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1 Introduction

Let © € C” be a bounded domain and dV the Lebesgue measure on Q. Denote by L2(2)
the space of square-integrable functions and A%(2) the subspace of the square-integrable
holomorphic functions. It is easy to verify that A7(Q2) is a closed subspace of L1(2) for
any 1 < g < co by the mean value formula and the Holder inequality. Considering the
case q = 2, there exists an orthogonal projection Pg from L2(£2) onto A%(2) which can be
represented as an integral operator

Po(f)(2) - /Q FnKalzw) dVw)

forany f in L%(R2), where Kq(z, w) satisfies Kq(w, z) = Kq(z, w), which is called the Bergman
kernel function. Moreover, by Riesz representation theorem, the function Kq(z, w) is
unique. The orthogonal projection Pg, from L2(Q2) onto A%(2) is called the Bergman pro-
jection. Let P§, be defined by

PL(f)(2) = fg Koz, w)f w) dV (),

which is called the absolute Bergman projection; see [11]. The theory of Bergman spaces
can be dated back to [2] in the early 1950s, where the first systematic treatment of the
subspace of the square-integrable holomorphic functions on € was given. Since then, a
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lot of papers in this area have appeared. An important problem in Bergman space theory
is to study the mapping properties of P, i.e., which functional spaces or classes are pre-
served by P. The boundedness of P on L2(£2) can be easily deduced from the definition
of P. We naturally consider the question of the boundedness of P on L4(2) for 1 < g < 00,
which is not an easy problem to solve. As far as we know, the first to characterize the
L7-boundedness were Zaharjuta and Judovic¢ (see [23]). By using of the estimates of the
Bergman kernel, many authors have reached the conclusion that the Bergman projection
is bounded on the L7 space for all 1 < g < 0o on a large class of smooth pseudoconvex do-
mains of finite type, including all finite-type domains in C2, finite-type convex domains,
strongly pseudoconvex domains, and finite-type domains with locally diagonalizable Levi
form. See [4, 10, 12, 17-19] for more details. Nevertheless, it is worth noting that the
Bergman projection is not L? bounded for all 1 < g < 0o on the domains with serious sin-
gularities at boundaries in general; see [6]. But the Bergman projection is L7-bounded on
strongly pseudoconvex domains with C? boundary; see [15].
Let T be a linear operator on L7(£2). If there exists a constant ¢ > 0 such that

q
(Al
q

{zeQ:|Tf(2)| >1}| <c ©

foranyf € L7(Q2) and any A > 0, then we say that T is of weak-type (¢, ). This paper focuses
on the weak-type regularity of the Bergman projection for #-dimensional classical Hartogs
triangles. Let D be the unit disk and define the #-dimensional classical Hartogs triangle
H" (n > 2) as follows:

H” := {(zl,...,z,,)e]])":|zll <<zl < 1}.

In general, there exist two ways to obtain the L7-regularity of the Bergman projection.
One is to choose a proper test function by Schur’s lemma; see [28]. The other is to use
the weak-type estimate of the Bergman projection to obtain the L7-boundedness. Both
techniques are very effective in getting the L7-regularity. Unfortunately, we cannot get the
weak-type regularity at the endpoints of L7-boundedness from the Schur’s test. Thus this
paper mainly adopts the second method.

The L7-boundedness of the Bergman projection on Hartogs triangles has been stud-
ied for many years by different authors. It follows from the work of Deng—Huang—Zhao—
Zheng [8] that the Bergman projection acting on L' (D) is of weak-type (1, 1). However, for
the two-dimensional case, Huo—Wick [11] proved that the Bergman projection is not of
weak-type (1, 1). From this, we can see that dimensionality may have an effect on the weak-
type regularity of the Bergman projection. Besides, according to Chakrabarti—-Zeytuncu
[3], the Bergman projection is L7-bounded if and only if g € (%,4) over the classical Har-
togs triangle H C D? which is given by

H:={(z1,22) € D*: |z1| < |za| < 1}.

Later, this result is also covered by the work of Edholm—McNeal [9]. Huo—Wick [11] and
Christopherson—Koenig [7] have characterized the weak-type regularity of the Bergman
projection of the classical Hartogs triangle H and the rational power-generalized 2-
dimensional Hartogs triangles H% (H% = {(z1,22) € D?: |z1]" < |z|" < 1}), respectively.
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For related work on 2-dimensional classical Hartogs triangle H, refer to [20, 21]. A similar
result for the harmonic Bergman projection on the punctured unit ball B \ {0} in R® was

proved by Koenig—Wang [13]. It has been proved by Chen [5] that the Bergman projec-

2n 2n

=, =) over the n-dimensional (n > 2) classical

tion is bounded on L if and only if g € (
Hartogs triangle H”, where

H" .= {(zl,zg,...,z,,) eD":|zil < |z < - < |zul < 1}.

This result is also generalized to the n-dimensional (n > 2) generalized Hartogs triangles
by Bender—Chakrabarti—-Edholm—Mainkar [1] and Zhang [24]. See also [16, 22, 25-27]
for related work on generalized Hartogs triangles. Inspired by their work, we would like to
study the weak-type regularity of the Bergman projection over the n-dimensional (n > 2)
classical Hartogs triangle H” at the endpoints.

The following two theorems are the main results in this paper, which will be proved in
Sects. 2 and 3, respectively.

Theorem 1.1 The Bergman projection on the n-dimensional (n > 2) classical Hartogs tri-

angle H" is not of weak-type (2%, 2L

n+l’? n+1/°

Theorem 1.2 The Bergman projection on the n-dimensional (n > 2) classical Hartogs tri-

2n 2n
n-1’ n-17*

angle H" is of weak-type (

We generalize the result of the 2-dimensional case which is developed by Huo—Wick [11,
Theorems 4.1 and 4.2]. Our proof of Theorem 1.1 mainly relies on the Bergman projec-
tion of the multiparameter function z;“* |z, |‘b2p/ 2z, |7 ' for proper p',a;, b;, where
i=2,...,n. And we will prove Theorem 1.2 by showing that H" is biholomorphically equiv-
alent to D x (D*)"~!(D* := D\ {0}) and P}, is L7-bounded for 1 < g < oo.

The paper essentially follows the order established in this Introduction.

Throughout this paper, we will use the notation A < B, which is an inequality up to a
constant: A < ¢B for some constant c. The relevant constants in all such inequalities do
not depend on any relevant variable. If A < B and B < A hold simultaneously, then we say
A =~ B. We denote the Lebesgue measure of a Borel set by the notation | - |.

2 Failure of weak-type estimate of the Bergman projection at lower endpoint
In this section, we will prove that the Bergman projection P on H” is not of weak-type
(2=, 21 To get started, we set g := 2% and abbreviate Py to P. We just need to construct

n+l’ n+l n+l

a function f; € L1(H") such that

VAN o g
|{(Z]»Zz,...,zn) ceH": |P(fk)(zl;22,-..,zy,)| >)L}| > ¢, [f ;Z(H ),

where ¢; is a constant related to A and satisfies ¢; — 00 as A — oo.
The following lemma gives an orthogonal basis of A2(H"), which plays a major role in

this section.

Lemma 2.1 ([24, Lemma 4.1]) For n > 2, we define

j
xi=3t=(t1,...,T0) €Z" : 11 ZO,ZIi+jZ 1,j=2,...,ny.
i=1
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Then {z" : T € x} is an orthogonal basis on A*>(H"), where t = (11,...,1,) are multiindices

and z* :=z;" -

zZ.
Now, let us start with the proof of the theorem of this section.

The proof of Theorem 1.1 For A >0, we define
— by —, bar! _ o
filer.oz) =B | PP BNz 5 2|
where p’ = 1% denotes the conjugate index of p and p > 1 is a constant associated to A,

a;eNU{0}and b; e Rfori=2,...,n.
Let us calculate |P(f,)(z1,22,. . .,2,)| as follows:

P(f}n)(zl’ZZr' . wzn)

—a —byp’ —a —bup ., 11571, T T T
~ W22|W2| 2P...wnn|wn| npzllwl 122 2W22"'Zn W,
H}’l

2
71>0 ”WlIl W2« Wy, ”L2(]HI”’)
1'1+1'2_2—1

T1+T+ - +Tp>1-n

AV (w1, wo,...,w,). (2.1)

By using polar coordinates, one can easily get that
—a ~byp —a —bup 11T —T
/ w2 o |72 Wy w | Wy wy ™ AV (wh, wa, e W) #0
Hﬂ

if and only if
71=0 and 1t =-ax

fork=2,3,...,n.
It follows from Lemma 2.1 that

—ag—-—ap>1-k (2.2)
fork=2,...,n.
We can take a; = a3 = - - - = a,, = 1 satisfying (2.2). Hence, one may compute ||f; ||Zq(Hn> as
follows:
1/ ||Zq(Hn)

on
el dv(zl’ZZ) co ,Zn)

_ by — hay — o
- / 7592 20|20 55 |z 0 g, B
HVI
771z |02 72| o | b7
= dV(z,) aV(z-1)--- 2212277 Z5 3]
|znl<1 |zn-1l<lznl lz1l<lz2]

o
T gV (z1)

J— b /
“ Zulz|
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on-3n-2), (n-2-By_1p) 2% +2(n-2) z (1-bup') ;2%
[ ave) <o — AV(z,)
lzul<1 |zn—11<lznl kea (k= 1= Byp') 5 + 2K)
=2 n-1|, (n—l—Bnp/)%+2(Vl—l)
_ / AL — )
nl<t [[jop (k=1 =Bup') 25 + 2k)
2n—17.[n
- [Ties((k=1—=Bip' n% +2k)
provided that
N 2K
(k—l—ka) +2k>0 fork=2,...,n, (2.3)
n+1
where By = Y%, b fork=2,...,n.
We can also simplify |P(f,)(z1,22,...,2,4)| in (2.1) even further as follows:
|P(f;»)(zl) 22500y Zn) |
—byp’ ~bsp’ . ~bup' , -1, .., -1
_ / [wal 727 [ws] L T TV P ) (2.4)
" ”WZ_I o Wn_lllLZ(Hn)

Now let us estimate
lwo ™t w, ”iZ(Hn)
and
_/Hn [wa | 222 (w032 w702 AV (wy, .., W)

separately.

A simple calculation gives

_ _112
/ |W2 1"'Wn 1| dV(Wl,WZ;---;Wn)
Hn

[ aven [ v [ et P avin
[wnl<1 [Wn—11<|wnl [wil<|wa|

=" (2.5)

Page 5 of 18



Li and Wang Journal of Inequalities and Applications (2024) 2024:39

Likewise, one could just as easily get

_ / _ / _ /
f s |22 [ |52 [0 AV (s sy )
HVI

_ / AV (w,) / AV (wp_r)- - / w3 |28 g P
|[wn|<1 [Wp—1|<|wy| [wil<|wa|

WP AV ()

2n—3nn—2|w i |2(V1—2)—Bn,1p’ |W |—bnp/
_ f AV (w,) f nl M aVw,)
Iwal<1 W11 <Iwnl ks (2k = Byp')

2;1—27.[;’1—1 w 2(n-1)-Byp’
_ / o avn)
wal<t [ T22(2k — Byp')
Zn—lnn
=, (2.6)
[1;-2(2k — Byp')
provided that
2k—Bip' >0 fork=2,...,n, (2.7)
where By = Y%, b, fork=2,...,n.
Combining (2.4)—(2.6), one obtains
2;’1—1
P(f)(z1,22,...,24)| = . (2.8)
[P 2 |2allz3] - - 12| [ Ty (2K — Bip')
Then it follows from (2.8) that
H(z1,220..020) € H" 2 [P(fi) (21,22, .., 20) | > A}
= / el dV(Zl,Zg,.,.,Zn)
{(z1,225-+ Zn)EHn:|7«2H23““‘ZV1‘HZ:Q(Zk_ka/)>A}
> / ) dV(zi,z2,...,2). (2.9)
{(21,22,2n) € = >lzul"1)

n. 2
MR, @k-Bip")
Here, the appropriate parameters By (2 < k < u) and p’ will be chosen to ensure that

- 2 — <1
(A [ Tizp(2k = Byp')) 71

(2.10)

holds. Then

(2.9) - /| | 2 AV (z,) AV(z) - /| L Ave)

T [zn-1<lzu

(1R =g (2k=Byp")) -1
22n "

n(A T, (2k - Byp')) i

Page 6 of 18
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1

[Tis (k=1 - ka)n+1 + 2k]
T 1B 25+ 20 (A TTioa(2k - Bip)
”fA”Lan l_[k 2((k 1- ka)n+1+2k)

Y

A= 1) n+1) Hk ) Zk_ka ))

((k-1-B 24 ok
Substituting p’ = £- 7 into [T ') st +2K)

I in (2.11), we get
(ITg=o (2k=Byp')) n-T

[Tiea((k—1—Bip' n+1 +2k)

(TT_a(2k - Bip') 1
- DTk -1- Bty

n+1 +2k)
([Tx- k(- 1)

ka)rzl
(p 1n+11_[k2 k 1- Bk)n+1+2k)

- 2(k-1) - 2%)

(2.12)
([Teea(k = B)p - 2k))

Here one needs to choose appropriate By for k = 2
is true:

.., n to make sure that the following

2
(k—1-B)-21 +2k>0,
n+1

(2.13)
2k — By > 0. (2.14)
From (2.13) and (2.14), it is easy to see that
1 21 (k-1)+2k
(2.12) ~ o= " Tealo = Bk>n2f1+2k)
(HZ=2(p - Zk—Bk )”_1
ke+k—
- T - ﬁ) 215
(Ti2p — 225, Bk )

We can take By = 2k — 1 for k= 2,3

,nand p = 21 + 178 with § € (0,1) to be chosen
shortly. Substituting By = 2k — 1 and p = 2 + A~ into the left-hand sides of (2.3), (2.7)
(2.10), (2.13), and (2.14), we obtain

LHS of (2.3) = (k—1- Bp) 2n

1+2k
_(k=1)(p-1)-(2k-1)p 2n ok

- p-1 ;f1+1+
_2n(k—1)(p—1)—(2k—1)pn+k(n+1)(p—1)
B p-1)(n+1)

21’1—k+k)»“S 0
_p MK o,
(p-Dn+1)

21 —k) + 178
LHS of (2.7) = 2k — Byl = 21=R 27

p-1

2

LHS of (2.10) =

(A TT7_,(2k - Byp'))it

(2.11)

Page 7 of 18
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= 15 ks i<1 as A — 0o,
2n 2n-1+17% l_[ 7))”71

+2k =
+1 n+1

LHS of (2.14) = 2k =By =1 > 0.

LHS of (2.13) = (k~1-By)~ 2n >0,

So (2.3), (2.7), (2.10), (2.13), and (2.14) are satisfied.
Substituting By = 2k — 1, p = 2 + A~ into (2.15) and combining (2.9), (2.11), (2.12), and
(2.15), one has

|{(21rZ2,---;Zn) eH": |P(ﬁ)(z1,zz,...,zn)| > A}|
> ”f)»”Zq(Hn) (2}’! -1+ )\_5)}“'1)»_5 HZ;%(_I + % + )\—8)

~ JVi _An o ons 21 (2.16)
A (=D+) ) -1 (Hk:2(2n -2k + A8)) -1

When A tends to 0o, we can estimate (2.16) as follows:

q
(2.16) ~ Wﬂx‘é* 8= G
IV

If we choose

2n 5 4n 0
— >0,
n-1 n-1n+1)

-5+

ie.,

4n

6 ’
g (m+1)2

Sy 2 An
then A "7 # 17 (--D0+1) — 00 as A — 00.

Note that 4# < (1 + 1)? since # > 2. So one can choose § € ( 1) such that

4n
(n+1)2?

”ﬁ~”Lq(H”) PR n 5
Ad

(n— 1)(n+1)

(21,20, 20) € H": [P(£) (21,20, .. 20)| > A}| 2

gy 25 An
and A 17T D) — 00 as A — 00.

We complete the proof. g

3 Proof of weak-type estimate of the Bergman projection at upper endpoint

In this section, set g := and abbreviate Py to P. We will show that the Bergman projec-

2n

tion is of weak-type (775, -7

2n), Let us begin with some preliminaries. The Bergman kernel
on D" is given by

1

I(DW(Z, W) = 7 —,
7 ] Ty (1 — ziwi)?

where

z2=(z1,22,...,2,) €D" and w= (wi,wo,...,w,) €D".

Page 8 of 18
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It is easy to see that the mapping (z1,22,...,2,) > (%, i—;, ey ZZI ,Z,) is a biholomorphism
from H” onto D x (D*)*"!. From the biholomorphic transformation formula in [14], we
get
a(z_l"“,zn—l’zn) z Zy— w Wy—
Kyn(z, w) = det(%>lﬂmx®*)n_1 (—1,..., 2 l,z,,;—l,..., Ll,wn>
(21, ..524) 2z Zn 2 Wy

a(%wnv Wxil )W}’l)
8(Wb L] Wn)

1 Z1 Zpn-1 w1 Wy-1 1
== I(Dn — ey yZny e n —
[Teeo 2 [Teco Wi

P ) W}’l
V4 Zn Wy Wn
1
= n noo— —o -1 ZVe 2’ (31)
7"([Teoo 2T T, W) (L = 2, w,)2 [ [ (1= )

Zk+1Wk+1

where
z=(z1,22,...,2,) EH" and w=(wq,wy,...,w,) € H".

The following lemma is a crucial technique of proving Theorem 1.2 and stated as follows.
Lemma 3.1 The absolute Bergman projection Py, is L1-bounded for 1 < g < oo.

Proof Let f € L1(D") (1< g < 00),z=(z1,22,...,2,) € D" and w = (w1, w,...,w,) € D". A
simple calculation gives

P} (f)(2)

= /]D)" |Kp (2, w) |f (w) dV (w)

f(WI’WZ’--')er)
D# " l_[:l=1 |1 _ZiWi|2

:/ ;dv(wn) Swi,wa,. . wy)
D

7|1 =z, W, |2 ot T T L - 2w

dv(le Woseees WVI)

av(wy,...,wy_1). (3.2)

Now let us complete the proof in several steps.
Step 1. Set

54(Wn) ::gn(zl, s Zpo1, Wy)

:/ fwi,wa, ..., wy)
D

av(iwy, ..., Wu_1). (3.3)
o T g

Substituting (3.3) into (3.2), one obtains

(32) = fD A

7T|1 _ZnW_n|2

From [11, Lemma 2.2], Py, is L?-bounded for 1 < g < c0.

Page 9 of 18
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Then

fn!Pnsn(f)(z)|"dV(z1,...,zn)

q
80 v avizavea,... )
Dr-1 pTll- znw,,l2
/ 1/|gn Zn)| dV Zn)dv(zlr <1 Zp— 1) (34')
]D)Vl
Step 2.
Set

g:t\:l (Wn—l) =gn-1 (ZI: e s Zp-2,Wn-1, Zn)

_ f(Wl,WZ, Wy I;Zn) dV(W17-~~1W}’I—2)' (3.5)

D2 T 2H 11— ziw;|?

Substituting (3.5) into (3.3), one has

Zi(zn) :/ Md\/(wn_l).

D |1 =2z, Wy, |2

Since P, is L?-bounded for 1 < g < 0o by [11, Lemma 2.2], one gets

gn l(Wn 1)
7|1 = 2y Wt |2

q
(3.4) = dV(w,1)| dV(z,21)dV(zi,. .. 2422, 24)

]D)Yll

< f / 1671 )| AV @) AV (21 202 2)
D7-1 JD

Repeat the above process until Step (n - 1).
Set

S(wo) = ga(z1, W2, 23,..., 24)

W1, W2, 23, s Z
_ fwi, wy 3 ")d\/(wl).
b mTl-zwi]?

It is easy to see that
[ Ips@f avee. ..z
Dn

S / [l aveavies,.m

f W1,22,235 . rzn)

q
T|l- Z1W1|2 dV(w)| dV(z1)dV(za,...,2z,)

Dr-1

< / a2z 2| dV (@1 2.
]D)Yl

We complete the proof. g

Now let us prove the main theorem of this section.
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The proof of Theorem 1.2 Let f € L1(H"). Then

" 2

o
V1 Za ey = /Hn f (21,20, ,20) |7 AV (21,22, ..., 2)
nzkk—l

L ([t fteeos)
Rt o) e

21
n-1

dV(Zl,Zz, .. .,Zn)

n-1

k=2

Define

n
— k-1
gz, 20, 020) = (sz,]_[zk, ~;Zn>1_[2k :
k=1 k=2 k

One can easily obtain

n
—2k+2
T dV)
k=2

- I 1 24 emy -

gel? (]D)",
and

llgll

—2k+!
LUDA Ty el -1 av
By using (3.1) and variable substitutions, one gets
|Pf(21) Y |

= f fwy, .o, w)Kun (21, .. s 2y Wiy oo s W) AV (W, ..., wy,)
HVI

n n
f (]_[ W . ]_[ Wi, Wn)1<]HI” <Z1, 2 ]_[ Wi [ wao Wn)
k=1

k=n-1 k=n-1

n
2k-2
< [TIw*dvws, ..., w,)
k=2

_ / f(HZ=1 Wis«+ 25 HZ=VI—1 Wk’wn) I—[Z=2 |Wk|2k_2 V(Wl, e
o 7 ([ T 2 ([T T W (1 - 2w Ty (1 - 222
f(l_[/’z 1 Wk - l—lk n-1 Wk Wn) l_[k 2Wkk 1 V(WI) ¢Wn) .
ot ([ Ty z) (1 = 2,w,) 2 [T} (1 - M)

In a similar way, a simple calculation implies

21 Zp-1
P]D)”(g) IEEEEE] »Zn
23 Zn
Zp-1

z
/ g(WI:u-,Wn)I<D” <Z_1)H'7 —Zn; Wl,...,Wn) dV(WI,...,W;q)
D~

2 Zy

n
—2k+2
[Tzl vz, ... 2.

Page 11 0f 18
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/ f(l_[wk,..., l_[ wk,w,,)
D" \ja1

k=n-1
”7 w k-1
Ek72 ]r:—l Wr dV(W17W2)~~~;Wn) . (37)
(1 = zgwn)* [T, (1= 275)2

Comparing (3.6) with (3.7), it is easy to see that

|PD”(g)(%} ceey -1 ;Zn)|

Zn

HZ=2 |zic]

Hence we can evaluate |{(z1,22,...,2,) € H" : |P(f)(21,22,...,24)| > 1}| as follows:

‘Pf(zl,zz,...,z,,)‘ =

{(z1,22,....,20) € H" 1 [P(f) (21,22, ..., 20) | > A}

/ dV(Zl,Zznn,Zn)
{(21,22,..20) EH":|P(f) (21,2250 021) | > A}

dV(Zl,Zz, .. .,Zn)

/ [Ppn (@) ;—1 ,,,,, Zn=1 \Zn)
n. 2 Zn
{(z1,22,.r20n)€H": ngz ] >A}

n
2%-2
= / [Pyt (€)(2122r2)| l_[ |Zk| dV(ZI!ZZ"H,ZVl)
(21,22, Zn)EDW:W>)‘} k=2

/[(21,22 ..... 2n) €D |z | <
n
+ H |zk|2k’2 dVi(zi,za,...,2,). (3.9)
(« YeD: 2> L nd  Pon (©)(z1,22--12n) )
215220920 HZp > ) al 71_[272 |Zk|k71 > k=2

n
2k-2
N [[a*?aviez...oz.)  (3.8)
3 an #HZQ 21 >A} foo

) W1 g g [T . . .
Now we just need to prove (3.8) < % and (3.9) < %. To this end, it is sufficient
to show
- %2 gy < Hf”grz(Hn) 310
{11‘\PDn(g)(sz,zn)I))L} 1_[ 2] (21,0 20) ~ A (3.10)
. 1—[222 \Zk\k’I =2
and
ke gy o o it
N L (21,00 2) S — (3.11)
{12:71_12:2 o T >4} koo
Here,

) 1 1 1 1 1
L= oz 0z) €D g | < o0 18] < 2012100 > 50 15,0 | > o lanl < 5

where the set of the numbers ji, ..., j,_1 is an any fixed rearrangement of 1,2,...,n— 1 and

., 1 1 1 1 1
122: (21,22,...,Zn)€D I|Zt1|f57--~1|Zts|S§’|Zts+1|>§""7|Ztn_1|>§’|znl>5 ’

where the set of the numbers ¢;,...,¢,_; is an any fixed rearrangement of 1,2,...,n — 1.
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Let us begin with (3.10). For |z,| < %, one has

1
7 [ Teey 11— zewre?
1

~ _ —1 —2
" lnzzl |1 - zgwg|

|Kpn (215225« » 20 W1 W2s oo, W) | =

and

Wi, W,y Wy)
|PJD)n(g)(leZ2;-..,Zn)|: / g( L2 dV(WI,Wz,...,Wn)
D

n T HZ:I(I - ZkW_k)2

< / |g(W:W2,.“,VVL)|2 dV(WI,W2,...,Wn)
pn " Hk:l |1 — zxwi|
< f[D) |g(W1,W2,...,Wn)|dV(Wn)

~ ot G -z

= []P]B)n—l (/I;) ‘g(er W2s.ees Wn)‘ dv(wn)> (ZI! 225000 rzn—l)

dv(wll Wosenes Wn—l)

= P]‘]‘_"»n—l (G)(ZIYZZ; ceey Zn—l)!

where G(wy1, wy,...,W,_1) = fD lg(wy, wa,...,w,)| dV(w,). Then there exists a constant C

such that

LHS of (3.10)

n
2%-2
5/ Ry | ||Zk| dV(z1,22,...,2u)
e

HZ:2 |Zk|k_1 >Ch k=2
n
2k-2
:/ dV(z1,22, ..., Zu-1) - P (@)1 2ty )] 1 |ze| = dV (z,)
I 2 D= - - f T
1 {lzn|=7 and ( O IIL T )1 >|znl} §_o

(G)(z1,22w2p—1) _1

Pt
‘ pr-1 T n—1

— )
n-1 k-1
s f V(a2 20m) / i P i dr

I 0 k=2

2n 1
P!, 1 (G)(z1,22, ..., 2n-1)|# T 1

5/ D -1 k-1 ZJ 1_[|Zk|2k72dv(211227---’Zrl—l)x (312)

1; ()L Hk:g |Zk| )”’1 k=2

where

1 1
-1
Ii = {(Zl,Zz,...,Zn_l) eD” :|Zi1| < E,...,|Z]'m| < §’|Z/m+1| > 5,...,|Z]‘n_1| > 2}

For |z;; | < %, |zj,| < %,..., |2, | < %, 2,01 | > %, 12,00 | > %,..., 12,1 | > %, it is easy to see that

1
I n-1 —
7" ey 11—z
1

=~
—m—1 7171 — 2"
A (i 11 = 2w, |

|I<ID)"”1 (Zl,Zz, ey Zu-1 W1, Wo, ..., Wn_1)| =

Page 13 0f 18
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In order to estimate (3.12), we need to simplify IPp,.- 1(G)(z1,225...,24-1)| as follows:

’P]Bn—l (G)(er221 e Zn—1)|

Jplgwi,wa, ., wy)| dV (wy)
= D ’ n,—l ’ — dV(W17W2:~"rwn—1)
Dr-1 n—n—l Hk:l |1 _ kakl
~ / fDmH |g(W1’W2, 2’ W”)| dV(W/l’ sz’ ° me1 Wn)
et T m+1|1 Z/kWJk|

dv(wjnﬁl’ wjm+1’ e an—l)

=Pl 1(/ l‘g(wl,wz,...,wn)‘dV(wjl,w/Z,...,w,'m,w,,))(zjm+1,z,»m+2,...,z,'n_l)
]D)WH
=Pt (GI(Zs15 Zjras -9 Zjns s (3.13)

where G1(Wj,,,1s Wjpizr- s Wint) = Jpmet 18W1, Wa, oy w) [ AV (W, Wy, Wi, W),
Substituting (3.13) into (3.12), one obtains

21
/ |PE»,,,1(G)(21,Z2, <3 Zp- 1) -1
I

n-1
- [T ?avia,....zu0)
AT <Y P

2,1
1Pyt (G1)(Zjiys 0 Zip )T T
~ —— LSRRy S 2%-2
N[ m+ = 1 n— 1_[|Zk| dV(Zl,...,Zn_l)
h (AT it
2n
1Pyt (G (Ziys -0 2y DT .
%-/: ; - Jk—1 ;127” 1_[ |ij|2}k Zdv(zly-u,zn_l)
h (* nk:ld’kﬂ | Ve k=Ljx#1

G/q
< / ]‘[ B =S 2dV(zZy,.2,) AV (000 2,)  (3.14)
pn-m-1 Dm k=1,jz 71

where G := |P+n m— 1(Gl)(zjm+1r %), 1)|
2(n—jg)

Note that 2279 _2 5 _2since ji <n-1,50 [, [Tf- LAl |z,k| 2 dV(zg,,...,z5,) < 00.

Hence,

Gy1
(3.14) ~ /DHF1 0 AV (zj,.1s- %, 1)

||PD}’I —m— I(Gl)”Lq (Dr—m-— 1)

Y (3.15)
By Holder’s inequality, one gets
/ 1 Gl(wjmﬂh-"wl'nfl)q dV(W/mH,...,anil)
Dr-m-
5/ / |g(W1,W2,...,Wn)|qu(W]‘1,W/Z,...,Wl'm,Wn)
pr-m-1 Jpm+l
dV(ij+l 4 ij+2’ e an—l)
= l1glfaqm < ||g||" s = W g (3.16)

D" [Tgop Izl #=1 dV)

Page 14 of 18
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Hence,
G, e LY(D"). (3.17)
Combining (3.12), (3.13), (3.14), (3.15), (3.16), (3.17), and Lemma 3.1, we have

” P]E)n—m—l (Gl) ”Zq (Dn—m—l)

LHS of (3.10) <
Aq

< ” Gl ”Zq(Dn—m—l)
~ IV
q
_ Wl
~ Aq .

This gives (3.10).
Now only (3.11) remains to be dealt with. Let

1 1 1
) |Zts+1|>5;-~~r|ztn,1|>§t |Zn|>_'

|Zt1|< ;---7|Zts = D)

Similarly, the set of the numbers ¢4, ...,t,_1 is an any fixed rearrangement of 1,2,...,n— 1.
Then

1
—2
77”1_[2:1 |1 —zwy|

5 ! (3.18)
7511 = 2 W | [T 11 = 2, Wag 1>

‘I<D”(Z1’22y ey Zpy W1, Wa, .. ,Wn)} =

It follows from (3.18) that

|PD”(4g)(Zl722) . '~¢Zn)|

_ / g(Wl,Wznn,Wn)
o 7 [Ty 11 = 2l

</ |g(W1yW2y.~,Wn)|

Z R ——] —0
o 7775|1 = 2, W | [ [ 11 = 26, W |

dV(le W2,. ERS] Wn)

dV(WI; Woseees Wn)

~

st |g(W1; Wo,.. .,Wn)| dV(ng,WtZ, . "Wts)

_ N p—— —
s 0|1 = 2, Wy | [ TiCe 11— 2, W |

~
~

dv(wts+1 ) Wtﬁ,zy ) th,l ) er)
=Pl (/ |g(w1,wz,...,wn)| dV(w,fl,wt2,...,wts))(ztm,ztﬁz,...,ztnl,zn)
DS

= PHJS)W—S (GZ)(ZtS+17 Ztgnrevor %, 15 Zn): (319)

where GZ(Wt5+17 Wtgiar o9 Wty 15 Wn) = f]D)S |g(Wl: Woseues Wn)| dv(wtl yWiyseeos Wts)'
Holder’s inequality now leads to

2n
/ GZ(WtS+17 ceey th—l’ WVI) -1 dV(W[H] yeees Wt,,,_p Wn)
n—s

o
< / ‘g(wl, W,y w,,)‘ LAV (Wi Wy oo s We) AV (We s Weergs s Wey > Wi)
Hn—s ]D)S
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q q
||g||Lq pry = ||g|| —2k+2 = ”f”Lq(Hn)'
DTy okl 7T dV)

SO G2 S Lq(]D)n S) and let GZ = P]D)n —s (G2)(zts+1 ) Zts+2’ ceey Ztn,l ’ Zn)~
Together with (3.19), one has

LHS of (3.11) < / (|PD”(g)(Z1,Zz,...,Z,,)|)M

n k-1
I ATz l2 s
Gy
T
< / _ 2n H|2k|2k ZdV(ZI,ZZ: an)
I (A Hk 2 |Zk| )
2n
Gyt - 22
~ o |1 e 2dviz,...
L (AT tk—l)—l
2 ( Hk=1,tk-7/1 |Ztk| n- k=171

G

n= 2(n— tk

:/ 22;4 1_[ |Zt| " ZdV(Zl,Zz, »Zn)'
Iy n-1

1 k=LA

Note that 2= tk) —2>-2sincexy <m-1,s0

f H 2| T2V (2t 12) < 00
Ds

k=1,t;#1

Then

G s 2Ant)
(321) < / 22n 1_[ |Ztk| -1 ZdV(Zl,Zz,...,Zn)

tOAL Ly

G/ n 1
= / 2n dv(ztﬁl 2 Ztgigr e e s Zty_y Z”)
Dr-s A n-1
$ 21-4)
X l_[ IZ[k| n-1 dV(ztl,th,...,Zts)
D* p-1y A1

G’ n 1
~ / dV(Zts+l’Zts+2’ ’Ztn—l’z”l)'
D

n—s An 1

From Lemma 3.1 and (3.20), it follows that

2_}11
” GZ ||Z‘;(]D)n—x)

(3.23) < o
An-1
q
o 1N
~ JVi ‘

We complete the proof of the weak-type (-2

nl’nl

[[1a*?dviz,z,...

Page 16 of 18

(3.20)
»Zn)
2 Zn)
(3.21)
(3.22)
(3.23)
O

Remark 3.2 It is necessary to divide the proof of Theorem 1.2 into two parts, (3.8) and

71 n
(3.9). The ways to prove (3.8) < @

changeable.

W1 m
nd (3.9) < s Lq "% are different and not inter-
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W g g W g o
(i) If the method of proving (3.9) < Lq(H is applied to the proof of (3.8) < — Lq 2,
there will be errors.
When |z,| < %, let us consider
S
2n=tg) _
[Ttz
k=1,t;#1
in (3.21). One obtains
§ 20-t) - st 2n1) _,
[T teal ™ =1zl [] lzel = 2
k=141 k=1t 41
Then
/ l_[ |Zt | (zl’l"'-’zts)
D¥ k=141
2(n- [k ) )
]‘[ |z | 2 AV 21y, 2 y) [ l2al 2 AV (20).
D LA D
It is easy to see that
/ 1l 2 dV(zny.. vz ) < 00
D
and
[ e avia) - o
D
Hence, (3.22) will not hold.
Iy i

(i) After a simple calculation, we also find that the method of proving (3.8) <

. W g gn
cannot be applied to the proof of (3.9) < %.
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