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Abstract
This paper introduces an innovative inertial simultaneous cyclic iterative algorithm
designed to address a range of mathematical problems within the realm of split
equality variational inequalities. Specifically, the algorithm accommodates finite
families of split equality variational inequality problems, infinite families of split
equality variational inclusion problems, and multiple-sets split equality fixed point
problems involving demicontractive operators in infinite-dimensional Hilbert spaces.
The algorithm integrates well-established methods, including the cyclic method, the
inertial method, the viscosity approximation method, and the projection method. We
establish the strong convergence of this proposed algorithm, demonstrating its
applicability in various scenarios and unifying disparate findings from existing
literature. Additionally, a numerical example is presented to validate the primary
convergence theorem.
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1 Introduction
The variational inequality problem (VIP) was developed by Stampacchia [1] in 1964, and
it provides useful mathematical tools for investigating interesting issues like game theory,
economic equilibrium mechanics, partial differential equations, and optimization theory;
see [2–8]. Due to their active role and significance in nonlinear analysis, VIPs are currently
growing in both theory and practice; for examples, see [8, 9]. The variational inequality
problem (VIP), one of the significant problems, has drawn the interest of numerous math-
ematicians throughout the years. One can define VIP as finding r̄∗ ∈ Q such that

〈
L
(
r̄∗), p – r̄∗〉≥ 0 for all p ∈ Q, (1.1)
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where L is a nonlinear mapping. The set of solutions of the VIP is represented by VIP(Q, L).
One of the most often used methods for studying VIPs is the projection method, which
can be applied to demonstrate the equivalence between fixed points and VIPs.

In 1994, Censor and Elfving [10] introduced the split feasibility problem (SFP) for mod-
eling inverse problems. SFP identifies a point in a closed convex subset of a Hilbert space
such that the image of that point under a particular bounded linear operator belongs to
a closed convex subset of a different Hilbert space. Currently, SFPs are implemented in
a number of fields, including signal processing [11], computer tomography [12], image
restoration [13, 14], and intensity modulated radiation treatment (IMRT) [12, 15]. Re-
cently, numerous authors have presented various split-type problems; see [11, 12, 15] for
significant developments in this direction or related topics. In 2005, Censor et al. [12] pro-
posed multiple-sets split feasibility problems (MSSFPs), which have applications in the
inverse problem of intensity-modulated radiation therapy. In 2009, Censor and Segal [16]
proposed split common fixed point problems (SCFPPs) to generalize the split feasibility
problem, the convex feasibility problem, and the multiple-sets split feasibility problem.
For more related problems, see [17–23].

The split equality problem (SEP) was firstly proposed by Moudafi [24] in 2013. Par-
tial and asymmetric relationships between the variables of two spaces are permitted by
SEP. Moudafi [25] studied the split equality fixed point problem (SEFPP), which involves
strongly nonexpansive mapping. Additionally, Moudafi and Al-Shemas [26] proved a weak
convergence result and proposed the simultaneous iterative method. One can see the
above-mentioned iterative approaches need the norm of the bounded linear operators
‖A‖ and ‖B‖. Calculating the norm of a bounded linear operator can be difficult in some
situations. Lopez et al. [27] provided a valuable solution to this numerical challenge. In
2014, Zhao [28] improved the result of Moudafi [16, 24, 25]. By considering the step size
that does not need previous knowledge of the operator norm and obtained the weak con-
vergence result for quasi-nonexpansive mappings. A significant convergence result involv-
ing quasi-nonexpansive mappings for solving the split common fixed point problem was
demonstrated by Shehu et al. [29] in 2017. The split equality variational inequality prob-
lem (SEVIP) has been extensively studied and used to solve many real-world issues, in-
cluding modeling intensity-modulated radiation therapy treatment planning [30]. Mathe-
matically, SEVIPs are very general since they include common solutions of the variational
inequality problem [31], split equality zero point problem [32], split equality feasibility
problem [33], and common zeros of mappings [34]. SEVIP is stated as a problem of find-
ing (r̄∗, s̄∗) ∈ Q1 × Q2 such that

(
r̄∗, s̄∗) ∈ VIP

(
Q1, Lx)× VIP

(
Q2, Ly) and Ar̄∗ = Bs̄∗, (1.2)

where A, B are bounded linear operators, Q1, Q2 are nonempty closed convex subsets of
H1 and H2, respectively, and Lx : H1 → H1, Ly : H2 → H2 are nonlinear operators.

In 2014, Wu et al. [35] proposed the multiple-sets split equality fixed point problem
(MSEFPP) stated as a problem of finding (r̄∗, s̄∗) ∈ H1 × H2 such that

r̄∗ ∈
N⋂

k1=1

Fix(Sk1 ), s̄∗ ∈
P⋂

k2=1

Fix(Uk2 ) and Ar̄∗ = Bs̄∗, (1.3)
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where Sk1 : H1 → H1, Uk2 : H2 → H2 are nonlinear operators with 1 ≤ k1 ≤ N , 1 ≤ k2 ≤ P
and A, B are bounded linear operators. MSEFPP includes the multiple-sets split equality
problem (MSEP), the split equality fixed point problem (SEFPP), the multiple-sets split
feasibility problem (MSFP), the split equality problem (SEP), and many others; see [36].
MSEFPP had a significant impact on the growth of various fields including signal process-
ing and image restoration.

Variational inclusion problems had a significant impact on the growth of many fields
including mathematical programming, optimal control, mathematical economics, varia-
tional inequalities, game theory, complementarity problems, etc. In 2011, Moudafi [33]
studied the split monotone variational inclusion problem (SMVIP). SMVIP is to find
r̄∗ ∈ H such that

0 ∈ K
(
r̄∗) and 0 ∈

∞⋂

i=1

T
(
Ar̄∗), (1.4)

where A is a bounded linear operators, K : H1 → H1 and T : H2 → H2 are set-valued
maximal monotone mappings. The general split equality variational inclusion problem
(GSEMVIP) was studied by Chang et al. [37] in 2014, generalizing the SMVIP. GSEMVIP
is stated as finding (r̄∗, s̄∗) ∈ H1 × H2 such that

0 ∈
∞⋂

i=1

Ki
(
r̄∗), 0 ∈

∞⋂

i=1

Ti
(
s̄∗) and Ar̄∗ = Bs̄∗. (1.5)

The set of solutions to the GSEMVIP is represented by �. Chang et al. [37] proved a strong
convergence theorem for GSEMVIP. In 2017, Latif and Eslamian [38] introduced a method
to find the common solution of three split equality problems, namely variational inequal-
ity, equilibrium, and fixed point problems of nonexpansive semigroups. In 2019, Kazmi
et al. [39] proposed an iterative method to find the common solution of three split equal-
ity problems, namely variational inclusion, generalized general variational-like inequality,
and fixed point problems for quasi-nonexpansive mapping.

The inertial extrapolation methods were extensively used as an acceleration technique.
The researchers used inertial extrapolation to build numerous iterative algorithms. The
critical characteristic of inertial extrapolation is that the following iteration is determined
using the results of the previous two iterations. The efficiency of its original (non-inertial)
algorithms, like [40, 41], has been significantly enhanced by inertial approaches, as demon-
strated by numerical studies. As a result, a lot of research is currently focused on exploiting
inertial extrapolation to improve current methods (see [42, 43] and the references therein).

Suppose that H1, H2, and H3 are real Hilbert spaces. Assume that A : H1 → H3 and B :
H2 → H3 are two bounded linear operators. Suppose that {Ki}∞i=1 : H1 → 2H1 and {Ti}∞i=1 :
H2 → 2H2 are maximal monotone mappings. Let Sk1 : H1 → H1 and Uk2 : H2 → H2 be
demicontractive operators such that I – Sk1 and I – Uk2 are demiclosed at zero for 1 ≤ k1 ≤
N , 1 ≤ k2 ≤ P with constants 0 ≤ κk1 < 1 and 0 ≤ φk2 < 1, respectively, where κ = maxκk1

and φ = maxφk2 . Define Sk1 = Sk1( mod N)+1 and Uk2 = Uk2( mod P)+1. Let Lx
j : H1 → H1, Ly

j :
H2 → H2 be cx

j , cy
j -inverse strongly monotone mappings, respectively, c̄x = minj=1,2,...,M{cx

j }
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and c̄y = minj=1,2,...,M{cy
j }. We represent the required solution set by �, where

� =

{

x∗ ∈
N⋂

k1=1

Fix(Sk1 ) ∩
∞⋂

i=1

(Ki)–1(0) ∩
M⋂

j=1

VIP
(
Lx

j , Q1
)
,

y∗ ∈
M⋂

k2=1

Fix(Uk2 ) ∩
∞⋂

i=1

(Ti)–1(0) ∩
M⋂

j=1

VIP
(
Ly

j , Q2
)

such that Ax∗ = By∗
}

. (1.6)

2 Preliminaries
In this study, we take H to be a real Hilbert space with the inner product 〈., .〉 and the cor-
responding norm ‖.‖. For weak and strong convergence of {xn} to x∗, we use the notations
xn ⇀ x∗ and xn → x∗. Assume that Q is a nonempty, closed, and convex subset of a Hilbert
space H . The collection of all fixed points for mapping Ū is denoted by Fix(Ū).

Definition 2.1 Suppose that Ū : H → H is a mapping. Then Ū is called
(i) contraction if λ ∈ [0, 1) such that

‖Ūu – Ūv‖ ≤ λ‖ū – v̄‖ for all ū, v̄ ∈ H ;

(ii) λ-demicontractive if there is λ ∈ [0, 1) such that

‖Ūū – v̄‖2 ≤ ‖ū – v̄‖2 + λ‖ū – Ūū‖2 for all ū ∈ H and v̄ ∈ Fix(Ū);

(iii) ω̄- inverse strongly monotone (ism) if there is ω̄ > 0 such that

〈Ūū – Ūv̄, ū – v̄〉 ≥ ω̄‖Ūū – Ūv̄‖2 for all ū, v̄ ∈ H .

Definition 2.2 Suppose that Ū : H → 2H is a mapping. Then Ū is called
(i) monotone if

〈r̄ – t̄, ū – v̄〉 ≥ 0 for all r̄, t̄ ∈ H , ū ∈ Ūr̄, v̄ ∈ Ūt̄;

(ii) maximal monotone if it is monotone and the graph G(Ū) is not properly contained
in any other monotone mapping, where

G(Ū) =
{

(x̄, ȳ) ∈ H × H : ȳ ∈ Ū(x̄)
}

.

Lemma 2.3 [44] Let H be a real Hilbert space, then
(i) 2〈r̄, t̄〉 = ‖r̄‖2 + ‖t̄‖2 – ‖r̄ – t̄‖2 = ‖r̄ + t̄‖2 – ‖r̄‖2 – ‖t̄‖2 for all r̄, t̄ ∈ H ;

(ii) ‖r̄ + t̄‖2 ≤ ‖r̄‖2 + 2〈t̄, r̄ + t̄〉 for all r̄, t̄ ∈ H ;
(iii) ‖α0r̄0 + α1r̄1 + α2r̄2‖27 =

α0‖r̄0‖2 + α1‖r̄1‖2 + α2‖r̄2‖2 – α0α1‖r̄0 – r̄1‖2 – α0α2‖r̄0 – r̄2‖2 – α2α1‖r̄1 – r̄2‖2 for
r̄i ∈ H , αi ∈ [0, 1], i = 0, 1, 2, and

∑2
i=0 αi = 1.

Lemma 2.4 [45] The metric projection PQ satisfies:
(i) z̄ = PQū iff 〈ū – z̄, z̄ – ȳ〉 ≤ 0 for all ȳ, z̄ ∈ Q and ū ∈ H ;

(ii) ‖PQū – z̄‖2 ≤ ‖ū – z̄‖2 – ‖PQū – ū‖2 for all ū ∈ H and z̄ ∈ Q.
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Lemma 2.5 [46] Suppose that Ū : H → H is a κ-demicontractive operator and Ūλ := (1 –
λ)I + λŪ for any λ ∈ (0, 1 – κ), where κ < 1, then for v̄∗ ∈ Fix(Ū) and v̄ ∈ H

∥∥Ūλ(v̄) – v̄∗∥∥2 ≤ ∥∥v̄ – v̄∗∥∥2 – λ(1 – κ – λ)‖v̄ – Ūv̄‖2. (2.1)

Lemma 2.6 [47] Suppose that {sn} is a bounded sequence in a Hilbert space H ,
limn→∞ ‖sn+1 – sn‖ = 0, and z∗ ∈ ωw(sn). Then there is a subsequence {smk } of {sn} such
that mk( mod N) + 1 = i and smk ⇀ z∗, where i ∈ {1, 2, . . . , N}.

Lemma 2.7 [48] Assume that {sn} is a sequence of real numbers and there is a subsequence
{nk} of {n} satisfying snk < snk +1 for all k ∈N. Then there is a nondecreasing sequence {mi} ⊂
N such that mi → ∞ and satisfies

smi ≤ smi+1 and si ≤ smi+1, (2.2)

where i ∈N and mi = max{k ≤ i : sk < sk+1}.

Lemma 2.8 [49] Assume that {sn} ⊂ [0,∞), {tn} ⊂ (–∞,∞), and {ωn} ⊂ [0, 1] such that

sn+1 ≤ (1 – ωn)sn + ωntn ∀n ∈N, (2.3)

where
∑∞

n=0 ωn = ∞ and lim supn→∞ tn ≤ 0, then limn→∞ sn = 0.

Lemma 2.9 [50] Assume that L : H → 2H is a maximal monotone mapping, τ > 0, and
JL
τ is the resolvent mapping of L defined by JL

τ := (I + τL)–1. Suppose that L–1(0) �= φ. Then
〈r̄∗ – JL

τ r̄∗, JL
τ r̄∗ – q〉 ≥ 0 for all r̄∗ ∈ H , τ > 0 and q ∈ L–1(0).

Lemma 2.10 [51] Let L : Q → H be a mapping and r̄∗ ∈ Q. Then, for b > 0, r̄∗ ∈ VIP(Q, L)
iff r̄∗ = PQ(I – bL)r̄∗, where PQ is the metric projection of H onto Q.

Lemma 2.11 [52] Let Lj : Q → H be a cj-ism mapping with c̄ = minj=1,2,...,M{cj}, where j =
1, 2, . . . , M and

⋂M
j=1 VIP(Q, Lj) �= φ, then

⋂M
j=1 VIP(Q, Lj) = VIP(Q,

∑M
j=1 cjLj), where 0 < bj <

1 for every j = 1, 2, . . . , M and
∑M

j=1 cj = 1.

Lemma 2.12 [53] Let Ū : Q → Q be a μ-demicontractive mapping and Fix(Ū) �= φ, then
Fix(Ū) is closed and convex.

Inspired and motivated by ongoing research in this direction, we study a new inertial si-
multaneous cyclic iterative algorithm to find the common solution of three split equality
problems, namely the finite family of variational inequalities, infinite family of variational
inclusion, and multiple-sets fixed point problems for demicontractive operators. The pro-
posed algorithm does not require prior knowledge of the operator norm, and we demon-
strate our algorithm’s strong convergence under some mild circumstances. We also dis-
cuss how our findings can be used to solve the problem of intensity-modulated radiation
therapy (IMRT). In addition, we provide a numerical example to illustrate the numerical
behavior of the suggested method and to compare it with different methods.
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3 Main results
Let H1, H2, H3 be Hilbert spaces, Q1 and Q2 be closed convex subsets of H1 and H2, re-
spectively. Assume that ψ1 : H1 → H1, ψ2 : H2 → H2 are λ1, λ2 contractions mappings
with λ = max{λ1,λ2} and A : H1 → H3 and B : H2 → H3 are two (nonzero) bounded linear
operators. Let A∗ and B∗ denote the adjoint of A and B respectively. Let Lx

j : H1 → H1, Ly
j :

H2 → H2 be cx
j , cy

j -inverse strongly monotone mappings, respectively, c̄x = minj=1,2,...,M{cx
j }

and c̄y = minj=1,2,...,M{cy
j }. Suppose that {Ki}∞i=1 : H1 → 2H1 and {Ti}∞i=1 : H2 → 2H2 are maxi-

mal monotone mappings. Let Sk1 : H1 → H1 and Uk2 : H2 → H2 be demicontractive oper-
ators such that I – Sk1 and I – Uk2 are demiclosed at zero for 1 ≤ k1 ≤ N , 1 ≤ k2 ≤ P with
constants 0 ≤ κk1 < 1 and 0 ≤ φk2 < 1 respectively, where κ = maxκk1 and φ = maxφk2 .
Define Sk1 = Sk1( mod N)+1 and Uk2 = Uk2( mod P)+1.

Algorithm 3.1 Consider 0 < a < νx
n ≤ 2c̄x, 0 < b < ν

y
n ≤ 2c̄y for some a, b ∈R, bx

j , by
j ∈ (0, 1)

for j = 1, 2, . . . , M, {δn}, {μn}, {ηn,i}, {σn} ⊂ [d̄, ē] ⊂ (0, 1), an ∈ (δ, 1 – φ – δ), β ∈ (0, 1),
∑∞

n=1 τn < ∞ and {κn} ⊂ [κ , κ̄], where 0 < κ ≤ κ̄ , δ > 0, d̄ and ē ∈ R. Choose x0, x1 ∈ Q
and γn such that 0 ≤ γn ≤ γ̄n, where

γ̄n =

⎧
⎨

⎩
β if xn = xn–1 and yn = yn–1

min{ τn√‖xn–xn–1‖+‖yn–yn–1‖ ,β} if otherwise.
(3.1)

Compute

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + γn(xn – xn–1),

tn = yn + γn(yn – yn–1),

hn = σnψ1(xn) + (1 – σn)PQ1 (I – νx
n
∑M

j=1 bx
j Lx

j )wn,

xn+1 = δnhn + μn((1 – an)hn + anSn(hn))

+
∑∞

i=1 ηn,i(JKi
θi

(hn – ρn(A∗(Ahn – Bvn)))),

vn = σnψ2(yn) + (1 – σn)PQ2 (I – ν
y
n
∑M

j=1 by
j Ly

j )tn,

yn+1 = δnvn + μn((1 – an)vn + anUn(vn))

+
∑∞

i=1 ηn,i(JTi
θi

(vn + ρn(B∗(Ahn – Bvn)))),

(3.2)

where the stepsize ρn is given as

ρn ∈
(

ε,
2‖Ahn – Bvn‖2

‖A∗(Ahn – Bvn)‖2 + ‖B∗(Ahn – Bvn)‖2 – ε

)
,

n ∈ � and ε > 0 otherwise ρn = ρ, and the index set � = {n; Ahn – Bvn �= 0}.

Remark 3.2 Assume that the solution set � is nonempty, then {ρn} in Algorithm 3.1 is well
defined; see [54].

Lemma 3.3 Let the solution set � be nonempty, {xn} and {yn} be bounded sequences. Sup-
pose that ‖ln – J (Ki ,Ti)

θi
(I – ρn(H∗H)ln)‖ → 0, ‖hn – wn‖ → 0, ‖vn – tn‖ → 0, ‖xn – wn‖ → 0,

and ‖yn – tn‖ → 0. Then l∗ = (x∗, y∗) is a solution of Problem (1.5) iff l∗ = J (Ki ,Ti)
θi

(I –
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ρn(H∗H))l∗ for every θi > 0 and ρn > 0, where i ≥ 1, n ∈ N,

H =
[

A –B
]

, H∗ =

[
A∗

–B∗

]

,

H∗H =

[
A∗A –A∗B

–B∗A B∗B

]

and J (Ki ,Ti)
θi

=

[
JKi
θi

JTi
θi

]

.

Proof Now, we have to show that l∗ = (x∗, y∗) ∈ �. For this we have to show for i ≥ 1,
l∗ = J (Ki ,Ti)

θi
(I – ρn(H∗H))l∗. Suppose that l∗ �= J (Ki ,Ti)

θi
(I – ρn(H∗H))l∗. As {xn} and {yn} are

bounded, take subsequences {xnq} of {xn} and {ynq} of {yn} such that xnq ⇀ x∗ ∈ H1 and
ynq ⇀ y∗ ∈ H2. Additionally, from given conditions, there are subsequences {hnq} {wnq},
{vnq}, and {tnq} respectively such that hnq ⇀ x∗, wnq ⇀ x∗, vnq ⇀ y∗, and tnq ⇀ y∗. Define
ln = (hn, vn). Using the given condition, we have

lim
q→∞

∥∥lnq –
(
J (Ki ,Ti)
θi

(
I – ρnq

(
H∗H

)
lnq

))∥∥ = 0. (3.3)

Now, using Opial’s condition and equation (3.3), we get

lim inf
q→∞

∥∥lnq – l∗
∥∥ < lim inf

q→∞
∥∥lnq – J (Ki ,Ti)

θi

(
I – ρn

(
H∗H

))
l∗
∥∥

≤ lim inf
q→∞

∥∥lnq – J (Ki ,Ti)
θi

(
I – ρn

(
H∗H

))
lnq

∥∥

+ lim inf
q→∞

∥∥J (Ki ,Ti)
θi

(
I – ρn

(
H∗H

))
lnq – J (Ki ,Ti)

θi

(
I – ρn

(
H∗H

))
l∗
∥∥

≤ lim inf
q→∞

∥∥lnq – l∗
∥∥,

which is a contradiction. Hence l∗ = J (Ki ,Ti)
θi

(I – ρn(H∗H))l∗ for i ≥ 1.
Conversely, assume that l∗ = J (Ki ,Ti)

θi
(I – ρn(H∗H))l∗. Subsequently,

⎧
⎨

⎩
x∗ = JKi

θi
(x∗ – ρn(A∗(Ax∗ – By∗)))

y∗ = JTi
θi

(y∗ + ρn(B∗(Ax∗ – By∗))).
(3.4)

As the solution set is nonempty, K–1
i (0) and T–1

i (0) are nonempty. Using Lemma 2.9 and
equation (3.4), we have

〈
x∗ –

(
x∗ – ρn

(
A∗(Ax∗ – By∗))), x1 – x∗〉≥ 0 for all x1 ∈ K–1

i (0),

which implies

〈
Ax∗ – By∗, Ax1 – Ax∗〉≥ 0 for all x1 ∈ K–1

i (0). (3.5)

Similarly,

〈
Ax∗ – By∗, By∗ – By1

〉≥ 0 for all y1 ∈ T–1
i (0). (3.6)
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Adding equations (3.5) and (3.6), we have

〈
Ax∗ – By∗, Ax1 – Ax∗ + By∗ – By1

〉≥ 0 for all x1 ∈ K–1
i (0) and y1 ∈ T–1

i (0). (3.7)

On simplifying

∥∥Ax∗ – By∗∥∥2 ≤ 〈
Ax∗ – By∗, Ax1 – By1

〉
for all x1 ∈ K–1

i (0) and y1 ∈ T–1
i (0).

As the solution set is nonempty, let l′ = (x′, y′) ∈ � for each i ≥ 1. Therefore, x′ ∈ K–1
i (0)

and y′ ∈ T–1
i (0) and Ax′ = By′. Taking x1 = x′ and y1 = y′ in equation (3.7), we have

∥∥Ax∗ – By∗∥∥ = 0,

which implies Ax∗ = By∗, and using Ax∗ = By∗ in equation (3.4), we have

⎧
⎨

⎩
x∗ = JKi

θi
(x∗)

y∗ = JTi
θi

(y∗),
(3.8)

which implies 0 ∈ Ki(x∗) and 0 ∈ Ti(y∗) for all i ≥ 1. Hence, l∗ is the solution of Problem
(1.5). �

Theorem 3.4 Let the sequence {(xn, yn)} be generated by the iterative Algorithm 3.1 and a
solution set � be nonempty. Suppose that the following conditions are satisfied:

(i)
∑M

j=1 bx
j =

∑M
j=1 by

j = 1,
∑∞

n=1 νx
n < ∞,

∑∞
n=1 ν

y
n < ∞,

0 < a < νx
n ≤ 2c̄x, 0 < b < νy

n ≤ 2c̄y for some a, b ∈ R;

(ii) τn = o(σn), limn→∞ τn
σn

= 0, limn→∞ σn = 0,
∑∞

n=1 σn = ∞;
(iii) δn + μn +

∑∞
i=1 ηn,i = 1 for n ≥ 0,

then the sequence generated by the iterative Algorithm 3.1 converges strongly to (r̄∗, s̄∗) ∈ �.

Proof Firstly, we will show that the sequence {(xn, yn)} is bounded. Take (r̄∗, s̄∗) ∈ �. Let

u1
n = hn – ρn

(
A∗(Ahn – Bvn)

)
and u2

n = vn + ρn
(
B∗(Ahn – Bvn)

)
, (3.9)

then using Lemma 2.3, we estimate

∥∥u1
n – r̄∗∥∥2 =

∥∥hn – ρn
(
A∗(Ahn – Bvn)

)
– r̄∗∥∥2

=
∥∥hn – r̄∗∥∥2 + ρ2

n
∥∥A∗(Ahn – Bvn)

∥∥2 – 2ρn
〈
hn – r̄∗, A∗(Ahn – Bvn)

〉

=
∥∥hn – r̄∗∥∥2 + ρ2

n
∥∥A∗(Ahn – Bvn)

∥∥2 – 2ρn
〈
Ahn – Ar̄∗, Ahn – Bvn

〉

=
∥∥hn – r̄∗∥∥2 + ρ2

n
∥∥A∗(Ahn – Bvn)

∥∥2 – ρn
∥∥Ahn – Ar̄∗∥∥2

– ρn‖Ahn – Bvn‖2 + ρn
∥∥Bvn – Ar̄∗∥∥2 (3.10)
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and

∥∥u2
n – s̄∗∥∥2 =

∥∥vn – s̄∗∥∥2 + ρ2
n
∥∥B∗(Ahn – Bvn)

∥∥2 – ρn
∥∥Bvn – Bs̄∗∥∥2

– ρn‖Ahn – Bvn‖2 + ρn
∥∥Ahn – Bs̄∗∥∥2. (3.11)

As Ar̄∗ = Bs̄∗ and adding equations (3.10) and (3.11), we have

∥∥u1
n – r̄∗∥∥2 +

∥∥u2
n – s̄∗∥∥2

=
∥∥hn – r̄∗∥∥2 +

∥∥vn – s̄∗∥∥2 + ρ2
n
(∥∥A∗(Ahn – Bvn)

∥∥2 +
∥∥B∗(Ahn – Bvn)

∥∥2)

– 2ρn‖Ahn – Bvn‖2

=
∥∥hn – r̄∗∥∥2 +

∥∥vn – s̄∗∥∥2 – ρn
[
2‖Ahn – Bvn‖2 – ρn

(∥∥A∗(Ahn – Bvn)
∥∥2

+
∥∥B∗(Ahn – Bvn)

∥∥2)]

≤ ∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2 – ρnε

(∥∥A∗(Ahn – Bvn)
∥∥2 +

∥∥B∗(Ahn – Bvn)
∥∥2) (3.12)

≤ ∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2. (3.13)

Let z1
n = PQ1 (I – νx

n
∑M

j=1 bx
j Lx

j )wn and z2
n = PQ2 (I – ν

y
n
∑M

j=1 by
j Ly

j )tn.
As r̄∗ ∈ VIP(Lx

j , Q1). Also, from the definition of inverse strongly monotone and from
condition (i), we have

∥∥z1
n – r̄∗∥∥2 =

∥∥∥∥∥
PQ1

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

wn – PQ1

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

r̄∗
∥∥∥∥∥

2

≤
∥∥∥∥∥

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

wn –

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

r̄∗
∥∥∥∥∥

2

=

∥∥∥∥∥
(
wn – r̄∗) – νx

n

M∑

j=1

bx
j
(
Lx

j wn – Lx
j r̄∗)

∥∥∥∥∥

2

≤ ∥∥wn – r̄∗∥∥2 – 2νx
n

M∑

j=1

bx
j
〈
wn – r̄∗, Lx

j wn – Lx
j r̄∗〉

+
M∑

j=1

bx
j
(
νx

n
)2∥∥Lx

j wn – Lx
j r̄∗∥∥2

≤ ∥∥wn – r̄∗∥∥2 – 2νx
n

M∑

j=1

bx
j cx

j
∥∥Lx

j wn – Lx
j r̄∗∥∥2 +

M∑

j=1

bx
j
(
νx

n
)2∥∥Lx

j wn – Lx
j r̄∗∥∥2

≤ ∥∥wn – r̄∗∥∥2 – νx
n

M∑

j=1

bx
j
(
2c̄x – νx

n
)∥∥Lx

j wn – Lx
j r̄∗∥∥2 (3.14)

≤ ∥∥wn – r̄∗∥∥2. (3.15)
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Similarly,

∥∥z2
n – s̄∗∥∥2 =

∥∥tn – s̄∗∥∥2 – νy
n

M∑

j=1

by
j
(
2c̄y – νy

n
)∥∥Ly

j tn – Ly
j s̄∗∥∥2 (3.16)

≤ ∥∥tn – s̄∗∥∥2. (3.17)

Adding equations (3.14) and (3.16), we have

∥∥z1
n – r̄∗∥∥2 +

∥∥z2
n – s̄∗∥∥2 ≤ ∥∥wn – r̄∗∥∥2 +

∥∥tn – s̄∗∥∥2 – νx
n

M∑

j=1

bx
j
(
2c̄x – νx

n
)∥∥Lx

j wn – Lx
j r̄∗∥∥2

– νy
n

M∑

j=1

by
j
(
2c̄y – νy

n
)∥∥Ly

j tn – Ly
j s̄∗∥∥2 (3.18)

≤ ∥∥wn – r̄∗∥∥2 +
∥∥tn – s̄∗∥∥2. (3.19)

As r̄∗ ∈ VIP(Lx
j , Q1), we have

∥∥z1
n – r̄∗∥∥2 =

∥∥∥∥∥
PQ1

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

wn – PQ1

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

r̄∗
∥∥∥∥∥

2

≤
〈

z1
n – r̄∗,

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

wn –

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

r̄∗
〉

≤ 1
2
{∥∥z1

n – r̄∗∥∥2 +

∥∥∥∥∥

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

wn –

(

I – νx
n

M∑

j=1

bx
j Lx

j

)

r̄∗
∥∥∥∥∥

2

–

∥∥∥∥∥
(
z1

n – wn
)

+ νx
n

M∑

j=1

bx
j
(
Lx

j (wn) – Lx
j
(
r̄∗))

∥∥∥∥∥

2

. (3.20)

Using I – νx
n
∑M

j=1 bx
j Lx

j is nonexpansive and on rearranging the terms, we have

∥∥z1
n – r̄∗∥∥2 ≤ ∥∥wn – r̄∗∥∥2 –

∥∥z1
n – wn

∥∥2 –

(

νx
n

M∑

j=1

bx
j

)2
∥∥Lx

j (wn) – Lx
j
(
r̄∗)∥∥2

+ 2νx
n

M∑

j=1

bx
j
〈
wn – z1

n, Lx
j (wn) – Lx

j
(
r̄∗)〉

≤ ∥∥wn – r̄∗∥∥2 –
∥∥z1

n – wn
∥∥2 + 2νx

n

M∑

j=1

bx
j
∥∥wn – z1

n
∥∥∥∥Lx

j (wn) – Lx
j
(
r̄∗)∥∥. (3.21)

Similarly,

∥∥z2
n – s̄∗∥∥2 ≤ ∥∥tn – s̄∗∥∥2 –

∥∥z2
n – tn

∥∥2 + 2νy
n

M∑

j=1

by
j
∥∥tn – z2

n
∥∥∥∥Ly

j (tn) – Ly
j
(
s̄∗)∥∥. (3.22)
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Adding equations (3.21) and (3.22), we have

∥∥z1
n – r̄∗∥∥2 +

∥∥z2
n – s̄∗∥∥2 ≤ ∥∥wn – r̄∗∥∥2 +

∥∥tn – s̄∗∥∥2 –
∥∥z1

n – wn
∥∥2 –

∥∥z2
n – tn

∥∥2

+ 2νx
n

M∑

j=1

bx
j
∥∥wn – z1

n
∥∥∥∥Lx

j (wn) – Lx
j
(
r̄∗)∥∥

+ 2νy
n

M∑

j=1

by
j
∥∥tn – z2

n
∥∥∥∥Ly

j (tn) – Ly
j
(
s̄∗)∥∥. (3.23)

Using equation (3.2), we get

∥∥wn – r̄∗∥∥ =
∥∥xn + γn(xn – xn–1) – r̄∗∥∥

≤ ∥∥xn – r̄∗∥∥ + γn‖xn – xn–1‖. (3.24)

Similarly,

∥∥tn – s̄∗∥∥≤ ∥∥yn – s̄∗∥∥ + γn‖yn – yn–1‖. (3.25)

As limn→∞ τn
σn

= 0, there is M1 > 0 such that τn ≤ σnM1. Using equations (3.24) and (3.25)
and using Minkowski’s inequality, we get

(∥∥wn – r̄∗∥∥2 +
∥∥tn – s̄∗∥∥2) 1

2

≤ ((∥∥xn – r̄∗∥∥ + γn‖xn – xn–1‖
)2 +

(∥∥yn – s̄∗∥∥ + γn‖yn – yn–1‖
)2) 1

2

≤ (∥∥xn – r̄∗∥∥2 +
∥∥yn – s̄∗∥∥2) 1

2 + γn
(‖xn – xn–1‖2 + ‖yn – yn–1‖2) 1

2

≤ (∥∥xn – r̄∗∥∥2 +
∥∥yn – s̄∗∥∥2) 1

2 + τn

≤ (∥∥xn – r̄∗∥∥2 +
∥∥yn – s̄∗∥∥2) 1

2 + σnM1. (3.26)

Now, using Lemma 2.5, we have

∥∥(Sn)an (hn) – r̄∗∥∥2 =
∥∥((1 – an)hn + anSn(hn)

)
– r̄∗∥∥2

≤ ∥∥hn – r̄∗∥∥2 – an(1 – an – κk1 )
∥∥Sn(hn) – hn

∥∥2

≤ ∥∥hn – r̄∗∥∥2 – an(1 – an – κ)
∥∥Sn(hn) – hn

∥∥2 (3.27)

≤ ∥∥hn – r̄∗∥∥2 (3.28)

and

∥∥(Un)an (vn) – s̄∗∥∥2 ≤ ∥∥vn – s̄∗∥∥2 – an(1 – an – φ)
∥∥Un(vn) – vn

∥∥2. (3.29)

Using Lemma 2.3, condition (iii), and equation (3.27), we have

∥∥xn+1 – r̄∗∥∥2 =

∥∥∥∥∥
δnhn + μn

(
(1 – an)hn + anSn(hn)

)
+

∞∑

i=1

ηn,iJ
Ki
θi

(
u1

n
)

– r̄∗
∥∥∥∥∥

2



Batra et al. Journal of Inequalities and Applications         (2024) 2024:40 Page 12 of 31

≤ δn
∥∥hn – r̄∗∥∥2 + μn

(∥∥hn – r̄∗∥∥2 – an(1 – an – κ)
∥∥Sn(hn) – hn

∥∥2)

+
∞∑

i=1

ηn,i
∥∥JKi

θi

(
u1

n
)

– r̄∗∥∥2

≤
(

1 –
∞∑

i=1

ηn,i

)
∥∥hn – r̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u1

n – r̄∗∥∥2

– μnan(1 – an – κ)
∥∥Sn(hn) – hn

∥∥2. (3.30)

Similarly,

∥∥yn+1 – s̄∗∥∥2 ≤
(

1 –
∞∑

i=1

ηn,i

)
∥∥vn – s̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u2

n – s̄∗∥∥2

– μnan(1 – an – φ)
∥∥Un(vn) – vn

∥∥2. (3.31)

Adding equations (3.30), (3.31) and using equation (3.13), we have

∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2

≤
(

1 –
∞∑

i=1

ηn,i

)
(∥∥hn – r̄∗∥∥2 +

∥∥vn – s̄∗∥∥2) +
∞∑

i=1

ηn,i
[∥∥u1

n – r̄∗∥∥2 +
∥∥u2

n – s̄∗∥∥2]

– μnan(1 – an – φ)
∥∥Un(vn) – vn

∥∥2 – μnan(1 – an – κ)
∥∥Sn(hn) – hn

∥∥2

≤ ∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2 – μnan(1 – an – φ)

∥∥Un(vn) – vn
∥∥2

– μnan(1 – an – κ)
∥∥Sn(hn) – hn

∥∥2 (3.32)

≤ ∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2. (3.33)

Using equations (3.2), (3.18), and (3.33), we estimate

∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2

≤ ∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2

=
∥∥σnψ1(xn) + (1 – σn)z1

n – r̄∗∥∥2 +
∥∥σnψ2(yn) + (1 – σn)z2

n – s̄∗∥∥2

≤ σn
∥∥ψ1(xn) – r̄∗∥∥2 + (1 – σn)

∥∥z1
n – r̄∗∥∥2 + σn

∥∥ψ2(yn) – s̄∗∥∥2

+ (1 – σn)
∥∥z2

n – s̄∗∥∥2 (3.34)

≤ σn
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2) + (1 – σn)

(
∥∥wn – r̄∗∥∥2 +

∥∥tn – s̄∗∥∥2

– νx
n

M∑

j=1

bx
j
(
2c̄x – νx

n
)∥∥Lx

j wn – Lx
j r̄∗∥∥2 – νy

n

M∑

j=1

by
j
(
2c̄y – νy

n
)∥∥Ly

j tn – Ly
j s̄∗∥∥2

)

(3.35)

≤ σn
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2) +
∥∥wn – r̄∗∥∥2 +

∥∥tn – s̄∗∥∥2. (3.36)
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As λ = max{λ1,λ2}, using equations (3.2), (3.19), (3.26), and Minkowski’s inequality, we
have

(∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2) 1

2

=
(∥∥σnψ1(xn) + (1 – σn)z1

n – r̄∗∥∥2 +
∥∥σnψ2(yn) + (1 – σn)z2

n – s̄∗∥∥2) 1
2

≤ ((
σn
∥∥ψ1(xn) – r̄∗∥∥ + (1 – σn)

∥∥z1
n – r̄∗∥∥)2 +

(
σn
∥∥ψ2(yn) – s̄∗∥∥

+ (1 – σn)
∥∥z2

n – s̄∗∥∥)2) 1
2

≤ ((
σn
∥∥ψ1(xn) – r̄∗∥∥ + (1 – σn)

∥∥wn – r̄∗∥∥)2 +
(
σn
∥∥ψ2(yn) – s̄∗∥∥

+ (1 – σn)
∥∥tn – s̄∗∥∥)2) 1

2

≤ σn
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2) 1
2 + (1 – σn)

(∥∥wn – r̄∗∥∥2 +
∥∥tn – s̄∗∥∥2) 1

2

≤ σn
((∥∥ψ1(xn) – ψ1

(
r̄∗)∥∥ +

∥∥ψ1
(
r̄∗) – r̄∗∥∥)2 +

(∥∥ψ2(yn) – ψ2
(
s̄∗)∥∥

+
∥∥ψ2

(
s̄∗) – s̄∗∥∥)2) 1

2

+ (1 – σn)
((∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2) 1
2 + σnM1

)

≤ σn
(∥∥ψ1(xn) – ψ1

(
r̄∗)∥∥2 + ‖ψ2(yn) – ψ2

(
s̄∗)‖2) 1

2 +
(∥∥ψ1

(
r̄∗) – r̄∗∥∥2

+
∥∥ψ2

(
s̄∗) – s̄∗∥∥2) 1

2

+ (1 – σn)
(∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2) 1
2 + σnM1

≤ σn
((

λ2
1
∥∥xn – r̄∗∥∥2 + λ2

2
∥∥yn – s̄∗∥∥2) 1

2

+
(∥∥ψ1

(
r̄∗) – r̄∗∥∥2 +

∥∥ψ2
(
s̄∗) – s̄∗∥∥2) 1

2
)

+ (1 – σn)
(∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2) 1
2 + σnM1

≤ (
1 – σn(1 – λ)

)(∥∥xn – r̄∗∥∥2 +
∥∥yn – s̄∗∥∥2) 1

2

+ σn
(∥∥ψ1

(
r̄∗) – r̄∗∥∥2 +

∥∥ψ2
(
s̄∗) – s̄∗∥∥2) 1

2 + σnM1. (3.37)

Using equations (3.23), (3.33), and (3.34), we estimate

∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2 ≤ ∥∥hn – r̄∗∥∥2 +

∥∥vn – s̄∗∥∥2

≤ σn
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2)

+ (1 – σn)

(
∥∥wn – r̄∗∥∥2 +

∥∥tn – s̄∗∥∥2 –
∥∥z1

n – wn
∥∥2

–
∥∥z2

n – tn
∥∥2 + 2νx

n

M∑

j=1

bx
j
∥∥wn – z1

n
∥∥∥∥Lx

j (wn) – Lx
j
(
r̄∗)∥∥

+ 2νy
n

M∑

j=1

by
j
∥∥tn – z2

n
∥∥∥∥Ly

j (tn) – Ly
j
(
s̄∗)∥∥

)
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≤ σn
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2) +
∥∥wn – r̄∗∥∥2

+
∥∥tn – s̄∗∥∥2 –

∥∥z1
n – wn

∥∥2 –
∥∥z2

n – tn
∥∥2

+ 2νx
n

M∑

j=1

bx
j
∥∥wn – z1

n
∥∥∥∥Lx

j (wn) – Lx
j
(
r̄∗)∥∥

+ 2νy
n

M∑

j=1

by
j
∥∥tn – z2

n
∥∥∥∥Ly

j (tn) – Ly
j
(
s̄∗)∥∥. (3.38)

From Lemma 2.3 and equation (3.28), we have

∥∥xn+1 – r̄∗∥∥2 =

∥∥∥∥∥
δnhn + μn

(
(1 – an)hn + anSn(hn)

)
+

∞∑

i=1

ηn,iJ
Ki
θi

(
u1

n
)

– r̄∗
∥∥∥∥∥

2

≤ δn
∥∥hn – r̄∗∥∥2 + μn

∥∥(1 – an)hn + anSn(hn) – r̄∗∥∥2

+
∞∑

i=1

ηn,i
∥∥JKi

θi

(
u1

n
)

– r̄∗∥∥2 – δnμn
∥∥hn – (1 – an)hn – anSn(hn)

∥∥2

– δn

∞∑

i=1

ηn,i
∥∥hn – JKi

θi

(
u1

n
)∥∥2

≤ δn
∥∥hn – r̄∗∥∥2 + μn

∥∥hn – r̄∗∥∥2 +
∞∑

i=1

ηn,i
∥∥JKi

θi

(
u1

n
)

– r̄∗∥∥2

– δnμnan
∥∥hn – Sn(hn)

∥∥2 – δn

∞∑

i=1

ηn,i
∥∥hn – JKi

θi

(
u1

n
)∥∥2

≤
(

1 –
∞∑

i=1

ηn,i

)
∥∥hn – r̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u1

n – r̄∗∥∥2

– δnμnan
∥∥hn – Sn(hn)

∥∥2 – δn

∞∑

i=1

ηn,i
∥∥hn – JKi

θi

(
u1

n
)∥∥2 (3.39)

≤
(

1 –
∞∑

i=1

ηn,i

)
∥∥hn – r̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u1

n – r̄∗∥∥2. (3.40)

Similarly,

∥∥yn+1 – s̄∗∥∥2 ≤
(

1 –
∞∑

i=1

ηn,i

)
∥∥vn – s̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u2

n – s̄∗∥∥2

– δnμnan
∥∥vn – Un(vn)

∥∥2 – δn

∞∑

i=1

ηn,i
∥∥vn – JTi

θi

(
u2

n
)∥∥2 (3.41)

≤
(

1 –
∞∑

i=1

ηn,i

)
∥∥vn – s̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u2

n – s̄∗∥∥2. (3.42)
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Using equation (3.13) and adding equations (3.39) and (3.41), we get

∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2 ≤

(

1 –
∞∑

i=1

ηn,i

)
∥∥hn – r̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u1

n – r̄∗∥∥2

+

(

1 –
∞∑

i=1

ηn,i

)
∥∥vn – s̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u2

n – s̄∗∥∥2

– δnμnan
(∥∥hn – Sn(hn)

∥∥2 +
∥∥Un(vn) – vn

∥∥2)

– δn

∞∑

i=1

ηn,i
(∥∥hn – JKi

θi

(
u1

n
)∥∥2 +

∥∥JTi
θi

(
u2

n
)

– vn
∥∥2)

≤
(

1 –
∞∑

i=1

ηn,i

)
(∥∥hn – r̄∗∥∥2 +

∥∥vn – s̄∗∥∥2)

+
∞∑

i=1

ηn,i
(∥∥hn – r̄∗∥∥2 +

∥∥vn – s̄∗∥∥2)

– δnμnan
(∥∥hn – Sn(hn)

∥∥2 +
∥∥Un(vn) – vn

∥∥2)

– δn

∞∑

i=1

ηn,i
(‖hn – JKi

θi

(
u1

n
))‖2 +

∥∥JTi
θi

(
u2

n
)

– vn
∥∥2)

≤ ∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2

– δnμnan
(∥∥hn – Sn(hn)

∥∥2 +
∥∥Un(vn) – vn

∥∥2)

– δn

∞∑

i=1

ηn,i(
∥∥hn – JKi

θi

(
u1

n
)∥∥2 + ‖(JTi

θi

(
u2

n
)

– vn‖2) (3.43)

≤ ∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2. (3.44)

Using equation (3.12) and adding equations (3.40) and (3.42), we get

∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2 ≤

(

1 –
∞∑

i=1

ηn,i

)
∥∥hn – r̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u1

n – r̄∗∥∥2

+

(

1 –
∞∑

i=1

ηn,i

)
∥∥vn – s̄∗∥∥2 +

∞∑

i=1

ηn,i
∥∥u2

n – s̄∗∥∥2

≤
(

1 –
∞∑

i=1

ηn,i

)
(∥∥hn – r̄∗∥∥2 +

∥∥vn – s̄∗∥∥2)

+
∞∑

i=1

ηn,i
(∥∥hn – r̄∗∥∥2 +

∥∥vn – s̄∗∥∥2

– ρnε
(∥∥A∗(Ahn – Bvn)

∥∥2 +
∥∥B∗(Ahn – Bvn)

∥∥2))

≤ ∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2

–
∞∑

i=1

ηn,iρnε
(∥∥A∗(Ahn – Bvn)

∥∥2
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+
∥∥B∗(Ahn – Bvn)

∥∥2). (3.45)

From equations (3.37) and (3.44), we have

(∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2) 1

2

≤ (∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2) 1

2

≤ (
1 – σn(1 – λ)

)(∥∥xn – r̄∗∥∥2 +
∥∥yn – s̄∗∥∥2) 1

2

+ σn
(∥∥ψ1

(
r̄∗) – r̄∗∥∥2 +

∥∥ψ2
(
s̄∗) – s̄∗∥∥2) 1

2 + σnM1

≤ max

{(∥∥xn – r̄∗∥∥2 +
∥∥yn – s̄∗∥∥2) 1

2 ,

1
1 – λ

[(∥∥ψ1
(
r̄∗) – r̄∗∥∥2 +

∥∥ψ2
(
s̄∗) – s̄∗∥∥2) 1

2 + M1
]}

≤ max

{(∥∥x1 – r̄∗∥∥2 +
∥∥y1 – s̄∗∥∥2) 1

2 ,

1
1 – λ

[(∥∥ψ1
(
r̄∗) – r̄∗∥∥2 +

∥∥ψ2
(
s̄∗) – s̄∗∥∥2) 1

2 + M1
]}

. (3.46)

Hence {xn} and {yn} are bounded. Subsequently, {wn}, {tn}, {hn}, and {vn} are also bounded.

∥∥wn – r̄∗∥∥2 =
∥∥xn + γn(xn – xn–1) – r̄∗∥∥2

≤ ∥∥xn – r̄∗∥∥2 + 2γn
〈
xn – xn–1, wn – r̄∗〉

≤ ∥∥xn – r̄∗∥∥2 + 2γn‖xn – xn–1‖
∥∥wn – r̄∗∥∥

≤ ∥∥xn – r̄∗∥∥2 + 2τn
∥∥wn – r̄∗∥∥. (3.47)

Similarly,

∥∥tn – s̄∗∥∥2 ≤ ∥∥yn – s̄∗∥∥2 + 2τn
∥∥tn – s̄∗∥∥. (3.48)

Adding equations (3.47) and (3.48), we have

∥∥wn – r̄∗∥∥2 +
∥∥tn – s̄∗∥∥2 ≤ ∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2 + 2τn
[∥∥wn – r̄∗∥∥ +

∥∥tn – s̄∗∥∥]. (3.49)

From equation (3.2), we have

∥∥hn – r̄∗∥∥2 =
∥∥σnψ1(xn) + (1 – σn)z1

n – r̄∗∥∥2

= σ 2
n
∥∥ψ1(xn) – r̄∗∥∥2 + (1 – σn)2∥∥z1

n – r̄∗∥∥2

+ 2σn(1 – σn)
〈
ψ1(xn) – r̄∗, z1

n – r̄∗〉

= σ 2
n
∥∥ψ1(xn) – r̄∗∥∥2 + (1 – σn)2∥∥z1

n – r̄∗∥∥2 + 2σn
〈
ψ1(xn) – r̄∗, z1

n – r̄∗〉

– 2σ 2
n
〈
ψ1(xn) – r̄∗, z1

n – r̄∗〉

≤ σ 2
n
∥∥ψ1(xn) – r̄∗∥∥2 + (1 – σn)2∥∥z1

n – r̄∗∥∥2
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+ 2σn
〈
ψ1(xn) – ψ1

(
r̄∗), z1

n – r̄∗〉 + 2σn
〈
ψ1
(
r̄∗) – r̄∗, z1

n – r̄∗〉

+ 2σ 2
n
∥∥ψ1(xn) – r̄∗∥∥∥∥z1

n – r̄∗∥∥

≤ σ 2
n
∥∥ψ1(xn) – r̄∗∥∥2 + (1 – σn)2∥∥z1

n – r̄∗∥∥2

+ 2σn
∥∥ψ1(xn) – ψ1

(
r̄∗)∥∥∥∥z1

n – r̄∗∥∥

+ 2σn
〈
ψ1
(
r̄∗) – r̄∗, z1

n – r̄∗〉 + 2σ 2
n
∥∥ψ1(xn) – r̄∗∥∥∥∥z1

n – r̄∗∥∥

≤ σ 2
n
∥∥ψ1(xn) – r̄∗∥∥2 + (1 – σn)2∥∥z1

n – r̄∗∥∥2 + 2σnλ1
∥∥xn – r̄∗∥∥∥∥z1

n – r̄∗∥∥

+ 2σn
〈
ψ1
(
r̄∗) – r̄∗, z1

n – r̄∗〉 + 2σ 2
n
∥∥ψ1(xn) – r̄∗∥∥∥∥z1

n – r̄∗∥∥

≤ σ 2
n
∥∥ψ1(xn) – r̄∗∥∥2 + (1 – σn)2∥∥z1

n – r̄∗∥∥2 + σnλ1
(∥∥xn – r̄∗∥∥2

+
∥∥z1

n – r̄∗∥∥2) + 2σn
〈
ψ1
(
r̄∗) – r̄∗, z1

n – r̄∗〉

+ 2σ 2
n
∥∥ψ1(xn) – r̄∗∥∥∥∥z1

n – r̄∗∥∥. (3.50)

Similarly,

∥∥vn – s̄∗∥∥2 ≤ σ 2
n
∥∥ψ2(yn) – s̄∗∥∥2 + (1 – σn)2∥∥z2

n – s̄∗∥∥2 + σnλ2
(∥∥yn – s̄∗∥∥2

+
∥∥z2

n – s̄∗∥∥2) + 2σn
〈
ψ2
(
s̄∗) – s̄∗, z2

n – s̄∗〉

+ 2σ 2
n
∥∥ψ2(yn) – s̄∗∥∥∥∥z2

n – s̄∗∥∥. (3.51)

Adding equations (3.50) and (3.51) and using equations (3.18) and (3.49), we get

∥∥hn – r̄∗∥∥2 +
∥∥vn – s̄∗∥∥2

≤ σ 2
n
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2)

+ (1 – σn)2(∥∥z1
n – r̄∗∥∥2 +

∥∥z2
n – s̄∗∥∥2) + σnλ

(∥∥xn – r̄∗∥∥2

+
∥∥yn – s̄∗∥∥2) + σnλ

(∥∥z1
n – r̄∗∥∥2 +

∥∥z2
n – s̄∗∥∥2)

+ 2σn
(〈
ψ1
(
r̄∗) – r̄∗, z1

n – r̄∗〉 +
〈
ψ2
(
s̄∗) – s̄∗, z2

n – s̄∗〉)

+ 2σ 2
n
(∥∥ψ1(xn) – r̄∗∥∥.

∥∥z1
n – r̄∗∥∥ +

∥∥ψ2(yn) – s̄∗∥∥.
∥∥z2

n – s̄∗∥∥)

≤ (
1 – 2(1 – λ)σn

)(∥∥xn – r̄∗∥∥2 +
∥∥yn – s̄∗∥∥2) + σ 2

n M2

+ 2σn
(〈
ψ1
(
r̄∗) – r̄∗, z1

n – r̄∗〉 +
〈
ψ2
(
s̄∗) – s̄∗, z2

n – s̄∗〉)

+ 2τn
(
(1 – σn)2 + σnλ

)(∥∥wn – r̄∗∥∥ +
∥∥tn – s̄∗∥∥), (3.52)

where

M2 = sup
n∈N

{∥∥xn – r̄∗∥∥2 +
∥∥yn – s̄∗∥∥2 +

∥∥ψ1(xn) – r̄∗∥∥2

+
∥∥ψ2(yn) – s̄∗∥∥2 + 2

∥∥ψ1(xn) – r̄∗∥∥.
∥∥z1

n – r̄∗∥∥ (3.53)

+ 2
∥∥ψ2(yn) – s̄∗∥∥.

∥∥z2
n – s̄∗∥∥}. (3.54)



Batra et al. Journal of Inequalities and Applications         (2024) 2024:40 Page 18 of 31

Hence,

∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2 ≤ (

1 – 2(1 – λ)σn
)(∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2)

+
2σn(1 – λ)

2(1 – λ)

(
2
(〈
ψ1
(
r̄∗) – r̄∗, z1

n – r̄∗〉

+
〈
ψ2
(
s̄∗) – s̄∗, z2

n – s̄∗〉) + 4
τn

σn

∥∥wn – r̄∗∥∥ +
∥∥tn – s̄∗∥∥

+ σnM2

)
, (3.55)

which gives

p̄n+1 ≤ (1 – dn)p̄n + dns̄n, (3.56)

where p̄n = ‖xn – r̄∗‖2 + ‖yn – s̄∗‖2, dn = 2σn(1 – λ) and

s̄n =
1

2(1 – λ)

[(〈
ψ1
(
r̄∗) – r̄∗, z1

n – r̄∗〉 +
〈
ψ2
(
s̄∗) – s̄∗, z2

n – s̄∗〉)

+ 4
τn

σn

(∥∥wn – r̄∗∥∥ +
∥∥tn – s̄∗∥∥) + σnM2

]
.

Case 1. Assume that there exists N ∈N such that {p̄n} is decreasing for n ≥ N . As {p̄n} is
bounded and monotonic and subsequently convergent, as limn→∞ σn = 0 and τn = o(σn),
using equations (3.35), (3.43), (3.49), we have

∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2 ≤ σn

(∥∥ψ1(xn) – r̄∗∥∥2 +
∥∥ψ2(yn) – s̄∗∥∥2) +

∥∥xn – r̄∗∥∥2

+
∥∥yn – s̄∗∥∥2 + 2τn

[∥∥wn – r̄∗∥∥ +
∥∥tn – s̄∗∥∥]

– δnμnan
(∥∥hn – Sn(hn)

∥∥2 +
∥∥vn – Un(vn)

∥∥2)

– δn

∞∑

i=1

ηn,i
(∥∥hn – JKi

θi

(
u1

n
)∥∥2 +

∥∥JTi
θi

(
u2

n
)

– vn
∥∥2), (3.57)

which implies

δn

∞∑

i=1

ηn,i
(∥∥hn – JKi

θi

(
u1

n
)∥∥2 +

∥∥JTi
θi

(
u2

n
)

– vn
∥∥2)≤ σn

(∥∥ψ1(xn) – r̄∗∥∥2 +
∥∥ψ2(yn) – s̄∗∥∥2)

+
∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2

–
(∥∥xn+1 – r̄∗∥∥2 +

∥∥yn+1 – s̄∗∥∥2)

+ 2τn[
∥∥wn – r̄∗∥∥ +

∥∥tn – s̄∗∥∥. (3.58)

Taking limit n → ∞ in equation (3.58) and using condition (ii), we get

lim
n→∞

∥∥hn – JKi
θi

(
u1

n
)∥∥ = lim

n→∞
∥∥JTi

θi

(
u2

n
)

– vn
∥∥ = 0. (3.59)
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From equations (3.32), (3.35), and (3.49), we get

∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2 ≤ σn

(∥∥ψ1(xn) – r̄∗∥∥2 +
∥∥ψ2(yn) – s̄∗∥∥2)

+
∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2 + 2τn
[∥∥wn – r̄∗∥∥

+
∥∥tn – s̄∗∥∥] – μnan(1 – an – φ)

∥∥Un(vn) – vn
∥∥2

– μnan(1 – an – κ)
∥∥Sn(hn) – hn

∥∥2,

which implies

μnan(1 – an – φk2 )
∥∥Un(vn) – vn

∥∥2 (3.60)

+ μnan(1 – an – κnk1
)
∥∥Sn(hn) – hn

∥∥2

≤ σ(
∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2)

+
∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2 –
(∥∥xn+1 – r̄∗∥∥2

+
∥∥yn+1 – s̄∗∥∥2) + 2τn

[∥∥wn – r̄∗∥∥ +
∥∥tn – s̄∗∥∥]. (3.61)

Taking limit n → ∞ in equation (3.60) and using condition (ii), we get

lim
n→∞

∥∥Un(vn) – vn
∥∥ = lim

n→∞
∥∥Sn(hn) – hn

∥∥ = 0. (3.62)

From equations (3.35), (3.45), and (3.49), we have

∞∑

i=1

ηn,iρnε
(∥∥A∗(Ahn – Bvn)

∥∥2 +
∥∥B∗(Ahn – Bvn)

∥∥2)

≤ σn
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2) +
∥∥xn – r̄∗∥∥2

+
∥∥yn – s̄∗∥∥2 –

(∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2)

+ 2τn
[∥∥wn – r̄∗∥∥ +

∥∥tn – s̄∗∥∥]. (3.63)

Taking limit n → ∞ in equation (3.63) and using condition (ii), we get

lim
n→∞

∥∥A∗(Ahn – Bvn)
∥∥ = lim

n→∞
∥∥B∗(Ahn – Bvn)

∥∥ = 0. (3.64)

As A and B are bounded linear operators and hence

lim
n→∞‖Ahn – Bvn‖ = 0. (3.65)

From equations (3.34), (3.35), and (3.49), we get

νx
n

M∑

j=1

bx
j
(
2c̄x – νx

n
)∥∥Lx

j wn – Lx
j r̄∗∥∥2 + νy

n

M∑

j=1

by
j
(
2c̄y – νy

n
)∥∥Ly

j tn – Ly
j s̄∗∥∥2

≤ σn
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2)
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+
∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2 –
(∥∥xn+1 – r̄∗∥∥2

+
∥∥yn+1 – s̄∗∥∥2) + 2τn

[∥∥wn – r̄∗∥∥ +
∥∥tn – s̄∗∥∥]. (3.66)

Taking limit n → ∞ in equation (3.66) and using conditions (i) – (ii), we get

lim
n→∞

∥∥Lx
j wn – Lx

j r̄∗∥∥ = lim
n→∞

∥∥Ly
j tn – Ly

j s̄∗∥∥ = 0, where 1 ≤ j ≤ M. (3.67)

From equations (3.35), (3.38), and (3.49), we get

∥∥z1
n – wn

∥∥2 +
∥∥z2

n – tn
∥∥2

≤ σn
(∥∥ψ1(xn) – r̄∗∥∥2 +

∥∥ψ2(yn) – s̄∗∥∥2) +
∥∥xn – r̄∗∥∥2

+
∥∥yn – s̄∗∥∥2 –

(∥∥xn+1 – r̄∗∥∥2 +
∥∥yn+1 – s̄∗∥∥2) + 2τn

[∥∥wn – r̄∗∥∥

+
∥∥tn – s̄∗∥∥] + 2νx

n

M∑

j=1

bx
j
∥∥wn – z1

n
∥∥∥∥Lx

j (wn) – Lx
j
(
r̄∗)∥∥

+ 2νy
n

M∑

j=1

by
j
∥∥tn – z2

n
∥∥∥∥Ly

j (tn) – Ly
j
(
s̄∗)∥∥. (3.68)

Taking limit n → ∞ in equation (3.68) and using equation (3.67) and using condition (ii),
we get

lim
n→∞

∥∥z1
n – wn

∥∥ = lim
n→∞

∥∥z2
n – tn

∥∥ = 0. (3.69)

From equation (3.2), we have

‖hn – wn‖ ≤ σn
∥∥ψ1(xn) – wn

∥∥ + (1 – σn)
∥∥z1

n – wn
∥∥. (3.70)

Similarly,

‖vn – tn‖ ≤ σn
∥∥ψ2(yn) – tn

∥∥ + (1 – σn)
∥∥z2

n – tn
∥∥. (3.71)

Taking limit n → ∞ in equations (3.70) and (3.71), using equation (3.69) and limn→∞ σn =
0, we get

lim
n→∞‖hn – wn‖ = lim

n→∞‖vn – tn‖ = 0. (3.72)

From equation (3.2), we have

‖xn+1 – hn‖ ≤ δn‖hn – hn‖ + μn
(
(1 – an)‖hn – hn‖ + an

∥∥Sn(hn) – hn
∥∥)

+
∞∑

i=1

ηn,i
∥∥JKi

θi

(
u1

n
)

– hn
∥∥

≤ μnan
∥∥Sn(hn) – hn

∥∥ +
∞∑

i=1

ηn,i
∥∥JKi

θi

(
u1

n
)

– hn
∥∥. (3.73)
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Similarly,

‖yn+1 – vn‖ ≤ μnan
∥∥Un(vn) – vn

∥∥ +
∞∑

i=1

ηn,i
∥∥JKi

θi

(
u2

n
)

– vn
∥∥. (3.74)

Taking limit n → ∞ in equation (3.73) and (3.74), then using equations (3.59) and (3.62),
we get

lim
n→∞‖xn+1 – hn‖ = lim

n→∞‖yn+1 – vn‖ = 0. (3.75)

Also,

‖wn – xn‖ = γn‖xn – xn–1‖ ≤ τn. (3.76)

Similarly,

‖tn – yn‖ ≤ τn. (3.77)

Since τn = o(σn) and limn→∞ σn = 0, we have

lim
n→∞‖wn – xn‖ = lim

n→∞‖tn – yn‖ = 0. (3.78)

Using equations (3.72), (3.75), and (3.78), we get

lim
n→∞‖xn – xn+1‖ = lim

n→∞‖yn – yn+1‖ = 0. (3.79)

Moreover,

‖Axn – Byn‖ ≤ ‖Axn – Ahn‖ + ‖Ahn – Bvn‖ + ‖Bvn – Byn‖
≤ ‖A‖‖xn – hn‖ + ‖Ahn – Bvn‖ + ‖B‖‖vn – yn‖. (3.80)

By equations (3.65), (3.72), and (3.78), we get

lim
n→∞‖Axn – Byn‖ = 0. (3.81)

As A and B are bounded linear operators, therefore, Axnq ⇀ Ax∗ and Bynq ⇀ By∗. Clearly,
it follows from weak semicontinuity of norm that

∥∥Ax∗ – By∗∥∥≤ lim inf
q→∞ ‖Axnq – Bynq‖ = 0. (3.82)

This implies Ax∗ = By∗. Subsequently, (x∗, y∗) ∈ �. Fix an index k1 ∈ {1, 2, . . . , N}. As the
pool of index is finite and limn→∞ ‖xn – xn–1‖ = 0, from Lemma 2.6, one can find a subse-
quence {xmq} of {xn} such that xmq ⇀ x∗ and mq( mod N) + 1 = k1. Using equations (3.72)
and (3.78), we get hmq ⇀ x∗. Additionally,

lim
q→∞

∥∥Sk1 (hmq ) – hmq

∥∥ = lim
q→∞

∥∥Smq (hmq ) – hmq

∥∥ = 0 (3.83)
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and I – Sk1 is demiclosed at zero for each k1 ∈ {1, 2, . . . , N}, which implies x∗ ∈
⋂N

k1=1 Fix(Sk1 ). Similarly,

lim
q→∞

∥∥Uk2 (vmq ) – vmq

∥∥ = lim
q→∞

∥∥Umq (vmq ) – vmq

∥∥ = 0, (3.84)

and I – Uk2 is demiclosed at zero for each k2 ∈ {1, 2, . . . , P}, which implies y∗ ∈
⋂P

k2=1 Fix(Uk2 ). As {xn} is bounded, take a subsequence {xnq} of {xn} such that xnq ⇀

x∗ ∈ H1. Additionally, from the boundedness of {hn}, {wn} and from equations (3.72)
and (3.78), there are subsequences {hnq}, {wnq} respectively such that hnq ⇀ x∗ and
wnq ⇀ x∗. Suppose that x∗ /∈⋂M

j=1 VIP(Q1, Lx
j ). Then, from Lemmas (2.10) and (2.11), we

have x∗ /∈ Fix(PQ1 (I – νx
∑M

j=1 bx
j Lx

j )). Using Opial’s condition and equation (3.69), we esti-
mate

lim inf
q→∞

∥∥wnq – x∗∥∥ < lim inf
q→∞

∥∥∥∥∥
wnq – PQ1

(

I – νx

M∑

j=1

bx
j Lx

j

)

x∗
∥∥∥∥∥

≤ lim inf
q→∞

∥∥∥∥∥
wnq – PQ1

(

I – νx

M∑

j=1

bx
j Lx

j

)

wnq

∥∥∥∥∥

+ lim inf
q→∞

∥∥∥∥∥
PQ1

(

I – νx

M∑

j=1

bx
j Lx

j

)

wnq – PQ1

(

I – νx

M∑

j=1

bx
j Lx

j

)

x∗
∥∥∥∥∥

≤ lim inf
q→∞

∥∥wnq – x∗∥∥, (3.85)

which is a contradiction. Thus x∗ ∈ Fix(PQ1 (I – νx
∑M

j=1 bx
j Lx

j )). Similarly, {yn} is bounded,
take a subsequence {ynq} of {yn} such that ynq ⇀ y∗ ∈ H2. Additionally, from the bounded-
ness of {vn}, {tn} and from equations (3.72) and (3.78), there are subsequences {vnq} {tnq}
respectively such that vnq ⇀ y∗ and tnq ⇀ y∗. Suppose that y∗ /∈ ⋂M

j=1 VIP(Q2, Ly
j ). Then,

from Lemmas (2.10) and (2.11), we have y∗ /∈ Fix(PQ2 (I –νy
∑M

j=1 by
j Ly

j )). Using Opial’s con-
dition and equation (3.69), we estimate

lim inf
q→∞

∥∥tnq – y∗∥∥ < lim inf
q→∞

∥∥∥∥∥
tnq – PQ2

(

I – νy

M∑

j=1

by
j Ly

j

)

y∗
∥∥∥∥∥

≤ lim inf
q→∞

∥∥∥∥∥
tnq – PQ2

(

I – νy

M∑

j=1

by
j Ly

j

)

tnq

∥∥∥∥∥

+ lim inf
q→∞

∥∥∥∥∥
PQ2

(

I – νy

M∑

j=1

by
j Ly

j

)

tnq – PQ2

(

I – νy

M∑

j=1

by
j Ly

j

)

y∗
∥∥∥∥∥

≤ lim inf
q→∞

∥∥tnq – y∗∥∥, (3.86)

which is a contradiction. Thus y∗ ∈ Fix(PQ2 (I – νy
∑M

j=1 by
j Ly

j )). Using equation (3.59), we
get

lim
q→∞

∥∥lnq –
(
J (Ki ,Ti)
θi

(
I – ρnq

(
H∗H

)
lnq

))∥∥ = 0. (3.87)
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Now, using Lemma 3.3, l∗ ∈ �. As wnq ⇀ x∗ and tnq ⇀ y∗, from equation (3.69), we esti-
mate z1

nq ⇀ x∗ and z2
nq ⇀ y∗. Using Lemma 2.4, we get

lim sup
n→∞

〈
z1

n – r̄∗,ψ1
(
r̄∗) – r̄∗〉 +

〈
z2

n – s̄∗,ψ2
(
s̄∗) – s̄∗〉

= lim sup
q→∞

〈
z1

nq – r̄∗,ψ1
(
r̄∗) – r̄∗〉 +

〈
z2

nq – s̄∗,ψ2
(
s̄∗) – s̄∗〉

= lim sup
q→∞

〈
x∗ – r̄∗,ψ1

(
r̄∗) – r̄∗〉 +

〈
y∗ – s̄∗,ψ2

(
s̄∗) – s̄∗〉

≤ 0. (3.88)

As limn→∞ σn = 0 and limn→∞ τn
σn

= 0, using equation (3.88), we get lim supn→∞ s̄n ≤ 0, and
using Lemma 2.8, we have

lim
n→∞ p̄n = lim

n→∞
∥∥xn – r̄∗∥∥2 +

∥∥yn – s̄∗∥∥2 = 0, (3.89)

which implies limn→∞ ‖xn – r̄∗‖2 = limn→∞ ‖yn – s̄∗‖2 = 0. Thus xn → r̄∗ and yn → s̄∗.
Case 2. Suppose that there is a subsequence {p̄nq} of {p̄n} such that

p̄nq+1 ≥ p̄nq for all q ∈N.

Hence, by Lemma 2.7, there is a nondecreasing sequence of natural numbers {nl} ⊂ N

such that nl → ∞ as l → ∞, we have

p̄nl+1 ≥ p̄nl

and

p̄nl+1 ≥ p̄l. (3.90)

This with equation (3.63) gives

∞∑

i=1

ηnl ,iρnlε
(∥∥A∗(Ahnl – Bvnl )

∥∥2 +
∥∥B∗(Ahnl – Bvnl )

∥∥2) (3.91)

≤ σnl

(∥∥ψ1(xnl ) – r̄∗∥∥2 +
∥∥ψ2(ynl ) – s̄∗∥∥2)

+ p̄nl – p̄nl+1 + 2εnl

[∥∥wnl – r̄∗∥∥ +
∥∥tnl – s̄∗∥∥]. (3.92)

Taking limit l → ∞, using liml→∞ ρnl = 0 and εnl = o(ρnl ), we get

∥∥A∗(Ahnl – Bvnl )
∥∥ =

∥∥B∗(Ahnl – Bvnl )
∥∥ = 0. (3.93)

Similarly,

νx
nl

M∑

j=1

bx
j
(
2c̄x – νx

nl

)∥∥Lx
j wnl – Lx

j r̄∗∥∥2 + νy
nl

M∑

j=1

by
j
(
2c̄y – νy

nl

)∥∥Ly
j tnl – Ly

j s̄∗∥∥2
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≤ σnl

(∥∥ψ1(xnl ) – r̄∗∥∥2 +
∥∥ψ2(ynl ) – s̄∗∥∥2)

+ p̄nl – p̄nl+1 + 2εnl

[∥∥wnl – r̄∗∥∥

+
∥∥tnl – s̄∗∥∥]. (3.94)

Taking limit l → ∞, using liml→∞ ρnl = 0, condition (i), and εnl = o(ρnl ), we get

lim
l→∞

∥∥Lx
j wnl – Lx

j r̄∗∥∥ = lim
l→∞

∥∥Ly
j tnl – Ly

j s̄∗∥∥ = 0. (3.95)

Similarly, we can prove

lim
l→∞

∥∥z1
nl

– wnl

∥∥ = lim
l→∞

∥∥z2
nl

– tnl

∥∥ = lim
l→∞

‖wnl – xnl‖ = 0 and (3.96)

lim
l→∞

‖tnl – ynl‖ = lim
l→∞

‖xnl – xnl+1‖ = lim
l→∞

‖ynl – ynl+1‖ = 0. (3.97)

Using the same justification as in Case 1, we can prove

lim
l→∞

‖Axnl – Bynl‖ = lim
l→∞

∥∥A∗(Ahnl – Bvnl )
∥∥ = 0 (3.98)

and lim
l→∞

∥∥Unl (vnl ) – vnl

∥∥ = lim
l→∞

∥∥Snl (hnl ) – hnl

∥∥ = lim
l→∞

‖hnl – wnl‖ = 0 (3.99)

and = lim
l→∞

∥∥B∗(Ahnl – Bvnl )
∥∥ = lim

l→∞
‖vnl – tnl‖ = 0. (3.100)

Again, following the same steps as in Case 1, we obtain

lim sup
l→∞

〈
z1

nl
– r̄∗,ψ1

(
r̄∗) – r̄∗〉 +

〈
z2

nl
– s̄∗,ψ2

(
s̄∗) – s̄∗〉≤ 0. (3.101)

Additionally, from equation (3.56), we obtain

p̄nl+1 ≤ (1 – dnl )p̄nl + dnl s̄nl , (3.102)

which implies

dnl p̄nl ≤ p̄nl – p̄nl+1 + dnl s̄nl

≤ dnl s̄nl . (3.103)

As dnl > 0, we have p̄nl ≤ s̄nl . Subsequently,

∥∥xnl – r̄∗∥∥2 +
∥∥ynl – s̄∗∥∥2 ≤ 1

2(1 – λ)

[(〈
ψ1
(
r̄∗) – r̄∗, z1

nl
– r̄∗〉

+
〈
ψ2
(
s̄∗) – s̄∗, z2

nl
– s̄∗〉)

+ 4
εnl

σnl

(∥∥wnl – r̄∗∥∥ +
∥∥tnl – s̄∗∥∥) + σnl M2

]
. (3.104)

As liml→∞ σnl = 0, liml→∞
εnl
σnl

= 0 and from equation (3.101), we obtain p̄nl → 0 as l → ∞.
Also using equation (3.102), we get p̄nl+1 → 0 as l → ∞. Subsequently, from equation
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(3.90), we get p̄nl+1 ≥ p̄l . This implies liml→∞ p̄l = 0 i.e. ‖xl – x∗‖2 + ‖yl – y∗‖2 → 0 as
l → ∞, which implies xl → r̄∗ and yl → s̄∗. �

Remark 3.5
(i) Izuchukwu et al. [55] established a strong convergence theorem for finding a

common solution to two types of split equality problems, namely fixed point
problem and finite families of variational inequalities problems. In this paper we
proved a strong convergence theorem for finding a common solution to three types
of split equality problems, namely infinite families of variational inclusion
problems, finite families of variational inequalities, and a multiple-sets fixed point
problem. Hence, our result is more desirable than Izuchukwu et al. [55] results.

(ii) Theorem 3.4 generalizes the findings of Kazmi et al. [56] from the common
solution of a multiple-sets split equality fixed point problem and a split equality
variational inequality problem to a infinite family of split equality variational
inclusion problems, a multiple-sets split equality fixed point problem, and a finite
family of split equality variational inequality problems.

(iii) Theorem 3.4 improves and generalizes the result of Guo et al. [57] from the
common solution of a split equality variational inclusion problem and a finite
family of fixed point problems to an infinite family of split equality variational
inclusion problems, a finite family of split equality variational inequality problems,
and a multiple-sets split equality fixed point problem. Further, our result generalize
the Guo et al. [57] result from nonexpansive mapping to more generalized
demicontractive mappings.

4 Applications
Intensity-modulated radiation therapy Intensity-modulated radiation therapy (IMRT) is
a cutting-edge radiotherapy technology that treats cancer while minimizing the amount
of normal tissue exposed to radiation in the treatment area. IMRT has recently garnered
much attention, as evidenced by [15, 58]. We often utilize an optimization technique to
minimize the objective function of radiation beam weights, and radiations with varying
intensities are transmitted into the body of patients while building IMRT.

The primary goal of IMRT is to deliver a sufficient dosage to the areas that require radi-
ation therapy, known as planned target volumes (PTV), while limiting the amount given
to other areas, known as organs at risk (OAR). To achieve a clinically appropriate dose dis-
tribution, we primarily evaluate the radiation dosage absorbed by irradiated tissue based
on the distribution of beamlet intensities and the radiation intensity given by all beam-
lets when planning IMRT. Furthermore, we consider the irradiated object’s physical and
biological features. While the restrictions on the deliverable radiation intensities of the
beamlets are represented in the intensity space, the space whose elements are the deliv-
erable radiation intensities of the beamlets, and the limits on the dose received by each
voxel of the body are represented in the dose space. The intensity space and the dosage
space are Euclidean spaces for vectors.

We employ volumetric modulated arc therapy (VMAT) and study two external sources/
treatment equipment, the Varian and the Elekta. Here, we compare one dose space and
two intensity spaces. We split the entire patient volume into J-voxels j = 1, 2, . . . , J , beam
into K-beamlets, k = 1, 2, . . . , K . Assume that ajk ≥ 0 is the dose absorbed at jth as a result
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of unit intensity from kth beamlet, xk ≥ 0 is the intensity of k beamlet, and cj denotes the
dose absorbed by jth voxel given as

cj =
K∑

k=1

ajkxk . (4.1)

We represent A as a dose influence matrix with nonnegative entries ajk . In the dose space,
we will set a lower bound on the dose delivered to PTV and an upper bound on the dose
delivered to OAR. Suppose that As denotes anatomical structures that are Q+R in number,
where As are PTVs for s = 1, 2, . . . , Q and As are OARs for s = Q + 1, Q + 2, . . . , R. Let ls and
us be lower and upper bound doses for jth voxel, and some upper bound constraints are
given as

Jmax,s =
{

t ∈ RJ : tj ≤ us, j ∈ As
}

, (4.2)

the lower bound constraint

Jmin,s =
{

t ∈ RJ : ls ≤ tj, j ∈ As
}

, (4.3)

the equivalent uniform dose (EUD) constraint Us : RJ → R given as

Us(t) =
[

1
Ns

∑

j∈As

(tj)αs

] 1
αs

. (4.4)

Assume that A and B are influenced matrices, X+ and Y+ are nonnegative constraints, Xk1 ,
k1 = 1, 2, . . . , N , and Yk2 , k2 = 1, 2, . . . , P, are the beamlet intensity vectors that satisfy the nth
constraint for Varian (V) and Elekta (E) machine respectively. Consider the multiple-sets
split equality problem of finding

Find r̄ ∈ X+ ∩
( N⋂

k1=1

Xk1

)

, s̄ ∈ Y+ ∩
( M⋂

k2=1

Yk2

)

such that Ar̄ = Bs̄. (4.5)

Thus, the main objective of IMRT is to find an intensity r̄ that is closest to the entire
radiation intensity space in the Varian machine and an intensity s̄ that is closest to the
entire radiation intensity space in the Elekta machine, these both machines transmit an
equal dose to the tumor. As we know that r̄∗ ∈ Fix(PQ) if and only if x ∈ Q, where PQ is the
metric projection defined on a closed convex subset Q of Hilbert space H .

Take Sk1 = PX+∩Xj (k1 = 1, 2, . . . , N ) and Uk2 = PY+∩Yk (k2 = 1, 2, . . . , P) in Algorithm 3.1.
For the multiple-sets split equality problem, we obtain the following cyclic iterative algo-
rithm.

Algorithm 4.1 Consider 0 < a < νx
n ≤ 2c̄x, 0 < b < ν

y
n ≤ 2c̄y for some a, b ∈R, bx

j , by
j ∈ (0, 1)

for j = 1, 2, . . . , M, {δn}, {μn}, {ηn,i}, {σn} ⊂ [d̄, ē] ⊂ (0, 1), an ∈ (δ, 1 – φ – δ), β ∈ (0, 1),
∑∞

n=1 τn < ∞, and {κn} ⊂ [κ , κ̄], where 0 < κ ≤ κ̄ , δ > 0, d̄, and ē ∈ R. Choose x0, x1 ∈ Q
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and γn such that 0 ≤ γn ≤ γ̄n, where

γ̄n =

⎧
⎨

⎩
β if xn = xn–1 and yn = yn–1

min{ τn√‖xn–xn–1‖+‖yn–yn–1‖ ,β} if otherwise.
(4.6)

Compute

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + γn(xn – xn–1),

tn = yn + γn(yn – yn–1),

hn = σnψ1(xn) + (1 – σn)PQ1 (I – νx
n
∑M

j=1 bx
j Lx

j )wn,

xn+1 = δnhn + μn((1 – an)hn + anPX+∩Xn (hn))

+
∑∞

i=1 ηn,i(JKi
θi

(hn – ρn(A∗(Ahn – Bvn)))),

vn = σnψ2(yn) + (1 – σn)PQ2 (I – ν
y
n
∑M

j=1 by
j Ly

j )tn,

yn+1 = δnvn + μn((1 – an)vn + anPY+∩Yn (vn))

+
∑∞

i=1 ηn,i(JTi
θi

(vn + ρn(B∗(Ahn – Bvn)))),

(4.7)

where the stepsize ρn is given as

ρn ∈
(

ε,
2‖Ahn – Bvn‖2

‖A∗(Ahn – Bvn)‖2 + ‖B∗(Ahn – Bvn)‖2 – ε

)
,

n ∈ � and ε > 0 otherwise ρn = ρ, and the index set � = {n; Ahn – Bvn �= 0}.

As we know, metric projection is firmly nonexpansive, and thus 0-demicontractive. As
a result, using Algorithm 4.1 and the proof described in Theorem 3.4, we can obtain the
strong convergence result for approximating the solution of the multiple-sets split equality
problem (4.1).

It is not always possible to find an intensity that meets all of the constraints. In this case,
we find a solution that is as close to all of the constraints as possible. To do so, we consider
the following proximity function:

f (r, s) =
an

2

N∑

k1=1

‖PX+∩(Xk1 )r – r‖2 +
an

2

P∑

k2=1

‖PY+∩(Yk2 )s – s‖2 +
1
2
‖Ar – Bs‖2. (4.8)

The multiple-sets split equality problem (4.1), on the other hand, can be written as the
minimization problem

min
r∈RN ,s∈RP

f (r, s). (4.9)

5 Numerical example
In this section, we give a numerical example to compare the convergence of the algorithms
given in [32, 37] to Algorithms 3.1.

Example 5.1 Let H1 = H2 = H3 = R
4 be the set of real numbers. Assume that

Q1 = Q2 =
{

(t̄1, t̄2, t̄3, t̄4)T ∈R
4 : t̄1 + t̄2 – 3t̄3 + t̄4 ≥ 0

}
.
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Table 1 Comparison of Alg 3.1 with Eslamian Alg [32] and Chang Alg [37]

Algorithm Iteration number Time (seconds)

Alg 3.1 22 0.0596
Eslamian Alg 49 0.9678
Chang Alg 187 1.5156

Table 2 Numerical analysis of Alg 3.1 for different cases

Cases Iteration number Execution time in seconds

1 17 0.0596
2 21 0.1051
3 37 0.9043

Table 3 Numerical analysis of Alg 3.1 for different values of ρ1

ρ1 Iteration number Execution time in seconds

0.2 21 0.0596
0.4 23 0.1051
0.6 27 0.9043
0.8 47 1.0099

Let A, B : R4 → R
4 be two bounded linear operators created from a normal distribution

with unit variance and mean zero. Consider ψ1 : R4 → R
4 and ψ2 : R4 → R

4 as two con-
traction mappings such that ψ1(x) = x

24 and ψ2(x) = x
24 for all x ∈R

4. Further, we take two
demicontractive mappings Sk1 and Uk1 : R4 → R

4 such that Sk1 (x) = –3k1
k1+1 x, Uk2 (x) = –2k2

k2+1 ,
where k1 = k2 = 1, x = (x1, x2, x3, x4)T . Take i = 1, and K1 : H1 → 2H1 and T1 : H2 → 2H2

are defined as K1(x) = A∗A(x) and T1(x) = B∗B(x). Take J = 20. Let Lx
j and Ly

j be defined by
Ly

j (t̄) = t̄+2
5j and Lx

j (t̄) = t̄–1
3j with bx

j = 2
3j + 1

N3N , by
j = 4

5j + 1
N5N and νx

j = 1
7j3 , νy

j = 1
5j3 . Obviously,

the solution set � is nonempty as 0 ∈ �. Let δn = 1
n+1 , μn = 1+n

3n , ηn,1 = 2n2–2n–1
3n(n+1) , σn = 1

2n+1 ,
an = 1

n+1 , and the step size τn = 1
n5 . Choose β = 0.5 and initial values x = (0.1, 0.1, 0.1, 0.1)T ,

y = (0.2, 0.2, 0.2, 0.2)T . We set En = ‖xn – xn–1‖ + ‖yn – yn–1‖ < 10–4 as a stopping criterion
and plot the graphs of errors En over the number of iterations n. Furthermore, we provide
numerical data for various values of ηn and the following values of x0 and x1.

Case 1: x0 = (0.01, 0.01, 0.01, 0.01), x1 = (0.02, 0.02, 0.02, 0.02);
Case 2: x0 = (0.1, 0.1, 0.1, 0.1), x1 = (0.2, 0.2, 0.2, 0.2);
Case 3: x0 = (1, 1, 1, 1), x1 = (2, 2, 2, 2).
Tables 1–3 and Figs. 1–3 present the numerical results.

6 Conclusion
In this paper, we have proposed a new inertial simultaneous cyclic iterative algorithm with
a method for a finite family of split equality variational inequality problems, an infinite
family of split equality variational inclusion problems, and a multiple-sets split equality
fixed point problem for demicontractive operators in infinite dimensional Hilbert spaces.
The proposed algorithm includes several well-known methods such as the cyclic method,
the inertial method, the viscosity approximation method, and the projection method. We
prove strong convergence of the proposed algorithm. This result extends and unifies vari-
ous known results in the literature. Finally, we give a numerical example to justify the main
convergence theorem.
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Figure 1 Comparison of Alg 3.1 with Eslamian Alg [32] and Chang Alg [37]

Figure 2 Numerical analysis of Alg 3.1 for different cases

Figure 3 Numerical analysis of Alg 3.1 for different values of ρ1
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