings are: a fixed point theorem for set-valued quasicontractions
in b-metric spaces [25], existence of fixed points of generalized contractive multivalued
mappings of integral type [26], the generic existence and approximation of fixed points
[27], existence principles for integral inclusions [28], endpoint of closed set-valued con-
tractions [29], and endpoint properties of multifunctions [30]. Various researchers have
studied initial and boundary value problems related to multifunctions. These multivalued
problems (inclusions) are present in the mathematical modeling of diverse issues in eco-
nomics, optimal control, and other fields [31–33]. The growing interest in fractional-order
inclusion problems is apparent in recent works [34–39]. For the first time in 2013, Ahmad
and Ntouyas raised the issue of quantum differential inclusion [40]. They examined the
existence of solutions for nonlinear fractional q-difference inclusions as follows:

⎧
⎨

⎩

CDη
q z(κ) ∈ T (κ , z(κ)), κ ∈K = [0, 1],

a1z(0) – b1Dqz(0) = c1z(r1), a2z(0) – b2Dqz(0) = c2z(r2),

where CDη
q is the fractional q-derivative of the Caputo type, T : [0, 1] × R → P(R) is a

multifunction, P(R) is the family of all subsets of R, and ai, bi, ci, ri ∈ R (i = 1, 2). A year
later, Ahmed and his colleagues in [41] investigated the existence of solutions for fractional
q-integro-difference inclusions with fractional q-integral boundary conditions as follows:

⎧
⎨

⎩

CDβ
q (CDγ

q + λ)z(κ) ∈ AT (κ , z(κ)) + BIδ
qF (κ , z(κ)), κ ∈K = [0, 1],

z(0) = aIα–1
q z(η), z(1) = bIα–1

q z(σ ), α > 2, 0 < η,σ < 1,
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where CDβ
q is the fractional q-derivative of the Caputo type and 0 < β ≤ 1, 0 < γ ≤ 1,

0 < δ < 1, T ,F : [0, 1] ×R→ P(R) are multifunctions, a, b, A, B,α,σ ∈R, and

Iα
q z(ρ) =

∫ ρ

0

(ρ – qs)α–1

�q(α)
z(s) dqs (ρ = η,σ ).

After the aforementioned works (i.e., [40, 41]), further studies were conducted on quan-
tum inclusions. For example, in [42] a fractional hybrid q-difference inclusion was exam-
ined. In [43], α–ψ-contraction and solutions of a q-fractional differential inclusion were
explored. The existence of analytical and numerical results for a fractional q-differential
inclusion with double integral boundary conditions was studied in [44]. Additionally, a
computational method for investigating a quantum integro-differential inclusion was ex-
plored in [45].

To the best of our knowledge, the endpoint property has not been used to investigate
the existence of the solution for an m-dimensional inclusion system, and this is part of
the novelty of our work. Therefore, considering the topics discussed above and getting
motivation from previous works, we want here to examine the existence of a solution for
the following fractional quantum integro-differential inclusion problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

CDη1
q z1(κ) ∈ T1(κ , z1(κ), z′

1(κ), CDσ1
q z1(κ),Iδ1

q z1(κ)),
CDη2

q z2(κ) ∈ T2(κ , z2(κ), z′
2(κ), CDσ2

q z2(κ),Iδ2
q z2(κ)),

...
CDηm

q zm(κ) ∈ Tm(κ , zm(κ), z′
m(κ), CDσm

q zm(κ),Iδm
q zm(κ)).

(1)

under double integral boundary conditions

⎧
⎨

⎩

zj(0) + z′
j(0) + Iδj

q zj(0) =
∫ θ

0 z(p)dp,

zj(1) + z′
j(1) + CDσj

q zj(1) =
∫ λ

0 z(p) dp,
(2)

where in our problem κ ∈ K = [0, 1], CDη
q is the Caputo quantum operator of fractional

order 1 ≤ ηj < 2, and θ ,λ,σj, δj ∈ (0, 1) are such that Tj : K×R
4 →P(R), for j = 1, . . . , m, is

a multifunction where P(R) denotes the set of all subsets of real numbers. The dominant
approach of researchers to guarantee the existence of the solution of inclusions is to use
Arzela–Ascoli and Nadler’s fixed point theorems. But these two methods, in addition to
being long and complicated, are based on the convexity of the inclusion in the problem.
But in the endpoint method, we do not have the limitation of convexity, so we will reach
the desired result with this method. Note that we will continue to do all our calculations
on the time scales, namely TSκ0 = {κ0,κ0q,κ0q2, . . . } ∪ {0}, where κ0 ∈R and q ∈ (0, 1).

2 Basic preliminaries
Definition 2.1 ([18]) Assume that v, p ∈R, n ∈N0 = N∪ {0}, then the quantum-analogue
of v and power function (v – p)n are respectively defined as follows:

[v]q =
1 – qv

1 – q
= 1 + q + · · · + qv–1
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Algorithm 1 The proposed procedure to calculate �q(v)
function quantum gamma = qG(q,v,r)
t = 1;
for j = 0 : r
t = t ∗ (1 – q(j+1))/(1 – q(v+j));
end
qG = t/(1 – q)(v–1);
end

and
⎧
⎨

⎩

(v – p)(n)
q =

∏n–1
j=0 (v – pqi) for n ≥ 1,

(v – p)(0)
q = 1.

The above power function for any real number λ is expressed as follows:

(v – p)(λ)
q = vλ

∞∏

n=0

1 – ( p
v )qn

1 – ( p
v )qλ+n , v 
= 0.

It is obvious that if p = 0 then v(λ) = vλ.

Definition 2.2 ([19]) Let v ∈ R – {0, –1, –2, . . . }, then the quantum gamma function is
formulated as follows:

�q(v) =
(1 – q)(v–1)

(1 – q)v–1 .

Also, it is worth mentioning that �q(v + 1) = [v]q�q(v) holds true.

In the following, we present an Algorithm 1 for calculating the quantum gamma func-
tion, which we illustrated in Tables 1 and 2 for some values of q.

Definition 2.3 ([46]) The quantum derivative of a continuous function z(κ) is defined as
follows:

(Dqz)(κ) =
z(κ) – z(qκ)

(1 – q)κ
,

in addition, (Dqz)(0) = limκ→0(Dqz)(κ). Furthermore, for all n ∈N, the relation (Dn
q z)(κ) =

Dq(Dn–1
q z)(κ) holds true.

Definition 2.4 ([46]) The Jackson integral of z ∈ C([0, a],R) is given as follows:

Iqz(κ) =
∫ κ

0
z(p) dqp = κ(1 – q)

∞∑

j=0

qjz
(
qjκ

)
, κ ∈ [0, a],

provided the right-hand side is absolutely convergent. Furthermore, for all n ∈ N, the re-
lation In

q z(κ) = I(In–1
q z(κ)) holds true.
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Table 1 Numerical results for �q(2.375) for different value of q

r q = 0.13 q = 0.25 q = 0.39 q = 0.58 q = 0.72 q = 0.89

v = 2.25
1 1.0451 1.0948 1.1924 1.5053 2.1388 6.0508
2 1.0429 1.0802 1.1402 1.3348 1.7582 4.4696
3 1.0426 1.0766 1.1209 1.2506 1.5511 3.5776
4 1.0426 1.0757 1.1135 1.2060 1.4267 3.0134
5 1.0426 1.0755 1.1107 1.1813 1.3474 2.6289
6 1.0426 1.0754 1.1096 1.1674 1.2949 2.3526
7 1.0426 1.0754 1.1091 1.1595 1.2593 2.1463
8 1.0426 1.0754 1.1090 1.1550 1.2347 1.9876
9 1.0426 1.0754 1.1089 1.1523 1.2175 1.8626
.. . . . . . . . . . . . . . . . . . .
18 1.0426 1.0754 1.1138 1.1487 1.1772 1.3821
19 1.0426 1.0754 1.1105 1.1487 1.1766 1.3604
... . . . . . . . . . . . . . . . . . .
29 1.0426 1.0754 1.1031 1.1487 1.1751 1.2496
30 1.0426 1.0754 1.1031 1.1751 1.1751 1.2445
... . . . . . . . . . . . . . . . . . .
42 1.0426 1.0754 1.1031 1.1487 1.1751 1.2142
43 1.0426 1.0754 1.1031 1.1487 1.1751 1.2131
.. . . . . . . . . . . . . ... . . .
85 1.0426 1.0754 1.1031 1.1487 1.1751 1.2046
86 1.0426 1.0754 1.1031 1.1487 1.1751 1.2045

Table 2 Numerical results for �q(1.25) for different value of q

r q = 0.2 q = 0.35 q = 0.59 q = 0.7 q = 0.83 q = 0.98

v = 1.25
1 0.9632 0.9597 0.9953 1.0415 1.1575 1.9005
2 0.9606 0.9498 0.9645 0.9971 1.0912 1.7587
3 0.9601 0.9465 0.9484 0.9709 1.0481 1.6593
4 0.9600 0.9454 0.9394 0.9545 1.0180 1.5843
5 0.9600 0.9450 0.9343 0.9438 0.9960 1.5247
6 0.9600 0.9448 0.9314 0.9366 0.9794 1.4757
7 0.9600 0.9448 0.9297 0.9317 0.9666 1.4345
8 0.9600 0.9447 0.9287 0.9284 0.9566 1.3992
9 0.9600 0.9447 0.9281 0.9261 0.9487 1.3684
... . . . . . . . . . . . . . . . . . .
13 0.9600 0.9447 0.9274 0.9221 0.9297 1.2756
14 0.9600 0.9447 0.9273 0.9217 0.9270 1.2577
... . . . . . . . . . . . . . . . . . .
29 0.9600 0.9447 0.9273 0.9209 0.9149 1.1008
30 0.9600 0.9447 0.9273 0.9208 0.9148 1.0945
.. . . . . . . . . . . . . ... . . .
47 0.9600 0.9447 0.9273 0.9208 0.9142 1.0201
48 0.9600 0.9447 0.9273 0.9208 0.9141 1.0171
... . . . . . . . . . . . . . . . . . .
385 0.9600 0.9447 0.9273 0.9208 0.9141 0.9074
386 0.9600 0.9447 0.9273 0.9208 0.9141 0.9073

Remark 2.5 ([46]) For a continuous function z, the following relations hold true at κ = 0:

⎧
⎨

⎩

Iq(Dqz(κ)) = z(κ) – z(0),

Dq(Iqz(κ)) = z(κ), for all κ .

Definition 2.6 ([47]) Suppose that z(κ) : [0,∞] → R is a continuous function, then its
fractional Riemann–Liouville quantum integral and its fractional Caputo quantum deriva-
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tive are respectively expressed by

Iη
q z(κ) =

1
�q(η)

∫ κ

0
(κ – qp)η–1z(p) dqp

and

cDηz(κ) =
1

�q(n – η)

∫ κ

0
(κ – qp)n–η–1Dn

q z(p) dqp, n = [η] + 1.

Lemma 2.7 ([48]) Assume that n = [η] + 1, then the following relation holds true:

CIη
q

CDη
q z(κ) = z(κ) –

n–1∑

j=0

κ j

�q(j + 1)
(
Dj

qz
)
(0),

which is deduced from the general solution for CDη
q z(κ) = 0, expressed by

z(κ) = t0 + t1κ + t2κ
2 + · · · + tn–1κ

n–1,

where t0, . . . , tn–1 ∈R.

Notation 2.8 Here, we introduce some symbols that are used in the topology of the used
space. Let (G, dG) be a metric space, also suppose that P(G) and 2G represent the set of
all subsets of G and the set of all nonempty subsets of G , respectively. In the sequel, we
use the symbols Pcl(G), Pbd(G), Pcx(G), and Pct(G), respectively, to denote the classes of
all closed, bounded, convex, and compact subsets of G .

Definition 2.9 ([30]) A fixed point of a multifunction (set-valued map) such as E : G → 2G

is an element κ ∈K such that κ ∈ E(κ). Moreover, if we have E(κ) = {κ}, then this element,
namely κ , is called an endpoint of E .

Definition 2.10 ([30]) Let (G, dG) be a metric space and E : G → 2G a multifunction. Then
E has an approximative property if infκ∈G supr∈E(κ) dG(κ , r) = 0.

Definition 2.11 ([49]) If (G, dG) is a metric space, then the Pompeiu–Hausdorff metric,
namely HM : 2G × 2G → [0,∞], is defined as follows:

HM(Z ,W) = max
{

sup
z∈Z

dG(z,W), sup
w∈W

dG(Z , w)
}

,

where HM(Z , w) = infz∈Z dG(z, w). Then (Pbd,cl(G),HM) and (Pcl(G),HM) represent a
metric space and a generalized metric space, respectively.

Definition 2.12 ([49]) Assume that V = C(K,R). Then define the space

Gj =
{

zj(κ) : zj(κ), z′
j(κ), CDσj

q zj(κ),Iδj
q zj(κ) ∈ V

}

equipped with the norm

‖z‖j = sup
κ∈K

∣
∣z(κ)

∣
∣ + sup

κ∈K

∣
∣z′

j(κ)
∣
∣ + sup

κ∈K

∣
∣CDσj

q zj(κ)
∣
∣ + sup

κ∈K

∣
∣Iδj

q zj(κ)
∣
∣,
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for all j = 1, . . . , m. Therefore the product space G = G1 ×· · ·×Gm, equipped with the norm
‖(z1, . . . , zm)‖ =

∑m
j=1 ‖z‖j, namely (G,‖ · ‖), is a Banach space.

Definition 2.13 Let w ∈ G , then for all κ ∈K, define the set of selection of S∗ as follows:

S∗
Tj ,z =

{
g ∈L1(K) : g(κ) ∈ Tj

(
κ , zj(κ), z′

j(κ), CDσj
q zj(κ),Iδj

q zj(κ)
)}

.

If dim(G) < ∞, then the above selection is nonempty, which is proved in [49].

In 2010, Amini–Harandi introduced the endpoint technique, which plays an essential
role in proving our main result [30]. Now we will present it here.

Lemma 2.14 ([30]) Suppose that (G, dG) is a complete metric space, also consider two maps
� and E with the following properties:

• � : [0,∞) → [0,∞) is upper semicontinuous (usc), i.e., ∀κ > 0 we have �(κ) < κ and
lim infκ→∞(κ – �(κ)) > 0.

• ∀w, z ∈ G , for the set-valued map E : G →Pcl,bd(G), the inequality
HM(E(w),E(r)) ≤ �(dG(w, r)) holds true.

Then the set-valued map E has a unique endpoint iff E has an approximative endpoint
property.

3 Main results
Now we have provided the prerequisites necessary to express our main results, and only
one lemma remains, which we prove here.

Lemma 3.1 The unique solution to the fractional q-differential problem cDη
q z(κ) = g(κ)

under boundary conditions (2) is expressed by

z(κ) =
1

�q(η)

∫ κ

0
(κ – qp)η–1g(p) dqp

+
a

b�q(η)

∫ θ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

+
(θ2 – 2)
2b�q(η)

∫ λ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

+
2 – θ2

2b�q(η)

∫ 1

0
(1 – qp)η–1g(p) dqp

+
2 – θ2

2b�q(η – σ )

∫ 1

0
(1 – qp)η–σ–1g(p) dqp

+
2 – θ2

2b�q(η – 1)

∫ 1

0
(1 – qp)η–2g(p) dqp

+
(2b + 2a(θ – 1))κ

b(2 – θ2)�q(η)

∫ θ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

+
(1 – θ )κ
b�q(η)

∫ λ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

+
(θ – 1)κ
b�q(η)

∫ 1

0
(1 – qp)η–1g(p) dqp
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+
(θ – 1)κ

b�q(η – σ )

∫ 1

0
(1 – qp)η–σ–1g(p) dqp

+
(θ – 1)κ

b�q(η – 1)

∫ 1

0
(1 – qp)η–2g(p) dqp

such that η ∈ [1, 2), g(κ) ∈ V , and

a = 2 +
1

�q(2 – σ )
–

λ2

2
, b = a(1 – θ ) +

(
θ2

2
– 1

)

(1 – λ).

Proof In view of Lemma 2.7, the problem CDη
q z(κ) = g(κ) has a unique solution which is

given by

z(κ) = Iη
q g(κ) + t0 + t1κ =

1
�q(η)

∫ κ

0
(κ – qp)η–1g(p) dqp + t0 + t1κ , (3)

with t0, t1 ∈ R. To apply the boundary conditions, it is necessary to calculate the first-order
derivative, namely z′(κ) = t1 + Iη–1

q g(κ). Now with regard to boundary conditions (2), we
get z(0) + z′(0) + Iδ

q z(0) = t0 + t1, and

zj(1) + z′(1) + CDσ
q z(1) =

1
�q(η)

∫ 1

0
(1 – qp)η–1g(p) dqp

+
1

�q(η – σ )

∫ 1

0
(1 – qp)η–σ–1g(p) dqp

+
1

�q(η – 1)

∫ 1

0
(1 – qp)η–2g(p) dqp

+ t0 + t1

(

2 +
1

�q(2 – σ )

)

.

By performing simple calculations, we obtain

t0(1 – θ ) + t1

(

1 –
θ2

2

)

=
1

�q(η)

∫ θ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

and

t0(1 – λ) + t1

(

2 +
1

�q(2 – σ )
–

λ2

2

)

=
1

�q(η)

∫ λ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

–
1

�q(η)

∫ 1

0
(1 – qp)η–1g(p) dqp

–
1

�q(η – σ )

∫ 1

0
(1 – qp)η–σ–1g(p) dqp

–
1

�q(η – 1)

∫ 1

0
(1 – qp)η–2g(p) dqp.

Just for simplicity in computations, we set

a = 2 +
1

�q(2 – σ )
–

λ2

2
and b = a(1 – θ ) +

(
θ2

2
– 1

)

(1 – λ).
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Thus, the values of t0 and t1 will be as follows:

t0 =
a

b�q(η)

∫ θ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

+
(θ2 – 2)
2b�q(η)

∫ λ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

+
2 – θ2

2b�q(η)

∫ 1

0
(1 – qp)η–1g(p) dqp

+
2 – θ2

2b�q(η – σj)

∫ 1

0
(1 – qp)η–σ–1g(p) dqp

+
2 – θ2

2b�q(η – 1)

∫ 1

0
(1 – qp)η–2g(p) dqp,

and

t1 =
2b + 2a(θ – 1)
b(2 – θ2)�q(η)

∫ θ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

+
(1 – θ )
b�q(η)

∫ λ

0

∫ p

0
(p – qm)η–1g(m) dqm dp

+
θ – 1

b�q(η)

∫ 1

0
(1 – qp)η–1g(p) dqp

+
θ – 1

b�q(η – σj)

∫ 1

0
(1 – qp)η–σ–1g(p) dqp

+
θ – 1

b�q(η – 1)

∫ 1

0
(1 – qp)η–2g(p) dqp,

Placing coefficients t0 and t1 in equation (3) provides the desired result. �

In order to obtain the result in our inclusion problem, it is necessary to apply the fol-
lowing hypotheses:

(A1) The multifunction Tj : K × R
4 → Pcp(R) is integrable and bounded for all j =

1, . . . , m, therefore Tj(·, x, y, u, v) : [0, 1] →Pcp(R) is measurable.
(A2) For � : [0,∞) → [0,∞), which is nondecreasing and usc, i.e., ∀p > 0 we have

lim infp→∞(p – �(p)) > 0 and �(p) < p.
(A3) For all κ ∈K, j = 1, . . . , m and si, ri ∈ R, with i = 1, . . . , 4, there exist �j ∈ C(K, [0,∞)),

where

HM(Tj(κ , s1, s2, s3, s4),Tj(κ , r1, r2, r3, r4)

≤ 1
A1j + A2j + A3j + A4j

�j(κ)�

( 4∑

i=1

|si – ri|
)

,

such that

A1j = ‖�j‖
[

1
�q(ηj + 1)

+
|a|θηj+1

|b|�q(ηj + 2)
+
∣
∣
∣
∣
(θ2 – 2)ληj+1

2b�q(ηj + 2)

∣
∣
∣
∣



Ghaderi and Rezapour Journal of Inequalities and Applications         (2024) 2024:41 Page 10 of 21

+
∣
∣
∣
∣

2 – θ2

2b�q(ηj + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

2 – θ2

2b�q(ηj – σj)

∣
∣
∣
∣ +

∣
∣
∣
∣

2 – θ2

2b�q(ηj – σj + 1)

∣
∣
∣
∣

+
∣
∣
∣
∣

2 – θ2

2b�q(ηj)

∣
∣
∣
∣ +

∣
∣
∣
∣
2b + 2a(θ – 1)θηj+1

b(2 – θ2)�q(ηj + 2)

∣
∣
∣
∣ +

∣
∣
∣
∣
(1 – θ )ληj+1

b�q(ηj + 2)

∣
∣
∣
∣

+
∣
∣
∣
∣

θ – 1
b�q(ηj + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

θ – 1
b�q(ηj – σj + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

θ – 1
b�q(ηj)

∣
∣
∣
∣

]

,

A2j = ‖�j‖
[

1
�q(ηj)

+
∣
∣
∣
∣
2b + 2a(θ – 1)θηj+1

b(2 – θ2)�q(ηj + 2)

∣
∣
∣
∣ +

∣
∣
∣
∣
(1 – θ )ληj+1

b�q(ηj + 2)

∣
∣
∣
∣

+
∣
∣
∣
∣

θ – 1
b�q(ηj + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

θ – 1
b�q(ηj – σj + 1)

∣
∣
∣
∣ +

∣
∣
∣
∣

θ – 1
b�q(ηj)

∣
∣
∣
∣

]

,

A3j = ‖�j‖
[

1
�q(ηj – σj + 1)

+
∣
∣
∣
∣

2b + 2a(θ – 1)
b(2 – θ2)�q(ηj + 2)�q(2 – σj)

∣
∣
∣
∣

+
∣
∣
∣
∣

(1 – θ )
b�q(ηj + 2)�q(2 – σj)

∣
∣
∣
∣ +

∣
∣
∣
∣

θ – 1
b�q(ηj + 1)�q(2 – σj)

∣
∣
∣
∣

+
∣
∣
∣
∣

θ – 1
b�q(ηj – σj + 1)�q(2 – σj)

∣
∣
∣
∣ +

∣
∣
∣
∣

θ – 1
b�q(ηj)�q(2 – σj)

∣
∣
∣
∣

]

,

A4j = ‖�j‖
[

1
�q(ηj + δj + 1)

+
∣
∣
∣
∣

2b + 2a(θ – 1)
b(2 – θ2)�q(ηj + 2)�q(2 + δj)

∣
∣
∣
∣

+
∣
∣
∣
∣

(1 – θ )
b�q(ηj + 2)�q(2 + δj)

∣
∣
∣
∣ +

∣
∣
∣
∣

θ – 1
b�q(ηj + 1)�q(2 + δj)

∣
∣
∣
∣

+
∣
∣
∣
∣

θ – 1
b�q(ηj – σj + 1)�q(2 + δj)

∣
∣
∣
∣ +

∣
∣
∣
∣

θ – 1
b�q(ηj)�q(2 + δj)

∣
∣
∣
∣

]

Theorem 3.2 Let the hypotheses A1–A3 hold true. If the set-valued map E : G → 2G has
the approximative endpoint property, then the quantum inclusion system mentioned in
(1)–(2) has a solution.

Proof To show that our problem (1)–(2) has a solution, we go to find the endpoint of
E : G → 2G . This endpoint is the solution of our inclusion. We do this in two steps.

Step I. According to our assumptions, for all (z1, . . . , zm) ∈ G, the map κ → Tj(κ , zj(κ),
z′

j(κ), CDσj
q zj(κ),Iδj

q zj(κ)) is measurable and closed-valued. Therefore, such a map has a
nonempty measurable selection, i.e., S∗

Tj ,z 
= φ.
Define the operator E : G → 2G by

E(z1, . . . , zm) =

⎛

⎜
⎜
⎜
⎜
⎝

E1(z1, . . . , zm)
E2(z1, . . . , zm)

...
Em(z1, . . . , zm)

⎞

⎟
⎟
⎟
⎟
⎠

,

which, for g ∈ S∗
Tj ,(z1,...,zm), reads as follows:

Ej(z1, z2, . . . , zm) =
{

� ∈ Gj : �(κ) =
1

�q(ηj)

∫ κ

0
(κ – qp)ηj–1

g(p) dqp

+
a

b�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

g(m) dqm dp
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+
(θ2 – 2)
2b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

g(m) dqm dp

+
2 – θ2

2b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

g(p) dqp

+
2 – θ2

2b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

g(p) dqp

+
2 – θ2

2b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

g(p) dqp

+
(2b + 2a(θ – 1))κ
b(2 – θ2)�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

g(m) dqm dp

+
(1 – θ )κ
b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

g(m) dqm dp

+
(θ – 1)κ
b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

g(p) dqp

+
(θ – 1)κ

b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

g(p) dqp

+
(θ – 1)κ

b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

g(p) dqp
}

.

Now, assume that {(zn
1 , . . . , zn

m)}n≥1 is a sequence in E(z1, . . . , zm), which converges
(zn

1 , . . . , zn
m) → (z0

1, . . . , z0
m). Choose (gn

1, . . . ,gn
m) ∈ S∗

T1,(zn
1 ,...,zn

m) × · · · ×S∗
Tm ,(zn

1 ,...,zn
m), which, for

all κ ∈K, j = 1. . . . , m, and n ≥ 1, satisfies

zn
j =

1
�q(ηj)

∫ κ

0
(κ – qp)ηj–1

g
n
j (p) dqp

+
a

b�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

g
n
j (m) dqm dp

+
(θ2 – 2)
2b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

g
n
j (m) dqm dp

+
2 – θ2

2b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

g
n
j (p) dqp

+
2 – θ2

2b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

g
n
j (p) dqp

+
2 – θ2

2b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

g
n
j (p) dqp

+
(2b + 2a(θ – 1))κ
b(2 – θ2)�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

g
n
j (m) dqm dp

+
(1 – θ )κ
b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

g
n
j (m) dqm dp

+
(θ – 1)κ
b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

g
n
j (p) dqp

+
(θ – 1)κ

b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

g
n
j (p) dqp
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+
(θ – 1)κ

b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

g
n
j (p) dqp

The compactness of Tj for all j = 1, . . . , m implies that {gn
j }n≥1 has a subsequence (denoted

again by {gn
j }n≥1), which converges to some g0

j ∈ L1([0, 1],R). It is easy to check that g0
j ∈

S∗
Tj ,(z1,...,zm), and for all κ ∈K, j = 1, . . . , m,

zn
j (κ) → z0

j (κ) =
1

�q(ηj)

∫ κ

0
(κ – qp)ηj–1

g
0
j (p) dqp

+
a

b�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

g
0
j (m) dqm dp

+
(θ2 – 2)
2b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

g
0
j (m) dqm dp

+
2 – θ2

2b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

g
0
j (p) dqp

+
2 – θ2

2b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

g
0
j (p) dqp

+
2 – θ2

2b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

g
0
j (p) dqp

+
(2b + 2a(θ – 1))κ
b(2 – θ2)�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

g
0
j (m) dqm dp

+
(1 – θ )κ
b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

g
0
j (m) dqm dp

+
(θ – 1)κ
b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

g
0
j (p) dqp

+
(θ – 1)κ

b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

g
0
j (p) dqp

+
(θ – 1)κ

b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

g
0
j (p) dqp.

It can be concluded from this that, for all j = 1, . . . , m, we have z0
j ∈ Ej(z1, . . . , zm), so G

takes closed values. In addition, from the compactness of the value of Tj, it follows that
(z0

1, . . . , z0
m) ∈ E(z1, . . . , zm) is bounded.

Step II. Our goal at this step is to establish the inequality HM(E(s),E(r)) ≤ �(‖s – r‖).
To do this, let (s1, . . . , sm), (r1, . . . , rm) ∈ G , (�1, . . . ,�m) ∈ E(r1, . . . , rm) be given. Then for all
κ ∈K and j = 1, . . . , m, we can choose (g1, . . . ,gm) ∈ S∗

T1,(r1,...,rm) ×· · ·×S∗
Tm ,(r1,...,rm) such that

for all κ ∈K, we can write

�j(κ) =
1

�q(ηj)

∫ κ

0
(κ – qp)ηj–1

gj(p) dqp

+
a

b�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

gj(m) dqm dp

+
(θ2 – 2)
2b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

gj(m) dqm dp
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+
2 – θ2

2b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

gj(p) dqp

+
2 – θ2

2b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

gj(p) dqp

+
2 – θ2

2b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

gj(p) dqp

+
(2b + 2a(θ – 1))κ
b(2 – θ2)�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

gj(m) dqm dp

+
(1 – θ )κ
b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

gj(m) dqm dp

+
(θ – 1)κ
b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

gj(p) dqp

+
(θ – 1)κ

b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

gj(p) dqp

+
(θ – 1)κ

b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

gj(p) dqp.

But, in view of hypothesis A3, for all j = 1, . . . , m, we have

HM
(
Tj
(
κ , sj(κ), s′

j(κ), CDσj
q sj(κ),Iδj

q sj(κ)
)
,

Tj
(
κ , rj(κ), r′

j(κ), CDσj
q rj(κ),Iδj

q rj(κ)
))

≤ 1
A1j + A2j + A3j + A4j

�j(κ)�
(∣
∣sj(κ) – rj(κ)

∣
∣ +

∣
∣s′

j(κ) – r′
j(κ)

∣
∣

+
∣
∣CDσj

q sj(κ) – CDσj
q rj(κ)

∣
∣ +

∣
∣Iδj

q sj(κ) – Iδj
q rj(κ)

∣
∣
)
.

Hence, ∃xj ∈ Tj(κ , zj(κ), z′
j(κ), CDσj

q zj(κ),Iδj
q zj(κ)), where ∀κ ∈K and j = 1, . . . , m,

∣
∣gj(κ) – xj

∣
∣≤ 1

A1j + A2j + A3j + A4j

�j(κ)�

( 4∑

i=1

|si – ri|
)

.

Now, for all j = 1, . . . , m define the map Fj : K →P(R) such that

Fj(κ) =

{

x ∈ R :
∣
∣gj(κ) – x

∣
∣≤ 1

A1j + A2j + A3j + A4j

�j(κ)�

( 4∑

i=1

|si – ri|
)}

.

If 1
A1j +A2j +A3j +A4j

�j(κ)�(
∑4

i=1 |si – ri|) and gj are measurable, then also the set-valued

map Fj(·) ∩ Tj(·, zj(·), z′
j(·), CDσj

q zj(·),Iδj
q zj(·)) is measurable.

Take g∗
j (κ) ∈ Tj(κ , zj(κ), z′

j(κ), CDσj
q zj(κ),Iδj

q zj(κ)), which for all κ ∈K and j = 1, . . . , m, we
have

�
∗
j (κ) =

1
�q(ηj)

∫ κ

0
(κ – qp)ηj–1

g
∗
j (p) dqp

+
a

b�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

g
∗
j (m) dqm dp
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+
(θ2 – 2)
2b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

g
∗
j (m) dqm dp

+
2 – θ2

2b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

g
∗
j (p) dqp

+
2 – θ2

2b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

g
∗
j (p) dqp

+
2 – θ2

2b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

g
∗
j (p) dqp

+
(2b + 2a(θ – 1))κ
b(2 – θ2)�q(ηj)

∫ θ

0

∫ p

0
(p – qm)ηj–1

g
∗
j (m) dqm dp

+
(1 – θ )κ
b�q(ηj)

∫ λ

0

∫ p

0
(p – qm)ηj–1

g
∗
j (m) dqm dp

+
(θ – 1)κ
b�q(ηj)

∫ 1

0
(1 – qp)ηj–1

g
∗
j (p) dqp

+
(θ – 1)κ

b�q(ηj – σj)

∫ 1

0
(1 – qp)ηj–σj–1

g
∗
j (p) dqp

+
(θ – 1)κ

b�q(ηj – 1)

∫ 1

0
(1 – qp)ηj–2

g
∗
j (p) dqp.

Subsequently, let supκ∈K |�(κ)| = ‖�‖, therefore

∣
∣�j(κ) – �

∗
j (κ)

∣
∣

≤ 1
�q(ηj)

∫ κ

0
(κ – qp)ηj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

a
b�q(ηj)

∣
∣
∣
∣

∫ θ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣

(θ2 – 2)
2b�q(ηj)

∣
∣
∣
∣

∫ λ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣

2 – θ2

2b�q(ηj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

2 – θ2

2b�q(ηj – σj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–σj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

2 – θ2

2b�q(ηj – 1)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–2∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣
(2b + 2a(θ – 1))κ
b(2 – θ2)�q(ηj)

∣
∣
∣
∣

∫ θ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣
(1 – θ )κ
b�q(ηj)

∣
∣
∣
∣

∫ λ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣
(θ – 1)κ
b�q(ηj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(θ – 1)κ
b�q(ηj – σj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–σj–1∣∣gj – g

∗
j
∣
∣dqp
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+
∣
∣
∣
∣

(θ – 1)κ
b�q(ηj – 1)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–2∣∣gj – g

∗
j
∣
∣dqp

≤ A1j

A1j + A2j + A3j + A4j

�
(∥
∥(s1 – r1, . . . , sm – rm)

∥
∥
)
,

and

∣
∣�′

j(κ) – �
∗′
j (κ)

∣
∣

≤ 1
�q(ηj – 1)

∫ κ

0
(κ – qp)ηj–2∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣
(2b + 2a(θ – 1))
b(2 – θ2)�q(ηj)

∣
∣
∣
∣

∫ θ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣

(1 – θ )
b�q(ηj)

∣
∣
∣
∣

∫ λ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣

(θ – 1)
b�q(ηj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(θ – 1)
b�q(ηj – σj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–σj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(θ – 1)
b�q(ηj – 1)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–2∣∣gj – g

∗
j
∣
∣dqp

≤ A2j

A1j + A2j + A3j + A4j

�
(∥
∥(s1 – r1, . . . , sm – rm)

∥
∥
)
.

Also, one can obtain

∣
∣CDσj

q �j(κ) – CDσj
q �

∗
j (κ)

∣
∣

≤ 1
�q(ηj – σj)

∫ κ

0
(κ – qp)ηj–σj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(2b + 2a(θ – 1))κ1–σj

b(2 – θ2)�q(ηj)�q(2 – σj)

∣
∣
∣
∣

×
∫ θ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣

(1 – θ )κ1–σj

b�q(ηj)�q(2 – σj)

∣
∣
∣
∣

∫ λ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣

(θ – 1)κ1–σj

b�q(ηj)�q(2 – σj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(θ – 1)κ1–σj

b�q(ηj – σj)�q(2 – σj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–σj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(θ – 1)κ1–σj

b�q(ηj – 1)�q(2 – σj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–2∣∣gj – g

∗
j
∣
∣dqp

≤ A3j

A1j + A2j + A3j + A4j

�
(∥
∥(s1 – r1, . . . , sm – rm)

∥
∥
)
.
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and

∣
∣Iδj

q �j(κ) – Iδj
q �

∗
j (κ)

∣
∣

≤ 1
�q(ηj + σj)

∫ κ

0
(κ – qp)ηj+σj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(2b + 2a(θ – 1))κ1+δj

b(2 – θ2)�q(ηj)�q(2 + δj)

∣
∣
∣
∣

×
∫ θ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣

(1 – θ )κ1+δj

b�q(ηj)�q(2 + δj)

∣
∣
∣
∣

∫ λ

0

∫ p

0
(p – qm)ηj–1∣∣gj(m) – g

∗
j (m)

∣
∣dqm dp

+
∣
∣
∣
∣

(θ – 1)κ1+δj

b�q(ηj)�q(2 + δj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(θ – 1)κ1+δj

b�q(ηj – σj)�q(2 + δj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–σj–1∣∣gj – g

∗
j
∣
∣dqp

+
∣
∣
∣
∣

(θ – 1)κ1+δj

b�q(ηj – 1)�q(2 + δj)

∣
∣
∣
∣

∫ 1

0
(1 – qp)ηj–2∣∣gj – g

∗
j
∣
∣dqp

≤ A4j

A1j + A2j + A3j + A4j

�
(∥
∥(s1 – r1, . . . , sm – rm)

∥
∥
)
.

It can be inferred from the above relationships that

∥
∥�j – �

∗
j
∥
∥ = sup

κ∈K

∣
∣�j(κ) – �

∗
j (κ)

∣
∣ + sup

κ∈K

∣
∣�′

j(κ) – �
∗′
j (κ)

∣
∣

+ sup
κ∈K

∣
∣CDσ

q �j(κ) – CDσ
q �

∗
j (κ)

∣
∣ + sup

κ∈K

∣
∣Iδj

q �j(κ) – Iδj
q �

∗
j (κ)

∣
∣

≤ 1
A1j + A2j + A3j + A4j

�
(∥
∥(s1 – r1, . . . , sm – rm)

∥
∥
)

× (A1j + A2j + A3j + A4j )

= �
(∥
∥(s1 – r1, . . . , sm – rm)

∥
∥
)
.

Thus, for all (s1, . . . , sm), (r1, . . . , rm) ∈ G , we have

HM
(
E(s1, . . . , sm),E(r1, . . . , rm)

)≤ �
(∥
∥(s1 – r1, . . . , sm – rm)

∥
∥
)
.

Now, according to Lemma 2.14, and the endpoint property of E , there exists w∗ ∈ G such
that E(w∗) = {w∗}. Hence, w∗ is a solution for the fractional q-inclusion system mentioned
(1)–(2). �
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Table 3 Numerical values ofA1j ,A2j ,A3j ,A4j , where j = 1, 2, for different values of q in Example 4.1

q1 = 0.13 q2 = 0.25 q3 = 0.39 q4 = 0.58 q5 = 0.72 q6 = 0.89

A11 1.1721 1.1289 1.0752 0.9981 0.9381 0.8615
A21 1.0400 1.0833 1.1377 1.2178 1.2811 1.3629
A31 2.1729 2.3780 2.6406 3.0314 3.3423 3.7441
A41 2.3068 2.6489 3.1006 3.8042 4.3897 5.1778

�1 0.0261 0.0241 0.0220 0.0193 0.0175 0.0157

A12 0.5743 0.5497 0.5201 0.4784 0.4463 0.4054
A22 0.5208 0.5430 0.5709 0.6121 0.6447 0.6869
A32 1.0726 1.1650 1.2853 1.4658 1.6100 1.7965
A42 1.1324 1.2790 1.4701 1.7632 2.0037 2.3233

�2 0.0265 0.0247 0.0227 0.0203 0.0186 0.0168

4 Examples
Example 4.1 Consider the following fractional quantum integro-differential inclusion
problem:

⎧
⎨

⎩

CD
11
8

q z1(κ) ∈ T1(κ , z1(κ), z′
1(κ), C D

7
8
q z1(κ),I

3
5

q z1(κ)),
CD

7
5
q z2(κ) ∈ T2(κ , z1(κ), z′

2(κ), C D
5
8
q z2(κ),I

2
5

q z2(κ)),
(4)

with boundary conditions

⎧
⎨

⎩

z1(0) + z′
1(0) + I

3
5

q z1(0) =
∫ 1

2
0 z(p) dp,

z1(1) + z′
1(1) + CD

7
8
q z1(1) =

∫ 1
4

0 z(p) dp,
(5)

and

⎧
⎨

⎩

z2(0) + z′
2(0) + I

2
5

q z2(0) =
∫ 1

2
0 z(p) dp,

z2(1) + z′
2(1) + CD

5
8
q z2(1) =

∫ 1
4

0 z(p) dp,
(6)

where κ ∈ K = [0, 1]. Here, we put m = 2, η1 = 11
8 ,η2 = 7

5 , σ1 = 7
8 ,σ2 = 5

8 , δ1 = 3
5 , δ2 = 2

5 , and
multifunctions T1,T2 : K×R

4 → 2R are defined as follows:

T1(κ , s1, s2, s3, s4) =
[

0,
7

40
κ sin(κ) +

7κ3|s1|
40(κ2 + |s1|) +

7
40

κ cos(s2) +
7κ(es3 + cos(s4))

40(1 + es3 )

]

and

T2(κ , s1, s2, s3, s4) =
[

0,
7κ(κ2 + 1)
80 cos(κ)

+
7κ

80
sin(s1) +

7κ

80

(
es2 + es3 + es4

1 + es2 + es3 + es4

)]

.

We choose �j : [0, 1] → [0,∞) to be �1(κ) = 7
40κ , �2(κ) = 7

80κ with ‖�1‖ = 7
40 , ‖�2‖ = 7

80 ,
and �(κ) = κ

31 . Obviously, � is nondecreasing and usc on K. Furthermore, A1j ,A2j ,A3j ,
A4j , for j = 1, 2, are calculated for q = 0.13, 0.25, 0.39, 0.58, 0.72, and 0.89 in Table 3. Also,
the heatmap of data in Table 3 is presented in Fig. 1. Notice that, for convenience, we set
�j = (A1j + A2j + A3j + A4j )

–1‖�j‖, for j = 1, 2.
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Figure 1 The heatmap of Table 3 in Example 4.1

Now, it is easy to check that for j = 1, 2,

HM(Tj(κ , s1, s2, s3, s4),Tj(κ , r1, r2, r3, r4) ≤ 1
A1j + A2j + A3j + A4j

�j(κ)

× �

( 4∑

i=1

|si – ri|
)

,

and infw∈G(supz∈E(z) ‖w – z‖) = 0. Now all the conditions of Theorem 3.2 are satisfied.
Thanks to the endpoint property and Theorem 3.2, our problem formulated in (4.1) has
a solution. To help illustrate this example, graphs of several functions are presented in
Figs. 2 and 3.

5 Conclusion
Trying to provide models, which are more accurate and have less errors, using the capabil-
ities of fractional calculus is one of the broad new research topics in mathematics, physics,
biology, engineering, and economics. But now, many classical methods are no longer able
to interpret complex phenomena. For example, multifunctions have recently been con-
sidered for modeling phenomena with frequent shocks. In this work, we also quantum
analyzed the m-dimensional system of integro-differential inclusions with the help of a
new technique in the fixed point theory, namely, we applied the endpoint property. The
existing derivative operators in our problem are of q-Caputo type. Here, unlike previous
research in the literature, for the first time, the endpoint technique was used to solve an
m-dimensional system. Quantum calculus has provided the necessary prerequisites for
using computers in our computations, and the effectiveness of our proposed method has
been shown in the final example.
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Figure 2 The graph of T1(κ , s1) in Example 4.1

Figure 3 The graph of T2(κ , s1) in Example 4.1
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