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Abstract
We explore the intermixed method for finding a common element of the intersection
of the solution set of a mixed variational inequality and the fixed point set of a
nonexpansive mapping. We point out that Khuangsatung and Kangtunyakarn’s
statement [J. Inequal. Appl. 2023:1, 2023] regarding the resolvent utilized in their
paper is not correct. To resolve this gap, we employ the epigraphical projection and
the product space approach. In particular, we obtain a strong convergence theorem
with a weaker assumption.
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1 Introduction
Let H be a real Hilbert space with an inner product 〈·, ·〉 and the induced norm ‖ · ‖. Let
C ⊂H, S : C →H, and α > 0. We say that

• S is α-Lipschitzian if ‖Sx – Sy‖ ≤ α‖x – y‖ for all x, y ∈ C;
• S is α-inverse strongly monotone if 〈Sx – Sy, x – y〉 ≥ α‖Sx – Sy‖2 for all x, y ∈ C.

An α-Lipschitzian mapping with α ∈ (0, 1) (α = 1, resp.) is called a contraction (a nonex-
pansive mapping, resp.). The following two classical nonlinear problems have been widely
studied:

Fixed Point Problem: Find x ∈ C such that x = Sx (see [2]).
Variational Inequality Problem: Find x ∈ C such that 〈Sx, y – x〉 ≥ 0 for all y ∈ C (see [3]).

The solution sets of the preceding two problems are denoted by Fix(S) and VI(C, S), re-
spectively. The following two observations are well known.

• If S : C → C is any mapping and Id : C → C is the identity mapping, then
Fix(S) = VI(C, Id –S). In fact, if x = Sx, then 〈(Id –S)x, y – x〉 = 0 for all y ∈ C. Hence
Fix(S) ⊂ VI(C, Id –S). On the other hand, let x ∈ C be such that 〈(Id –S)x, y – x〉 ≥ 0
for all y ∈ C. Let y := Sx ∈ C. It follows that –‖x – Sx‖2 = 〈x – Sx, Sx – x〉 ≥ 0, and
hence x = Sx. This implies that reverse inclusion, and the statement is proved.

• If C is a closed convex subset of H and S : C →H is any mapping, then
VI(C, S) = Fix(PC ◦ (Id –S)), where PC is the metric projection onto C. Note that for
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x ∈H and z ∈ C, z = PCx if and only if 〈z – x, y – z〉 ≥ 0 for all y ∈ C (for example, see
[4]). To see this, let x ∈ C. It follows that

〈Sx, y – x〉 ≥ 0 for all y ∈ C ⇐⇒ 〈x – (Id –S)x, y – x〉 ≥ 0 for all y ∈ C.

Hence x ∈ VI(C, S) ⇐⇒ x = PC(Id –S)x ⇐⇒ x ∈ Fix(PC ◦ (Id –S)), and the statement
is proved.

Recently, Khuangsatung and Kangtunyakarn [1] studied the following problem:

Let f : H → (–∞,∞] be a proper, convex, and lower semicontinuous function. Let
C ⊂ H be a closed convex set, and let S : C → C. The mixed variational inequality
problem is to find an element x ∈ C such that

〈Sx, y – x〉 + f (y) – f (x) ≥ 0 for all y ∈ C.

The solution of this problem is denoted by VI(C, S, f ). If f ≡ 0, then the mixed variational
inequality problem becomes the (classical) variational inequality problem. They claimed
in their Lemma 2.6 that

VI(C, S, f ) = Fix
(
(Id +γ ∂f )–1 ◦ (Id –γ S)

)
(for all γ > 0),

where ∂f is the subdifferential operator of f , that is,

∂f (x) :=
{

z ∈H : 〈z, y – x〉 + f (x) ≤ f (y) for all y ∈H
}

.

Unfortunately, their claim is not correct. To see this, let C := [1, 2] ⊂ R, Sx := 2x for all
x ∈ C, and f (x) := 0 for all x ∈ R. It follows that VI(C, S, f ) = {1} and Fix((Id +γ ∂f )–1 ◦
(Id –γ S)) = Fix(Id –γ S) = ∅ for all γ > 0. In this paper, we propose an alternative way to
address this gap. Moreover, we use the product space approach to deduce the intermixed
method [5] and show that the convergence result can be established under a weaker as-
sumption.

Let us recall their main result.

Theorem KK Let C be a closed convex subset of a real Hilbert space H. Suppose that
A1, A2, B1, B2 : C → H are α-inverse strongly monotone operators and T1, T2 : C → C are
nonexpansive mappings. Suppose that f1, f2 : H → (–∞,∞] are proper, convex, and lower
semicontinuous functions. Assume that for i = 1, 2,

�i := Fix(Ti) ∩ VI(C, Ai, fi) ∩ VI(C, Bi, fi) �= ∅.

Suppose that g1, g2 : H → H are contractions and {xn}∞n=1 and {yn}∞n=1 are iterative se-
quences generated by the following scheme:

x1, y1 ∈ C are arbitrarily chosen,

x′
n := b1xn + (1 – b1)T1xn,

y′
n := b2yn + (1 – b2)T2yn,



Saejung Journal of Inequalities and Applications         (2024) 2024:42 Page 3 of 12

x′′
n := Jγ1f1

(
xn – γ1

(
a1A1 + (1 – a1)B1

)
xn

)
,

y′′
n := Jγ2f2

(
yn – γ2

(
a2A2 + (1 – a2)B2

)
yn

)
,

xn+1 := (1 – βn)x′
n + βnPC

(
αng2(yn) + (1 – αn)x′′

n
)
,

yn+1 := (1 – βn)y′
n + βnPC

(
αng1(xn) + (1 – αn)y′′

n
)
,

where γ1,γ2 ∈ (0, 2α), a1, a2, b1, b2 ∈ (0, 1), and the sequences {αn}∞n=1 and {βn}∞n=1 ⊂ [0, 1]
satify the following conditions:

(C1) limn αn = 0 and
∑

n αn = ∞,
(C2) βn ∈ [k, l] ⊂ (0, 1) for all n ≥ 1,
(C3)

∑
n |αn – αn+1| < ∞ and

∑
n |βn – βn+1| < ∞.

Then there are two elements x∗ and y∗ such that x∗ = P�1 g2(y∗), y∗ = P�2 g1(x∗), and the
iterative sequences {xn}∞n=1 and {yn}∞n=1 converge strongly to x∗ and y∗, respectively.

We need the following lemma.

Lemma 1 ([6]) Let {sn}∞n=1 be a sequence of nonnegative real numbers, let {tn}∞n=1 be a se-
quence of real numbers, and let {αn}∞n=1 be a sequence in [0, 1] such that

sn+1 ≤ (1 – αn)sn + αntn for all n ≥ 1.

If
∑

n αn = ∞ and lim supn tn ≤ 0, then limn sn = 0.

Lemma 2 Let C ⊂H and S : C →H. Then:
(a) If C is closed and convex and S is nonexpansive, then Fix(S) is closed and convex.
(b) If S is α-inverse strongly monotone, then Id –λS is nonexpansive for all λ ∈ [0, 2α].

2 Main results
2.1 A Halpern-type method
Recall that a nonexpansive mapping S : C → C is r-strongly quasi-nonexpansive (r > 0) if
Fix(S) �= ∅ and

‖Sx – p‖2 ≤ ‖x – p‖2 – r‖x – Sx‖2 for all x ∈ C and p ∈ Fix(S).

It is well known that every nonexpansive mapping S : C → C satisfies the Browder demi-
closedness principle: p ∈ Fix(S) whenever {xn}∞n=1 is a sequence in C such that limn ‖xn –
Sxn‖ = 0 and {xn}∞n=1 converges weakly to p ∈ C (see [7]). The technique we used in the
following result is taken from Wang et al. [8].

Theorem 3 Let C ⊂H be closed and convex, and let S, U : C → C be nonexpansive map-
pings such that F := Fix(S) ∩ Fix(U) �= ∅. Suppose that S is r-strongly quasinonexpansive,
where r > 0. Suppose that u ∈ H and {xn}∞n=1 is an iterative sequence generated by the fol-
lowing scheme:

x1 ∈ C is arbitrarily chosen,

xn+1 := (1 – βn)Sxn + βnPC
(
αnu + (1 – αn)Uxn

)
(n ≥ 1),
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where the sequences {αn}∞n=1, {βn}∞n=1 ⊂ [0, 1] satisfy the following conditions:

lim
n

αn

1 – βn
= 0 and

∑

n
αnβn = ∞.

Then the iterative sequence {xn}∞n=1 converges strongly to PF u.

Proof Note that F is closed and convex. Let z := PF u. It follows that z = PF z = Sz = Uz and

‖xn+1 – z‖ ≤ (1 – βn)‖Sxn – z‖ + βn
∥∥PC

(
αnu + (1 – αn)Uxn

)
– PF z

∥∥

≤ (1 – βn)‖xn – z‖ + βnαn‖u – z‖ + βn(1 – αn)‖Uxn – z‖
≤ (1 – βnαn)‖xn – z‖ + βnαn‖u – z‖
≤ max

{‖xn – z‖,‖u – z‖}.

It follows by induction that {xn}∞n=1 is a bounded sequence. In particular, the sequences
{Sxn}∞n=1, {Uxn}∞n=1, and {PC(αnu + (1 – αn)Uxn)}∞n=1 are all bounded. For convenience, we
denote

un := αnu + (1 – αn)Uxn.

We refine the preceding estimates by considering ‖ · ‖2 as follows:

‖Sxn – z‖2 ≤ ‖xn – z‖2 – r‖xn – Sxn‖2,

and

‖un – z‖2 =
∥∥αn(u – z) + (1 – αn)(Uxn – z)

∥∥2

≤ ∥∥(1 – αn)(Uxn – z)
∥∥2 + 2

〈
αn(u – z), un – z

〉

≤ (1 – αn)‖xn – z‖2 + 2αn〈u – z, un – z〉.

It follows that

‖xn+1 – z‖2

=
∥∥(1 – βn)(Sxn – z) + βn(PCun – z)

∥∥2

= (1 – βn)‖Sxn – z‖2 + βn‖PCun – z‖2 – βn(1 – βn)‖Sxn – PCun‖2

≤ (1 – βn)
(‖xn – z‖2 – r‖xn – Sxn‖2) + βn

(
(1 – αn)‖xn – z‖2 + 2αn〈u – z, un – z〉)

– βn(1 – βn)‖Sxn – PCun‖2

= (1 – αnβn)‖xn – z‖2 + 2αnβn〈u – z, un – z〉
– r(1 – βn)‖xn – Sxn‖2 – βn(1 – βn)‖Sxn – PCun‖2.

Since
∑

n αnβn = ∞, we have

lim sup
n

‖xn – z‖2 ≤ L,



Saejung Journal of Inequalities and Applications         (2024) 2024:42 Page 5 of 12

where

L := lim sup
n

(
2〈u – z, un – z〉 –

r(1 – βn)
αnβn

‖xn – Sxn‖2 –
1 – βn

αn
‖Sxn – PCun‖2

)
.

Note that L ≤ 2 lim supn〈u – z, un – z〉 < ∞ because {un}∞n=1 is bounded. If L = –∞, then
it follows that lim supn ‖xn – z‖2 ≤ 0, and we are done. We now assume that L is finite.
Let {nk}∞k=1 be a strictly increasing sequence such that {unk }∞k=1 converges weakly to some
element q ∈ C and

lim
k

(
2〈u – z, unk – z〉 –

r(1 – βnk )
αnk βnk

‖xnk – Sxnk ‖2 –
1 – βnk

αnk

‖Sxnk – PCunk ‖2
)

= L.

In particular, the sequences

{
1 – βnk

αnk βnk

‖xnk – Sxnk ‖2
}∞

k=1
and

{
1 – βnk

αnk

‖Sxnk – PCunk ‖2
}∞

k=1

are both bounded. Note that limn
αnβn
1–βn

= limn
αn

1–βn
= 0. It follows that

lim
k

‖xnk – Sxnk ‖2 = lim
k

‖Sxnk – PCunk ‖2 = 0.

Moreover, we have limk ‖unk – Uxnk ‖ = 0. In particular, limk ‖PCunk – Uxnk ‖ = 0 and
xnk ⇀ q. Then it follows that

lim
k

‖xnk – Uxnk ‖ ≤ lim
k

(‖xnk – Sxnk ‖ + ‖Sxnk – PCunk ‖ + ‖PCunk – Uxnk ‖
)

= 0.

In particular, it follows from the Browder demiclosedness principle that q ∈ F , and hence
〈z – u, q – z〉 ≥ 0. This implies that lim supn ‖xn – z‖2 ≤ L ≤ 2 limk〈u – z, unk – z〉 = 2〈u –
z, q – z〉 ≤ 0. �

Corollary 4 Suppose that C, S, U , F , r, {αn}∞n=1 and {βn}∞n=1 are as in the preceding theorem.
Suppose that h : H → H is a contraction and {xn}∞n=1 is an iterative sequence generated by
the following scheme:

x1 ∈ C is arbitrarily chosen,

xn+1 := (1 – βn)Sxn + βnPC
(
αnh(xn) + (1 – αn)Uxn

)
(n ≥ 1).

Proof Note that PF ◦ h : H → H is a contraction, and thus it follows that there exists a
unique element z ∈ H such that z = (PF ◦ h)(z). It is clear that z ∈ F . We let u := h(z) and
define

y1 := x1,

yn+1 := (1 – βn)Syn + βnPC
(
αnu + (1 – αn)Uyn

)
(n ≥ 1).

It follows from the preceding theorem that limn ‖yn – z‖ = 0. Suppose that h is γ -
Lipschitzian with γ ∈ (0, 1). We have the following estimate:

‖xn+1 – yn+1‖ ≤ (1 – βn)‖Sxn – Syn‖ + βn
∥∥PC

(
αnh(xn) + (1 – αn)Uxn

)
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– PC
(
αnu + (1 – αn)Uyn

)∥∥

≤ (1 – βn)‖xn – yn‖ + βn
∥
∥αnh(xn) + (1 – αn)Uxn

–
(
αnh(z) + (1 – αn)Uyn

)∥∥

≤ (1 – βn)‖xn – yn‖ + αnβn
∥∥h(xn) – h(z)

∥∥ + (1 – αn)βn‖Uxn – Uyn‖
≤ (1 – αnβn)‖xn – yn‖ + αnβn

∥
∥h(xn) – h(z)

∥
∥.

It follows from
∑

n αnβn = ∞ that

lim sup
n

‖xn – yn‖ ≤ lim sup
n

∥
∥h(xn) – h(z)

∥
∥

≤ lim sup
n

γ ‖xn – z‖

≤ γ lim sup
n

(‖xn – yn‖ + ‖yn – z‖)

= γ lim sup
n

‖xn – yn‖.

In particular, since γ < 1, we have limn ‖xn – yn‖ = 0, and hence limn ‖xn – z‖ = 0. The proof
is complete. �

Let S := Id and u ∈ C. We immediately obtain the following result.

Corollary 5 Let C ⊂H be closed and convex, and let U : C → C be a nonexpansive map-
ping such that Fix(U) �= ∅. Suppose that u ∈ C and {xn}∞n=1 is an iterative sequence gener-
ated by the following scheme:

x1 ∈ C is arbitrarily chosen,

xn+1 := (1 – βn)xn + βn
(
αnu + (1 – αn)Uxn

)
(n ≥ 1),

where the sequences {αn}∞n=1, {βn}∞n=1 ⊂ [0, 1] satisfy the following conditions:

lim
n

αn

1 – βn
= 0 and

∑

n
αnβn = ∞.

Then the iterative sequence {xn}∞n=1 converges strongly to PFix(U)u.

2.2 Comments and remarks on the mixed variational inequality problem
Let C ⊂ H be closed and convex, let A : C → H, and let f : H → (–∞,∞] be a proper
convex and lower semicontinuous function. The mixed variational inequality problem is
to find x ∈ C such that

〈Ax, y – x〉 + f (y) – f (x) ≥ 0 for all y ∈ C. (	)

As pointed out in the introduction of the paper, the resolvent proposed by Khuangsatung
and Kangtunyakarn [1] is not correct. Moreover, without any further assumption on C and
dom f , it is possible to encounter the experession ∞ – ∞ in (	). For example, let Ax := 0
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for all x ∈ C := [1, 2] ⊂ R. and let f (x) := 0 if x ∈ [3, 4] and f (x) := ∞ if x /∈ [3, 4]. To be on
the right track, we discuss the problem with an additional assumption.

This mixed type problem was also considered by Mosco [9] in 1969. From now on, we
also assume that dom f ⊂ C is as in Mosco’s setting. In particular, we also have VI(C, A, f ) ⊂
dom f .

Mosco proved that the mixed and the classical variational inequality problems are equiv-
alent. To see this, let Ĥ := H×R with

〈〈
x̂, ŷ

〉〉
:= 〈x, y〉+ rs for all x̂ := (x, r) and ŷ := (y, s) ∈ Ĥ,

and let Ĉ := C ×R. Note that |||̂x|||2 =
〈〈

x̂, x̂
〉〉

= ‖x‖2 + r2. Define Â : Ĉ → Ĥ by

Â(x, r) := (Ax, 1) for all (x, r) ∈ Ĉ.

Here epi f := {(x, r) ∈ Ĥ : f (x) ≤ r} is the epigraph of f , which is closed and convex because
of the lower semicontinuity and convexity of f .

Theorem 6 Suppose that dom f ⊂ C. The following statements are true:
(1) VI(C, A, f ) = {x ∈ C : 〈Ax, y – x〉 + f (y) – f (x) ≥ 0 for all y ∈ dom f };
(2) (x, r) ∈ VI(epi f , Â) ⇐⇒ x ∈ VI(C, A, f ) and r = f (x);
(3) If A is α-inverse strongly monotone, then so is Â, and hence Id –λÂ is nonexpansive

for all λ ∈ (0, 2α].

Proof (1) is straight forward. (2) was proved by Mosco. For completeness, we give a proof
of (2).

(⇒) Let (x, r) ∈ VI(epi f , Â), and let y ∈ dom f . This implies that (y, f (y)) ∈ epi f and

〈Ax, y – x〉 + f (y) – r =
〈〈

Â(x, r),
(
y, f (y)

)
– (x, r)

〉〉 ≥ 0.

Note that f (x) ≤ r. This implies that 〈Ax, y – x〉 + f (y) – f (x) ≥ 0. Moreover, we have

f (x) – r =
〈〈

Â(x, r),
(
x, f (x)

)
– (x, r)

〉〉 ≥ 0.

This implies that f (x) ≥ r, and hence r = f (x). In particular, we have

〈Ax, y – x〉 + f (y) – f (x) ≥ 0.

(⇐) Suppose that x ∈ VI(C, A, f ). We prove that (x, f (x)) ∈ VI(epi f , Â). To see this, let
(y, s) ∈ epi f . It follows that f (y) ≤ s and

〈〈
Â

(
x, f (x)

)
, (y, s) –

(
x, f (x)

)〉〉
= 〈Ax, y – x〉 + s – f (x) ≥ 〈Ax, y – x〉 + f (y) – f (x) ≥ 0.

(3) Suppose that A is α-inverse strongly monotone. We show that Â : Ĉ → Ĥ is also
α-inverse strongly monotone. To see this, let x̂ := (x, r), ŷ := (y, s) ∈ Ĉ. It follows that

〈〈
Â̂x – Â̂y, x̂ – ŷ

〉〉
= 〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖2 = α

∣∣∣∣∣∣Â̂x – Â̂y
∣∣∣∣∣∣2.

In particular, Id –λÂ is nonexpansive for λ ∈ (0, 2α]. �
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Because of the error of the resolvent proposed by the authors of [1], we cannot infer
the closedness and the convexity of VI(C, A, f ). However, the conclusion remains true as
follows.

Corollary 7 Let A : C → H be α-inverse strongly monotone, and let f : H → (–∞,∞]
be a proper convex and lower semicontinuous function. Suppose that dom f ⊂ C. Then
VI(C, A, f ) is closed and convex.

Proof We assume that VI(C, A, f ) is nonempty. Note that VI(epi f , Â) = Fix(Pepi f ◦(Id –αÂ))
is closed and convex. To prove the closedness of VI(C, A, f ), let {xn}∞n=1 be a sequence in
VI(C, A, f ) and assume that {xn}∞n=1 is strongly convergent to a point x ∈ C. It suffices to
show that (x, f (x)) ∈ VI(epi f , Â). Put r := f (x) and rn := f (xn). From the lower semicontinu-
ity of f it follows that r ≤ lim infn rn. Note that for (y, s) ∈ Ĉ := C ×R, we have

〈Axn, y – xn〉 + s – rn =
〈〈

Â(xn, rn), (y, s) – (xn – rn)
〉〉 ≥ 0.

Since A is (1/α)-Lipschitzian and hence continuous, we obtain that limn〈Axn, y – xn〉 =
〈Ax, y – x〉. In particular, 〈Ax, y – x〉 + s ≥ lim supn rn ≥ r. Hence 〈〈Â(x, r), (y, s) – (x, r)〉〉 =
〈Ax, y – x〉 + s – r ≥ 0, that is, (x, f (x)) = (x, r) ∈ VI(epi f , Â).

Finally, we prove that VI(C, A, f ) is convex. To this end, let x, x′ ∈ VI(C, A, f ) and t ∈ (0, 1).
It follows that (x, r), (x′, r′) ∈ VI(epi f , Â), where r := f (x) and r′ := f (x′). Put x′′ := (1 – t)x +
tx′. Since VI(C, A, f ) is convex, it follows that (x′′, (1 – t)r + tr′) ∈ VI(epi f , Â). In particular,
for (y, s) ∈ Ĉ := C ×R and r′′ := f (x′′), we have r′′ ≤ (1 – t)r + tr′ and

〈〈
Â

(
x′′, r′′), (y, s) –

(
x′′, r′′)〉〉 =

〈
Ax′′, y – x′′〉 + s – r′′

≥ 〈
Ax′′, y – x′′〉 + s –

(
(1 – t)r + tr′)

=
〈〈

Â
(
x′′, (1 – t)r + tr′), (y, s) –

(
x′′, (1 – t)r + tr′)〉〉 ≥ 0.

It follows that (x′′, r′′) ∈ VI(epi f , Â), and hence x′′ ∈ VI(C, A, f ). �

2.3 Another look at the intermixed method via a product space approach
Suppose that C, H, Ai, Bi, Ti, fi, gi (i = 1, 2) are as in Theorem KK. Note that we can show
that VI(C, A1, f1) ∩ VI(C, B1, f1) = VI(C, a1A1 + (1 – a1)B1, f1) for 0 < a1 < 1 if VI(C, A1, f1) ∩
VI(C, B1, f1) �= ∅ and if A1 and B1 are α-inverse strongly monotone. Corresponding to this
note, we assume for simplicity that A1 = B1 and A2 = B2. We also assume that

�i := Fix(Ti) ∩ VI(C, Ai, fi) �= ∅ for i = 1, 2.

To deduce and correct the conclusion in Theorem KK, let us fix the following notation.
Let

H := Ĥ× Ĥ and C := Ĉ × Ĉ,

where Ĥ := H×R and Ĉ := C ×R. Note that H is a Hilbert space endowed with the inner
product [·, ·] defined by

[
x, x′] :=

〈
x, x′〉 + rr′ +

〈
y, y′〉 + ss′
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for all x := ((x, r), (y, s)) and x′ := ((x′, r′), (y′, s′)) ∈ H. Moreover, the induced norm of each
element x := ((x, r), (y, s)) ∈H is given by

‖x‖ :=
(‖x‖2 + r2 + ‖y‖2 + s2)1/2.

Define A : C →H and S : C → C by

Ax :=
(
(A1x, 1), (A2y, 1)

)

and

Sx :=
((

b1x + (1 – b1)T1x, r
)
,
(
b2y + (1 – b2)T2y, s

))

for x := ((x, r), (y, s)) ∈ C.
Using the preceding setting, we obtain the following results.

Proposition 8 (Properties of A) Let x := ((x, r), (y, s)) ∈H and E := epi f1 × epi f2. Then the
following two statements are equivalent:

(a) x ∈ VI(E, A);
(b) x ∈ VI(C, A1, f1), y ∈ VI(C, A2, f2), r = f1(x), and s = f2(x).

If, in addition, A1, A2 : C → H are α-inverse strongly monotone, then A : C → H is α-
inverse strongly monotone.

Proof (a) �⇒ (b) Let x := ((x, r), (y, s)) ∈ VI(E, A). Let x′ := ((x′, r′), (y, s)), where (x′, r′) ∈
epi f1. It follows that x′ ∈ E, and hence

〈〈
Â1(x, r), (x′, r′) – (x, r)

〉〉
= [Ax, x′ – x] ≥ 0. This

means that (x, r) ∈ VI(epi f1, Â1). It follows from Theorem 6 that x ∈ VI(C, A1, f1) and
r = f1(x). Using a similar technique, we obtain the remaining conclusion.

(b) �⇒ (a) is trivial.
Suppose that A1, A2 : C → H are α-inverse strongly monotone. To see that A : C → H

is α-inverse strongly monotone, let x := ((x, r), (y, s)) and x′ := ((x′, r′), (y′, s′)) ∈ C. It follows
that

[
Ax – Ax′, x – x′]

=
[((

A1x – A1x′, 0
)
,
(
A2y – A2y′, 0

))
,
((

x – x′, r – r′),
(
y – y′, s – s′))]

=
〈
A1x – A1x′, x – x′〉 +

〈
A2y – A2y′, y – y′〉

≥ α
(∥∥A1x – A1x′∥∥2 +

∥∥A2y – A2y′∥∥2) = α
∥∥Ax – Ax′∥∥2.

This completes the proof. �

Proposition 9 (Properties of S) Let x := ((x, r), (y, s)) ∈ C. Then the following two state-
ments are equivalent:

(a) x ∈ Fix(S);
(b) x ∈ Fix(T1) and y ∈ Fix(T2).

If, in addition, T1, T2 are nonexpansive and Fix(T1) × Fix(T2) �= ∅, then S is nonexpansive
and r-strongly quasinonexpansive where r := min{b1(1 – b1), b2(1 – b2)}.
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Proof (a) ⇐⇒ (b) is trivial. Now we suppose that T1 and T2 are nonexpansive and
Fix(T1) × Fix(T2) �= ∅. It is clear that S is nonexpansive. Let r := min{b1(1 – b1), b2(1 – b2)}.
We show that S is r-strongly quasinonexpansive. To see this, let x := ((x, r), (y, s)) ∈ C and
p := ((p, r′), (q, s′)) ∈ Fix(S). It follows that

∥∥(
b1x + (1 – b)T1x

)
– p

∥∥2 ≤ b1‖x – p‖2 + (1 – b1)‖T1x – p‖2 – b1(1 – b1)‖x – T1x‖2

≤ ‖x – p‖2 – r‖x – T1x‖2.

Similarly, ‖(b2y + (1 – b2)T2y) – q‖2 ≤ ‖y – q‖2 – r‖y – T2y‖2. This implies that

‖Sx – p‖2 =
∥
∥(

b1x + (1 – b)T1x
)

– p
∥
∥2 +

(
r – r′)2

+
∥
∥(

b2y + (1 – b2)T2y
)

– q
∥
∥2 +

(
s – s′)2

≤ ‖x – p‖2 +
(
r – r′)2 + ‖y – q‖2 +

(
s – s′)2 – r

(‖x – T1x‖2 + ‖y – T2y‖2)

= ‖x – p‖2 – r‖x – Sx‖2.

The proof is complete. �

Proposition 10 If g1, g2 : H →H are α-Lipschitzian, then h : H→H defined by

h(x) :=
((

g2(y),αs
)
,
(
g1(x),αr

))
for all x :=

(
(x, r), (y, s)

) ∈H

is also α-Lipschitzian.

Proof To see this, let x := ((x, r), (y, s)), x′ := ((x′, r′), (y′, s′)) ∈H. It follows that

∥∥h(x) – h
(

x′)∥∥2 =
∥∥((

g2(y) – g2
(
y′),α

(
s – s′)),

(
g1(x) – g1

(
x′),α

(
r – r′)))∥∥2

=
∥∥g2(y) – g2

(
y′)∥∥2 + α2(s – s′)2) +

∥∥g1(x) – g1
(
x′)∥∥2 + α2(r – r′)2

≤ α2(∥∥y – y′∥∥2 +
(
s – s′)2 +

∥
∥x – x′∥∥2 +

(
r – r′)2)

= α2∥∥x – x′∥∥2.

This completes the proof. �

The intermixed algorithm can be regarded as a classical algorithm of Theorem 3, and
we obtain the following convergence theorem.

Theorem 11 Let U := PE(Id – λA) and F := VI(E, A) ∩ Fix(S). Suppose that x1 ∈ C is arbi-
trarily chosen and

xn+1 := (1 – βn)Sxn + βnPC
(
αnh(xn) + (1 – αn)Uxn

)
,

where the sequences {αn}∞n=1, {βn}∞n=1 ⊂ [0, 1] satisfy the following conditions:

lim
n

αn

1 – βn
= 0 and

∑

n
αnβn = ∞.

Then the iterative sequence {xn}∞n=1 converges to z = PF ◦ h(z).
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Remark 12 Our result is simultaneously a correction and an improvement of Theorem
KK in the following ways.

(1) We use a product space approach to consider the mixed variational inequality
problem and the intermixed algorithm.

(2) The resolvent proposed for the mixed variational inequality problem in the original
work is not correct, and we propose a correction.

(3) The assumptions on the parameters {αn}∞n=1 and {βn}∞n=1 are more general than those
in Theorem KK. Moreover, Condition (C3) is superfluous. The choice
αn = βn := 1/

√
n is applicable in our result, but it is not in Theorem KK.

Finally, we express the iterative sequence in our Theorem 11 as follows:

(x1, r1), (y1, s1) ∈ C ×Rare arbitrarily chosen,
(
x′

n, r′
n
)

:=
(
b1xn + (1 – b1)T1xn, rn

)
,

(
y′

n, s′
n
)

:=
(
b2yn + (1 – b2)T2yn, sn

)
,

(
x′′

n, r′′
n
)

:= Pepi f1 (xn – λnA1xn, rn – λn),
(
y′′

n, s′′
n
)

:= Pepi f2 (xn – λnA2xn, sn – λn),

(xn+1, rn+1) :=
(
(1 – βn)x′

n + βnPC
(
αnh(xn) + (1 – αn)x′′

n
)
,

(1 – βn)r′
n + βn

(
αnαrn + (1 – αn)r′′

n
))

,

(yn+1, sn+1) :=
(
(1 – βn)y′

n + βnPC
(
αnh(yn) + (1 – αn)y′′

n
)
,

(1 – βn)s′
n + βn

(
αnαsn + (1 – αn)s′′

n
))

.

For more detail on epigraphical projection, we refer to the book of Bauschke and Com-
bettes [4]. It follows from our Theorem 11 that {xn}∞n=1 and {yn}∞n=1 converge strongly to x∗

and y∗, respectively, where x∗ = PVI(C,A1,f1)∩Fix(T1)g2(y∗) and y∗ = PVI(C,A2,f2)∩Fix(T2)g1(x∗).
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