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Abstract
In this paper, we introduce and study a viscous-type extrapolation algorithm for
finding a solution of the variational inequality problem and a fixed point constraint of
quasi-nonexpansive mappings under the scope of real Hilbert spaces when the
underlying cost operator is quasi-monotone. The method involves inertial viscosity
approximation and a constructed self-adjustable step size condition that depends
solely on the information of the previous step. We establish a strong convergence
result of the proposed method under certain mild conditions on the algorithm
parameters. Finally, to demonstrate the gain of our method, some numerical
examples are presented in comparison with some related methods in literature.
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1 Introduction
Let K be a nonempty, closed and convex subset of a real Hilbert space H endowed with
the inner product 〈·, ·〉 and induced norm ‖ ·‖. Let L : H → H be a real single-valued non-
linear mapping. Then the variational inequality problem (VIP) is formulated as follows:

find q∗ ∈K such that
〈
Lq∗, z – q∗〉 ≥ 0 for all z ∈K. (1.1)

VIP (1.1) is a very important tool in optimization theory and other fields of applied math-
ematical sciences (see [2, 5, 9, 10, 12, 13, 15] and references therein). The notion of varia-
tional inequality can be traced back to the Italian mathematician Stampacchia [28]. It was
used as a tool for modeling problems in mechanics (the VIP was also independently for-
mulated by Fichera [13]). The theory of variational inequalities is a crucial one in studying
a wide range of problems in pure and applied sciences in a simple, natural and unified
framework. There is a known relationship between the VIP and the fixed point problem
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(FPP). Finding the solution of VIP (1.1) is the same as finding the solution of the FPP:

find q∗ ∈K such that q∗ = PK
(
q∗ – μLq∗), (1.2)

where 0 < μ ∈ R and PK is a metric projection of H onto K. There are several algorithms
for finding the solution of VIP (1.1). Predominant among these are the projection algo-
rithms. Projection algorithms leverage on projections onto the feasible set K or onto some
related sets in order to iteratively obtain a solution. Simplest among these methods is the
gradient projection technique by Goldstein [16]:

⎧
⎨

⎩
q0 ∈K ⊂R

n, ξ ∈ (0, 2μ

L2 ),

qn+1 = PK(qn – ξLqn), n ≥ 0,
(1.3)

where L is μ-strongly monotone and L-Lipschitzian and PK is a metric projection of Rn

onto K. It has been established that the sequence {qn} constructed by (1.3) converges
uniquely to the solution of VIP (1.1). The stringent hypothesis associated with the cost
operator in (1.3) limits application and efficiency of this gradient method. To mitigate
this, many researchers have attempted to weaken some conditions on the cost operator L.
For instance, Korpelevich [19] and Antipin [4] proposed and analyzed the extragradient
method (EM) for approximating the solution of VIP (1.1) in finite-dimensional Euclidean
spaces when the associated operator L is monotone and Lipschitz continuous. They pro-
posed the iterative method

⎧
⎪⎪⎨

⎪⎪⎩

q0 ∈ H , ζ ∈ (0, 1
L ),

zn = PK(qn – ζLqn),

qn+1 = PK(qn – ζLzn), n ≥ 0.

(1.4)

They proved that the sequence {qn} generated by (1.4) converges weakly to the solution
of VIP (1.1) in a finite-dimensional space. The iterative EM has been extensively studied
and extended by many researchers. Authors like He et al. [18], Nadezhkina and Taka-
hashi [21], Noor [22], Popov [25], and many others extended EM to infinite-dimensional
real Hilbert spaces with better conditions on the cost operator L, for instance when L is
pseudo-monotone or quasi-monotone. One copious defect of the EM is the calculation of
orthogonal projections onto the feasible set K twice per iteration. This can pose a serious
deficiency if the feasible set K is structurally complex. Thus, to overcome this drawback,
in 2011, Censor et al. [6] proposed an improved iterative method termed the subgradi-
ent extragradient method (SEGM); among its main objectives are reducing the number
of projections onto K per iteration and achieving convergence under certain conditions
in infinite-dimensional Hilbert spaces. The authors achieved the first objective by replac-
ing the second projection in (1.4) with projection onto constructible half-space χn. The
iterative algorithm is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q0 ∈ H , ζ ∈ (0, 1
L ),

zn = PK(qn – ζLqn),

χn = {q ∈ H : 〈qn – ζLqn – zn, q – zn〉 ≤ 0},
qn+1 = Pχn (qn – ζLzn), n ≥ 0.

(1.5)
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The authors established that the sequence {qn} generated by (1.5) converges weakly to the
solution of VIP (1.1) under some conditions on the algorithm parameters. Due to the gain
of SEGM (1.5), the iterative method witnessed several modifications (see [6–8, 33] and
references therein) with some conditions imposed on the algorithm parameters which
guaranteed strong convergence in infinite-dimensional Hilbert spaces.

Also, to mitigate the drawback associated with the EM, Tseng introduced another vari-
ant of the EM known as Tseng’s EM [37]. The iterative algorithm is as follows:

⎧
⎨

⎩
zn = PK(qn – λLqn),

qn+1 = zn – λ(Lzn – Lqn), n ≥ 0,
(1.6)

where λ ∈ (0, 1
L ) and the underlying operator L is maximally monotone. Tseng’s EM has

enjoyed several modifications and extensions by many authors (see [30–32, 36, 39, 41, 42,
44, 45] and references therein).

Recently, researchers have devoted their studies to improving the rate of convergence
of iterative methods. One of the techniques of achieving faster convergence is by the in-
troduction of an inertial term into the iterative scheme. This has been shown to be an
efficient technique for accelerating the convergence of such iterative methods. The iner-
tial technique emanated from a discrete analog of a second-order dissipative dynamical
system which is known for its efficiency in improving the convergence rate of iterative
methods. The well-known Polyak heavy ball algorithm [24] in convex optimization, which
is an inertial extrapolation process for minimizing a smooth convex function, is the first
such method. This popular technique has been used by many authors in different methods
for approximating the solution of VIP (1.1) and other related optimization problems (see
[1, 2, 8, 20, 27] for details).

Recently, Gang et al. [14] proposed the following modified Tseng extragradient iterative
algorithm for solving VIPs in real Hilbert spaces when the underlying operator is pseudo-
monotone and non-Lipschitzian:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q0, q1 ∈ H ,

tn = qn + θn(qn – qn–1),

zn = PK(tn – λnL(tn)),

rn = zn – λn(L(tn) – L(zn)),

qn+1 = βnf (qn) + (1 – βn)rn, n ≥ 1,

(1.7)

where the step size λn is updated using the Armijo line search rule. The authors show that
under some conditions, the sequence {qn} generated by (1.7) converges strongly to the
unique solution of (1.1).

We have noticed that many modified Tseng extragradient iterative algorithms mostly
entail that the cost operator L is either monotone and Lipschitzian or pseudo-monotone.
Now a pertinent question arises: Can we propose a modified Tseng extragradient algo-
rithm with a more robust cost operator L, say, a modified Tseng extragradient method
when the cost operator is quasi-monotone? And can we extend the iterative method to
solving the FPP when the underlying operator is quasi-nonexpansive?
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Motivated by the work of Gang et al. [14] and many others in this direction, we give affir-
mative answers to these questions. We propose a modified Tseng extragradient algorithm
for approximating the solution of quasi-monotone VIPs with a fixed point constraint of
quasi-nonexpansive mappings in the framework of real Hilbert spaces. Our algorithm is
a viscous iterative one that has an inertial extrapolation term incorporated and is embel-
lished with relaxation. In this work, the cost operator L is assumed to be quasi-monotone
instead of the usual condition that L is monotone, as in [37], or pseudo-monotone, as
in [14] and most literature. We obtain strong convergence results for the sequence con-
structed by this method under some mild assumptions on the algorithm parameters. Fi-
nally, we give some numerical examples to demonstrate the applicability and efficiency of
our proposed method.

2 Preliminaries
In this section, we will recall some definitions and present results that will help us in our
convergence analysis in the subsequent section. Let H be a real Hilbert space and let K be
a nonempty, closed and convex subset of H . For every q ∈ H there exists a unique nearest
point in K denoted by PKq such that

‖q – PKq‖ = inf
{‖q – z‖ : z ∈K

}
.

PK is termed the metric projection of H onto K and is known to be nonexpansive. More-
over, PK is associated with the following characterization.

Lemma 2.1 ([18]) Let PK : H →K be a metric projection of H onto K. Then the following
hold:

(i) ‖PKq – PKs‖2 ≤ 〈PKq – PKs, q – s〉, ∀q, s ∈ H ;
(ii) z = PKq if and only if 〈q – z, s – z〉 ≤ 0, ∀s ∈K;

(iii) ‖q – PKs‖2 + ‖PKs – s‖2 ≤ ‖q – s‖2, ∀q ∈ H , s ∈K.

Definition 2.1 ([43, 44]) Let H be real Hilbert space and let K be a nonempty, closed and
convex subset of H . Let F : H → H be a real single-valued mapping. Then F is said to
be:

(a) α-Lipschitz continuous if there exists α > 0 such that

‖Fq – Fs‖ ≤ α‖q – s‖, ∀q, s ∈ H ;

(b) nonexpansive if

‖Fq – Fs‖ ≤ ‖q – s‖, ∀q, s ∈ H ;

(c) quasi-nonexpansive if the fixed point set of F , F(F ), is nonempty and

‖Fq – p‖ ≤ ‖q – p‖, ∀q ∈ H , p ∈ F(F );

(d) β-contraction if there exists β ∈ [0, 1) such that

‖Fq – Fs‖ ≤ β‖q – s‖, ∀q, s ∈ H .



Abuchu et al. Journal of Inequalities and Applications         (2024) 2024:38 Page 5 of 21

Definition 2.2 ([34]) Let G : H → H be a real single-valued operator and let K be a
nonempty, closed and convex subset of H . Then G is said to be:

(i) γ -strongly monotone on K if there exists γ > 0 such that

〈Gq – Gs, q – s〉 ≥ γ ‖q – s‖2, ∀q, s ∈K;

(ii) monotone on K if

〈Gq – Gs, q – s〉 ≥ 0, ∀q, s ∈K;

(iii) pseudo-monotone on K if

〈Gq, s – q〉 ≥ 0 �⇒ 〈Gs, s – q〉 ≥ 0, ∀q, s ∈K;

(iv) quasi-monotone on K if

〈Gq, q – s〉 > 0 �⇒ 〈Gs, q – s〉 ≥ 0, ∀q, s ∈K;

(v) sequentially weakly continuous if for each sequence {qn} that converges weakly to a
point q∗ ∈ H the sequence {Gqn} converges weakly to a point Gq∗.

Lemma 2.2 ([38]) Let H be a real Hilbert space with μ,ν ∈ H and α ∈ R. Then the fol-
lowing hold:

(i) 2〈μ,ν〉 = ‖μ‖2 + ‖ν‖2 – ‖μ – ν‖2 = ‖μ + ν‖2 – ‖μ‖2 – ‖ν‖2;
(ii) ‖μ – ν‖2 ≤ ‖μ‖2 + 2〈ν,ν – μ〉;

(iii) ‖αμ + (1 – α)ν‖2 = α‖μ‖2 + (1 – α)‖ν‖2 – α(1 – α)‖μ – ν‖2.

Lemma 2.3 ([17, 46]) Let K be a nonempty, closed and convex subset of a Hilbert space
H and let L : H → H be an L-Lipschitzian and quasi-monotone operator. Let z ∈K. If for
some q∗ ∈K we have 〈L(z), q∗ – z〉 ≥ 0, then at least one of the following must hold:

〈
L

(
q∗), q∗ – z

〉 ≥ 0 or
〈
L(z), q∗ – z

〉 ≤ 0, ∀q∗ ∈K.

Lemma 2.4 [26] Let {φn} be a sequence of positive real numbers. Let {δn} and {ρn} be se-

quences in (0, 1) with
∞∑

n=1
δn = ∞. Suppose that φn satisfies the inequality

φn+1 ≤ (1 – δn)φn + δnρn, ∀n ∈N.

If lim sup
k→∞

ρnk ≤ 0 for every subsequence φnk of φn satisfying the condition lim inf
k→∞

(φnk +1 –

φnk ) ≥ 0, then lim
n→∞φn = 0.

3 Main results
Throughout this work, we shall use qn → q∗ (respectively qn ⇀ q∗) to denote that the
sequence {qn} converges strongly (respectively weakly) to a point q∗ as n → ∞. For the
purpose of convergence analysis of our method, we shall make the following assumptions.
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Assumption 3.1 Suppose that:
(B1) the real Hilbert space H has a nonempty, closed and convex subset K;
(B2) the operator L : H → H is quasi-monotone, �0-Lipschitzian and sequentially

weakly continuous;
(B3) T : H → H is a quasi-nonexpansive mapping which is semiclosed at the origin

such that F(T ) �= ∅, Si : H → H is a sequence of nonexpansive mappings and
h : H → H is a λ-contraction;

(B4) the solution set of VIP (1.1) VI(K,L) �= ∅ and � := VI(K,L) ∩ F(T ) �= ∅;
(B5) the control sequences {σn} and {ξn} are positive real sequences in (0, 1) with {σn}

satisfying the property lim
n→∞σn = 0,

∞∑

n=1
σn = ∞, with ξn = ◦(σn).

Algorithm 3.2 Initialization: Choose ζ0 > 0, λ ∈ [0, 1), θ ∈ [0, 1], q0, q1 ∈ H .
Iterative process steps: Given the iterates qn–1 and qn for each n ≥ 1, choose θn such that

0 ≤ θn ≤ θ̄n, where

θ̄n = min

{
θ ,

ξn

‖qn – qn–1‖
}

, if qn �= qn–1; otherwise, set θ̄n = θ .

Step 1: Set n = 1. We calculate the iterate qn+1 as follows:

wn = qn + θn(Siqn – Siqn–1),

and we compute

zn = PK(wn – ζnLwn).

If zn = wn, stop; zn is the required solution. Else, execute step 2.
Step 2: Compute

qn+1 = σnh(qn) + (1 – σn)T pn,

where

pn = zn – ζn(Lzn – Lwn),

and update {ζn} as follows:

ζn+1 =

⎧
⎨

⎩
min{ μ‖wn–zn‖

‖Lwn–Lzn‖ , ζn}, if Lwn �= Lzn,

ζn, otherwise.
(3.1)

Set n := n + 1 and return to Step 1.

Remark 3.3 We first highlight some novelties of Algorithm 3.2 with respect to others in
the literature.

(i) In [14, 44], the authors introduced modified Tseng extragradient-type algorithms
for solving VIPs in the framework of real Hilbert spaces. We observed that their
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iterative methods used a class of pseudo-monotone operators, while in this work
we propose a modified inertial Tseng extragradient algorithm for solving VIPs in
real Hilbert spaces when the associated operator is quasi-monotone and there is a
fixed point constraint of quasi-nonexpansive mappings. It can be observed that the
class operators considered in this work are more general and include some
important classes of operators; specifically, the class of quasi-monotone operator
includes strongly monotone operators, monotone operators, pseudo-monotone
operators, and others (see [23] for more details).

(ii) In the proposed algorithm, the self-adjustable step size condition
ζn+1 ∈ min{ μ‖wn–zn‖

‖Lwn–Lzn‖ , ζn} applied in Algorithm 3.2 is very simple and does not
possess any inner loop, unlike the line search technique employed in [14, 33], which
uses inner loops and might consume additional computation time for determining
the step size. It also does not require prior knowledge of the operator norm ‖L‖.

(iii) The proposed method involves inertial and relaxation terms, which are vital in
improving the rate of convergence for solving VIP (1.1).

(iv) The proof of our convergence analysis (that is, strong convergence of Theorem 4.6)
does not follow the usual “two cases approach” as seen in many papers handling
optimization problems (see [3, 11, 27, 29, 44]).

4 Convergence analysis
Lemma 4.1 (See for instance Lemma 3.1 in [40]) The sequence {ζn} generated by Algorithm
3.2 is monotonically nonincreasing and bounded below by min{ μ

�0
, ζ0}. Moreover, ‖Lzn –

Lwn‖ ≤ μ

ζn+1
‖zn – wn‖, ∀n ≥ 1.

Proof From the construction of the sequence {ζn}, it is obvious to see that {ζn} is monotone
decreasing. Since the operator L is �0-Lipschitz continuous, we have for Lwn �= Lzn

μ‖zn – wn‖
‖Lzn – Lwn‖ ≥ μ‖zn – wn‖

�0‖zn – wn‖ =
μ

�0
.

By induction it is clear that {ζn} is bounded below with lower bound min{ μ

�0
, ζ0}. Since

every nonincreasing monotone sequence that is bounded is convergent, it follows that the
limit of {ζn} exists and we can denote this by

lim
n→∞ ζn = ζ > 0. (4.1)

�

Lemma 4.2 Let {pn}, {zn} and {wn} be sequences generated by Algorithm 3.2 under As-
sumption 3.1. Then {pn} satisfies the inequality

∥∥pn – q∗∥∥2 ≤ ∥∥wn – q∗∥∥2 –
(
1 – μ2)‖zn – wn‖2. (4.2)

Proof Let q∗ ∈ �. Using the definition of pn in Step 2 of Algorithm 3.2, Lemma 2.1, Lemma
2.3 and Lemma 4.1, we have

∥∥pn – q∗∥∥2 =
∥∥zn – ζn(Lzn – Lwn) – q∗∥∥2

=
∥∥zn – q∗∥∥2 + ζ 2

n ‖Lzn – Lwn‖2 – 2ζn
〈
zn – q∗,Lzn – Lwn

〉
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=
∥∥zn – wn + wn – q∗∥∥2 + ζ 2

n ‖Lzn – Lwn‖2 – 2ζn
〈
zn – q∗,Lzn – Lwn

〉

=
∥∥wn – q∗∥∥2 + ‖zn – wn‖2 + 2

〈
wn – q∗, zn – wn

〉
+ ζ 2

n ‖Lzn – Lwn‖2

– 2ζn
〈
zn – q∗,Lzn – Lwn

〉

=
∥∥wn – q∗∥∥2 + ‖zn – wn‖2 – 2〈zn – wn, zn – wn〉 + 2

〈
zn – q∗, zn – wn

〉

+ ζ 2
n ‖Lzn – Lwn‖2 – 2ζn

〈
zn – q∗,Lzn – Lwn

〉

=
∥∥wn – q∗∥∥2 + ‖zn – wn‖2 – 2‖zn – wn‖2 + 2

〈
zn – q∗, zn – wn

〉

+ ζ 2
n ‖Lzn – Lwn‖2 – 2ζn

〈
zn – q∗,Lzn – Lwn

〉

=
∥∥wn – q∗∥∥2 – ‖zn – wn‖2 + 2

〈
zn – q∗, zn – wn

〉
+ ζ 2

n ‖Lzn – Lwn‖2

– 2ζn
〈
zn – q∗,Lzn – Lwn

〉

=
∥∥wn – q∗∥∥2 – ‖zn – wn‖2 + 2

〈
zn – q∗, zn – wn

〉
+ ζ 2

n ‖Lzn – Lwn‖2

– 2ζn
〈
Lzn, zn – q∗〉 + 2ζn

〈
Lwn, zn – q∗〉

=
∥∥wn – q∗∥∥2 – ‖zn – wn‖2 + 2

〈
zn – wn + ζnLwn, zn – q∗〉

+ ζ 2
n ‖Lzn – Lwn‖2 – 2ζn

〈
Lzn, zn – q∗〉.

Since L is quasi-monotone on K and zn ∈K, by Lemma 2.3 we have

〈
Lzn, zn – q∗〉 ≥ 0. (4.3)

Using the characterization of the metric projection in Lemma 2.1, we obtain

〈
wn – zn – ζnLwn, zn – q∗〉 ≥ 0. (4.4)

With the help of (4.3) and (4.4), we get

∥∥pn – q∗∥∥2 ≤ ∥∥wn – q∗∥∥2 – ‖zn – wn‖2 + ζ 2
n ‖Lzn – Lwn‖2. (4.5)

Also, from our adaptive step size (3.1),

ζ 2
n ‖Lzn – Lwn‖2 ≤ μ2‖zn – wn‖2. (4.6)

Combining (4.5) and (4.6),

∥∥pn – q∗∥∥2 ≤ ∥∥wn – z∗∥∥2 – ‖zn – wn‖2 + μ2‖zn – wn‖2

=
∥∥wn – q∗∥∥2 –

(
1 – μ2)‖zn – wn‖2 (4.7)

≤ ∥∥wn – q∗∥∥2, (4.8)

which yields the desired result. �

Lemma 4.3 Let {qn} be a sequence generated by Algorithm 3.2 under Assumption 3.1. Then
{qn} is bounded.
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Proof Let q∗ ∈ �. Then from the definition of (wn) in Algorithm 3.2, we have

∥∥wn – q∗∥∥ =
∥∥qn + θn(Siqn – Siqn–1) – q∗∥∥

≤ ∥∥qn – q∗∥∥ + σn
θn

σn
‖Siqn – Siqn–1‖ (4.9)

≤ ∥∥qn – q∗∥∥ + σn

(
θn

σn
‖qn – qn–1‖

)
.

Since θn
σn

‖qn – qn–1‖ ≤ ξn
σn

, from which by assumption (B5) it follows that lim
n→∞

θn
σn

‖qn –

qn–1‖ = 0, the sequence { θn
σn

‖qn –qn–1‖} is bounded. Thus, there exists a real constant K1 > 0
such that θn

σn
‖qn – qn–1‖ ≤ K1 for all n ≥ 1. Hence,

∥∥wn – q∗∥∥ ≤ ∥∥qn – q∗∥∥ + σnK1. (4.10)

Now, using the definition of sequence {qn+1} in Algorithm 3.2, Lemma 4.2 and (4.10), we
deduce

∥∥qn+1 – q∗∥∥ =
∥∥σnh(qn) + (1 – σn)T pn – q∗∥∥

=
∥∥σn

[
h(qn) – q∗] + (1 – σn)

[
T pn – q∗]∥∥

≤ σn
∥∥h(qn) – q∗∥∥ + (1 – σn)

∥∥T pn – q∗∥∥

≤ σn
∥∥h(qn) – q∗∥∥ + (1 – σn)

∥∥pn – q∗∥∥

= σn
∥∥h(qn) – h

(
q∗) + h

(
q∗) – q∗∥∥ + (1 – σn)

∥∥pn – q∗∥∥

≤ σn
∥∥h(qn) – h

(
q∗)∥∥ + σn

∥∥h
(
q∗) – q∗∥∥ + (1 – σn)

∥∥pn – q∗∥∥

≤ λσn
∥∥qn – q∗∥∥ + σn

∥∥h
(
q∗) – q∗∥∥ + (1 – σn)

∥∥pn – q∗∥∥

≤ λσn
∥∥qn – q∗∥∥ + σn

∥∥h
(
q∗) – q∗∥∥ + (1 – σn)

∥∥wn – q∗∥∥

≤ λσn
∥∥qn – q∗∥∥ + σn

∥∥h
(
q∗) – q∗∥∥ + (1 – σn)

[∥∥qn – q∗∥∥ + σnK1
]

=
(
1 – σn(1 – λ)

)∥∥qn – q∗∥∥ + σn
∥∥h

(
q∗) – q∗∥∥ + σn(1 – σn)K1

=
(
1 – σn(1 – λ)

)∥∥qn – q∗∥∥ + σn
[∥∥h

(
q∗) – q∗∥∥ + (1 – σn)K1

]

≤ (
1 – σn(1 – λ)

)∥∥qn – q∗∥∥ + σn(1 – λ)
[‖h(q∗) – q∗‖ + K1

1 – λ

]

≤ max
{∥∥qn – q∗∥∥, (1 – λ)–1[∥∥h

(
q∗) – q∗∥∥ + K1

]}
. (4.11)

Thus, by induction

∥∥qn – q∗∥∥ ≤ max
{∥∥q1 – q∗∥∥, (1 – λ)–1[∥∥h

(
q∗) – q∗∥∥ + K1

]}
, ∀n ≥ 1. (4.12)

Since the sequence {‖qn – q∗‖} is bounded, it follows that {qn} is bounded. Hence, {wn},
{zn}, {pn} and {T pn} are all bounded. �

Lemma 4.4 Let {zn} and {wn} be sequences generated by Algorithm 3.2 under Assump-
tion 3.1. Suppose {zn�

} and {wn�
} are subsequences of {zn} and {wn}, respectively, with {zn�

}
converging weakly to a point q∗ ∈ H and lim

�→∞‖wn�
– zn�

‖ = 0. Then q∗ ∈ VI(K,L).
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Proof We know that zn�
= P�(wn�

– ζn�
Lwn�

). Hence, from the characterization of the pro-
jection operator (see Lemma 2.1), we get

〈wn�
– ζn�

Lwn�
– zn�

, q – zn�
〉 ≤ 0, ∀q ∈K.

This implies

〈wn�
– zn�

, q – zn�
〉 – ζn�

〈Lwn�
, q – zn�

〉 ≤ 0,

〈zn�
– wn�

, q – wn�
〉 ≤ ζn�

〈Lwn�
, q – zn�

〉 = ζn�
〈Lwn�

, wn�
– zn�

〉 + ζn�
〈Lwn�

, q – wn�
〉,

and hence

1
ζn�

〈zn�
– wn�

, q – zn�
〉 + 〈Lwn�

, zn�
– wn�

〉 ≤ 〈Lwn�
, q – wn�

〉. (4.13)

Since {znk } converges weakly to a point q∗ ∈ H and lim
�→∞

‖wn�
– zn�

‖ = 0, it follows that
{wn�

} and {Lwn�
} are bounded sequences. We have established also from Lemma 4.1 that

lim
�→∞ζn�

= ζ > 0. So from (4.13), we obtain

0 ≤ lim inf
�→∞

〈Lwn�
, q – wn�

〉 ≤ lim sup
�→∞

〈Lwn�
, q – wn�

〉 < ∞, ∀q ∈K. (4.14)

We observe that

〈Lzn�
, q – zn�

〉 = 〈Lzn�
, q – wn�

+ wn�
– zn�

〉
= 〈Lzn�

– Lwn�
+ Lwn�

, q – wn�
〉 + 〈Lzn�

, wn�
– zn�

〉
= 〈Lzn�

– Lwn�
, q – wn�

〉 + 〈Lwn�
, q – wn�

〉 + 〈Lzn�
, wn�

– zn�
〉. (4.15)

Recall that the operator L is �0-Lipschitzian, so

lim
�→∞‖Lwn�

– Lzn�
‖ ≤ lim

�→∞
(
�0‖wnk – zn�

‖) = 0. (4.16)

Combining (4.14), (4.15) and (4.16), we infer

0 ≤ lim inf
�→∞

〈Lzn�
, q – zn�

〉 ≤ lim sup
�→∞

〈Lzn�
, q – zn�

〉 < ∞, ∀q ∈K. (4.17)

Using (4.17), we shall look at the following two cases.
Case A: Suppose that lim sup

k→∞
〈Lzn�

, q – zn�
〉 > 0, ∀q ∈K. Then there exists a subsequence

(zn�m ) of sequence (zn�
) such that lim

m→∞〈Lzn�m , q – zn�m 〉 > 0. This implies that one can find
m0 ≥ 1 such that

〈Lzn�m , q – zn�m 〉 > 0, ∀m ≥ m0.

By the quasi-monotonicity of the mapping L, it follows that

〈Lq, q – zn�m 〉 ≥ 0, ∀q ∈K, m ≥ m0. (4.18)
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If we pass to the limit as m → ∞ in (4.18), we get

lim
m→∞〈Lq, q – zn�m 〉 =

〈
Lq, q – q∗〉 ≥ 0, ∀q ∈K.

Hence, q∗ ∈ VI(K,L).
Case B: Suppose in (4.17),

lim sup
k→∞

〈Lzn�
, q – zn�

〉 = 0. (4.19)

We construct a nonincreasing positive sequence {η�} defined by

η� :=
∣∣〈Lzn�

, q – zn�
〉∣∣ +

1
� + 1

. (4.20)

Clearly η� → 0 as � → ∞, so combining (4.19) and (4.20), we get

〈Lzn�
, q – zn�

〉 + η� > 0. (4.21)

Since {zn�
} ⊂K, this implies that {Lzn�

} is strictly nonzero. We let lim
�→∞

‖Lzn�
‖ = K2 > 0.

We can infer that

‖Lzn�
‖ >

K2

2
. (4.22)

Also, we let {ψn�
} be a sequence given by ψn�

= Lzn�

‖Lzn�
‖2 . It follows that

〈Lzn�
,ψn�

〉 = 1. (4.23)

By combining (4.21) and (4.23), we obtain

〈Lzn�
, q – zn�

〉 + η�〈Lzn�
, εn�

〉 > 0, (4.24)

so

〈Lzn�
, q + ηkψn�

– zn�
〉 > 0.

Since L is quasi-monotone on H , we get

〈
L(q + η�ψn�

), q + η�ψn�
– zn�

〉 ≥ 0. (4.25)

But we note that

〈Lq, q + η�ψn�
– zn�

〉 =
〈
Lq – L(q + η�ψn�

) + L(q + η�ψn�
), q + η�ψn�

– zn�

〉

=
〈
Lq – L(q + η�ψn�

), q + η�ψn�
– zn�

〉

+
〈
L(q + η�ψn�

), q + η�ψn�
– zn�

〉
. (4.26)
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Combining (4.25) and (4.26) and applying the Cauchy–Schwartz inequality, we obtain

〈Lq, q + η�ψn�
– zn�

〉 ≥ 〈
Lq – L(q + ηkψn�

), q + η�ψn�
– zn�

〉

≥ –
∥∥Lq – L(q + η�ψn�

)
∥∥‖q + η�ψn�

– yn�
‖. (4.27)

Since L is �0-Lipschitz continuous, we have

〈Lq, q + η�ψnk – zn�
〉 + �0‖η�ψn�

‖‖q + η�ψn�
– zn�

‖ ≥ 0. (4.28)

Combining (4.22) and (4.28) and taking into consideration the definition of the sequence
{εn�

}, we have

〈Lq, q + η�ψn�
– zn�

〉 +
2�0

K2
η�‖q + η�ψn�

– zn�
‖ ≥ 0. (4.29)

Using (4.29), since η� → 0 and zn�
→ q∗ as � → ∞, we get

lim
�→∞

(
〈Lq, q + ηkψn�

– zn�
〉 +

2�0

K2
η�‖z + η�ψn�

– zn�
‖
)

=
〈
Lq, q – q∗〉 ≥ 0, ∀q ∈K. (4.30)

Thus, q∗ ∈ VI(K,L), completing the proof. �

Lemma 4.5 Let {qn} be a sequence generated by Algorithm 3.2 under Assumption 3.1. Then
for all n ≥ 1, {qn} satisfies the inequality

�n+1 ≤ (1 – �n)�n + �n∂n, (4.31)

where �n+1 := ‖qn+1 – q∗‖2, �n := ‖qn – q∗‖2, �n := (1 – λ)σn and ∂n := K3K4+〈h(q∗)–q∗ ,qn+1–q∗〉
1–λ

for some real constants K3, K4.

Proof Indeed, using the definition of the sequence {qn+1} in Algorithm 3.2, Lemma 2.2 and
Lemma 4.2, we have

∥∥qn+1 – q∗∥∥2 =
∥∥σnh(qn) + (1 – σn)T pn – q∗∥∥2

=
∥∥σnh(qn) – σnh

(
q∗) + σnh

(
q∗) + (1 – σn)T pn – q∗∥∥2

=
∥∥σn

(
h(qn) – h

(
q∗)) + (1 – σn)

(
T pn – q∗) + σn

(
h
(
q∗) – q∗)∥∥2

≤ ∥∥σn
(
h(qn) – h

(
q∗)) + (1 – σn)

(
T pn – q∗)∥∥2 + 2σn

〈
h
(
q∗) – q∗, qn+1 – q∗〉

≤ σn
∥∥h(qn) – h

(
q∗)∥∥2 + (1 – σn)

∥∥T pn – q∗∥∥2

– σn(1 – σn)
∥∥(

h(qn) – T pn
)

–
(
h
(
q∗) – q∗)∥∥2

+ 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉

≤ σnλ
2∥∥qn – q∗∥∥2 + (1 – σn)

∥∥pn – q∗∥∥2

– σn(1 – σn)
∥∥(

h(qn) – T pn
)

–
(
h
(
q∗) – q∗)∥∥2
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+ 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉

≤ σn
∥∥h(qn) – h

(
q∗)∥∥2 + (1 – σn)

∥∥pn – q∗∥∥2 – σn(1 – σn)
∥∥h(qn) – T pn

∥∥2

+ 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉

≤ σnλ
∥∥qn – q∗∥∥2 + (1 – σn)

[∥∥wn – q∗∥∥2 –
(
1 – μ2)‖zn – wn‖2]

– σn(1 – σn)
∥∥h(qn) – T pn

∥∥2 + 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉

= σnλ
∥∥qn – q∗∥∥2 + (1 – σn)

∥∥wn – q∗∥∥2 – (1 – σn)
(
1 – μ2)‖zn – wn‖2

– σn(1 – σn)
∥∥h(qn) – T pn

∥∥2 + 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉

≤ σnλ
∥∥qn – q∗∥∥2 + (1 – σn)

∥∥wn – q∗∥∥2 – (1 – σn)
(
1 – μ2)‖zn – wn‖2

– σn(1 – σn)
∥∥h(qn) – T pn

∥∥2 + 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉. (4.32)

But we observe that

∥∥wn – q∗∥∥2 =
∥∥qn + θn(Siqn – Siqn–1) – q∗∥∥2

=
∥∥(

qn – q∗) + θn(Siqn – Siqn–1)
∥∥2

=
∥∥qn – q∗∥∥2 + 2θn

〈
qn – q∗,Siqn – Siqn–1

〉
+ θ2

n‖Siqn – Siqn–1‖2

≤ ∥∥qn – q∗∥∥2 + 2θn
∥∥qn – q∗∥∥‖Siqn – Siqn–1‖ + θ2

n‖Siqn – Siqn–1‖2

≤ ∥∥qn – q∗∥∥2 + 2θn
∥∥qn – q∗∥∥‖qn – qn–1‖ + θ2

n‖qn – qn–1‖2

=
∥∥qn – q∗∥∥2 + θn‖qn – qn–1‖

(
2
∥∥qn – q∗∥∥ + θn‖qn – qn–1‖

)

=
∥∥qn – q∗∥∥2 + θn‖qn – qn–1‖K3, (4.33)

where K3 := sup(2‖qn – q∗‖ + θn‖qn – qn–1‖) < ∞.
By combining (4.32) and (4.33),

∥∥qn+1 – q∗∥∥2 ≤ σnλ
∥∥qn – q∗∥∥2 + (1 – σn)

[∥∥qn – q∗∥∥2 + θn‖qn – qn–1‖K3
]

– (1 – σn)
(
1 – μ2)‖zn – wn‖2 – σn(1 – σn)

∥∥h(qn) – T pn
∥∥2

+ 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉

≤ σnλ
∥∥qn – q∗∥∥2 + (1 – σn)

∥∥qn – q∗∥∥2 + θn‖qn – qn–1‖K3

– (1 – σn)
(
1 – μ2)‖zn – wn‖2 + 2σn

〈
h
(
q∗) – q∗, qn+1 – q∗〉

≤ (
1 – (1 – λ)σn

)∥∥qn – q∗∥∥2 + σn

[
θn

σn
‖qn – qn–1‖K3

]

– (1 – σn)
(
1 – μ2)‖zn – wn‖2 – σn(1 – σn)

∥∥h(qn) – T pn
∥∥2

+ 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉 (4.34)

≤ (
1 – (1 – λ)σn

)∥∥qn – q∗∥∥2 + σnK3K4 + 2σn
〈
h
(
q∗) – q∗, qn+1 – q∗〉

=
(
1 – (1 – λ)σn

)∥∥qn – q∗∥∥2
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+ (1 – λ)σn

[
K3K4 + 2〈h(q∗) – q∗, qn+1 – q∗〉

1 – λ

]
, (4.35)

which gives the desired result. �

Theorem 4.6 Let {qn} be a sequence generated by Algorithm 3.2 under Assumption 3.1.
Then {qn} converges strongly to q∗ ∈ � := VI(K,L) ∩ F(T ) ⇐⇒ lim

n→∞‖qn+1 – qn‖ = 0.

Proof Let q∗ ∈ �. To show that qn → q∗ ∈ �, we shall apply Lemma 2.4 and (4.35) and
show that

lim sup
�→∞

[
θn�

(1 – λ)σn�

‖qn�
– qn�–1‖K3 +

2
1 – λ

〈
h
(
q∗) – q∗, qn�+1 – q∗〉

]
≤ 0

for every subsequence {‖qn�
– q∗‖} of the sequence {‖qn – q∗‖} satisfying the condition

lim inf
�→∞

(∥∥qn�+1 – q∗∥∥ –
∥∥qn�

– q∗∥∥) ≥ 0. (4.36)

Consider {‖qn�
– q∗‖} to be the subsequence of {‖qn – q∗‖} satisfying condition (4.36).

Then

lim inf
�→∞

(∥∥qn�+1 – q∗∥∥2 –
∥∥qn�

– q∗∥∥2)

= lim inf
�→∞

[(∥∥qn�+1 – q∗∥∥ –
∥∥qn�

– q∗∥∥)(∥∥qn�+1 – q∗∥∥ +
∥∥qn�

– q∗∥∥)]

≥ 0. (4.37)

From (4.34) and (4.37),

lim sup
�→∞

[
(1 – σn�

)
(
1 – μ2)‖zn�

– wn�
‖2 + σn(1 – σn�

)
∥∥h(qn�

) – T pn�

∥∥2]

≤ lim sup
�→∞

[(
1 – (1 – λ)σn�

)∥∥qn�
– q∗∥∥2 –

∥∥qn�+1 – q∗∥∥2]

+ lim sup
�→∞

[
(1 – λ)σn�

(
θn�

(1 – λ)σn�

‖qn�
– qn�–1‖K3

+
2

1 – λ

〈
h
(
q∗) – q∗, qn�+1 – q∗〉

)]

≤ lim sup
�→∞

[(
1 – (1 – λ)σn�

)∥∥qn�
– q∗∥∥2 –

∥∥qn�+1 – q∗∥∥2]

+ lim sup
�→∞

[
(1 – λ)σn�

(
θn�

(1 – λ)σn�

‖qn�
– qn�–1‖K3

+
2

1 – λ

∥∥h
(
q∗) – q∗∥∥∥∥qn�+1 – q∗∥∥

)]

= – lim inf
�→∞

[∥∥qn�+1 – q∗∥∥2 –
∥∥qn�

– q∗∥∥2] ≤ 0.

This implies

lim
�→∞

[
(1 – σn�

)
(
1 – μ2)‖zn�

– wn�
‖2 + σn(1 – σn�

)
∥∥h(qn�

) – T pn�

∥∥2] = 0. (4.38)
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Thus,

lim
�→∞

‖zn�
– wn�

‖ = 0, (4.39)

so

lim
�→∞

∥∥h(qn�
) – T pn�

∥∥ = 0. (4.40)

We observe from the definition of the sequence {wn�
} that

‖wn�
– qn�

‖ = σn�

[
θn�

σn�

‖Siqn�
– Siqn�–1‖

]
→ 0 as � → ∞. (4.41)

Since L is uniformly continuous and �0-Lipschitzian, using (4.39), we get

‖pn�
– zn�

‖ ≤ ζn�
�0‖zn�

– wn�
‖ → 0 as � → ∞. (4.42)

Also, using (4.39) and (4.42),

‖pn�
– wn�

‖ ≤ ‖pn�
– zn�

‖ + ‖zn�
– wn�

‖ → 0 as � → ∞. (4.43)

Combining (4.41) and (4.43),

‖pn�
– qn�

‖ ≤ ‖pn�
– wn�

‖ + ‖wn�
– qn�

‖ → 0 as � → ∞. (4.44)

Furthermore, using the definition of {qn�+1} in Algorithm 3.2, we deduce

qn�+1 – pn�
= σn�

(
h(qn�

) – T pn�

)
+ T pn�

– pn�
,

which immediately implies that

‖pn�
– T pn�

‖ = ‖qn�+1 – pn�
‖ + σn�

∥∥h(qn�
) – T pn�

∥∥

≤ ‖qn�+1 – qn�
‖ + ‖qn�

– pn�
‖ + σn�

∥∥h(qn�
) – T pn�

∥∥.

Since σn�
→ 0, qn�+1 – qn�

→ 0 as � → ∞, using (4.40) and (4.44), we get

lim
�→∞

‖pn�
– T pn�

‖ = 0. (4.45)

Since the sequence {qn�
} is bounded, there exists a subsequence {qn�k

} of {qn�
} such that

{qn�k
} converges weakly to z∗ ∈ H as k → ∞. Using (4.41), we have wn�k

⇀ z∗ ∈ H as
k → ∞. Also, since {pn�

} is bounded, there exists a subsequence {pn�k
} which converges

weakly to z∗ ∈ H . Since T is semiclosed at the origin, by (4.45), we infer that z∗ ∈ F(T ).
Thus, by (4.45) and Lemma 4.4, z∗ ∈ �.

Furthermore, since qn�k
⇀ z∗, it follows that

lim sup
�→∞

〈
h
(
q∗) – q∗, qn�

– q∗〉 = lim
k→∞

〈
h
(
q∗) – q∗, qn�k

– q∗〉
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=
〈
h
(
q∗) – q∗, z∗ – q∗〉. (4.46)

However, since z∗ is a unique solution in �, this implies that

lim sup
�→∞

〈
h
(
q∗) – q∗, qn�

– q∗〉 =
〈
h
(
q∗) – q∗, z∗ – q∗〉 ≤ 0. (4.47)

Furthermore,

lim sup
�→∞

〈
h
(
q∗) – q∗, qn�+1 – q∗〉 = lim sup

�→∞

〈
h
(
q∗) – q∗, qn�

– q∗〉

=
〈
h
(
q∗) – q∗, z∗ – q∗〉 ≤ 0. (4.48)

Using Assumption 3.1 (B5) and (4.48),

lim sup
�→∞

∂n�
= lim sup

�→∞

[
θn�

(1 – λ)σn�

‖qn�
– qn�–1‖K3 +

2
1 – λ

〈
h
(
q∗) – q∗, qn�+1 – q∗〉

]

≤ 0. (4.49)

It follows from Lemma 2.4 that lim
n→∞‖qn – q∗‖ = 0, completing the proof. �

5 Numerical experiments
In this section, we will give some special numerical examples which show the behavior
of our proposed iterative method in comparison to Algorithm (3.4) of Gang et al. [14],
Algorithm (3.6) of Thong et al. [35] and Algorithm (3.2) of Zhao et al. [44].

Example 5.1 Let H = �2(R) be a real Hilbert space of square summable sequences of real
numbers equipped with the property

‖q1‖2 + ‖q2‖2 + ‖q3‖2 + · · · + ‖qn‖2 + · · · < +∞.

Let L : K →K be a mapping defined by

L(q) =
(
σ – ‖q‖)q, ∀q ∈ H ,

where K := {q ∈ H : ‖q‖ ≤ γ }, σ ,γ ∈ R, such that γ ,σ > 0. It is can be easily seen that L is
weakly sequentially continuous on H and VI(K,L) = {0}. Now for q, s ∈K, we get

‖Lq – Ls‖ =
∥∥(

σ – ‖q‖)q –
(
σ – ‖s‖)s

∥∥

= ‖σq – ‖q‖q – σ s + ‖s‖s‖
≤ σ‖q – s‖ + ‖q‖‖q – s‖ + ‖s‖∣∣‖q‖ – ‖s‖∣∣
≤ σ‖q – s‖ + γ ‖q – s‖ + γ ‖q – s‖
= σ‖q – s‖ + 2γ ‖q – s‖
≤ (σ + 2γ )‖q – s‖.
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This implies L is �0-Lipschitzian with �0 = (σ + 2γ ). It is also easily verifiable that the
operator L is quasi-monotone for all 0 < σ

2 < γ < σ . To see this, suppose 〈Lq, s – q〉 > 0 for
q, s ∈K such that

(
σ – ‖q‖)〈q, s – q〉 > 0.

Then from the definition of the feasible set K, it follows that

〈Ls, s – q〉(σ – ‖s‖)〈q, s – q〉 ≥ (
σ – ‖s‖)〈s, s – q〉 –

(
σ – ‖s‖)〈q, s – q〉

≥ (
σ – ‖s‖)[〈s, s – q〉 – 〈q, s – q〉]

≥ (
σ – ‖s‖)〈s – q, s – q〉

=
(
σ – ‖s‖)‖s – q‖2 ≥ 0.

The operator L is quasi-monotone on K. We compute the metric projection on K as fol-
lows:

PK(q) =

⎧
⎨

⎩
q, if ‖q‖ ≤ γ ,
γ q
‖q‖ , otherwise.

We define a map T : �2(R) → �2(R) by T q = q sin q
2 . As seen in [44], T is quasi-nonexpansive

and semiclosed at 0 with F(T ) = {0}. Finally, let h : H → H be a mapping defined by
h(q) = 1

2 q. It can be seen easily that h is 1
2 -contractive. We take F(q) = 1

2 q [44]. Suppose for
this example ζ0 = 1

2 , μ = 0.5, γ = 2.0, θ = 2
5 , ζn+1 = 100

(n+1)1.3 , σn = 1
100n2+1 for Algorithm 3.2.

Also, if we consider TOL = ‖qn – qn–1‖ ≤ 10–5 as the stopping criterion and choose the
following different initial points:

Case A: q0 = (1, 1
2 , 1

4 , . . .), q1 = (–2, 1, – 1
2 , . . .),

Case B: q0 = (1, 1
2 , 1

4 , . . .), q1 = (–3, 1, – 1
3 , . . .),

Case C: q0 = (5, 1, 1
5 , . . .), q1 = (–5, 1, – 1

5 , . . .),
Case D: q0 = (2, 1, 1

2 , . . .), q1 = (–3, 1, – 1
3 , . . .),

then we obtain the results in Table 1.

Example 5.2 ([33]) Let H = L2([0, 1]) be an infinite-dimensional linear space of square in-
tegrable functions associated with the inner product 〈q, s〉 =

∫ 1
0 q(t)s(t) dt∀q, s ∈ L2([0, 1]),

t ∈ [0, 1], and induced norm ‖q‖L2 = (
∫ 1

0 |q(t)|2|dt) 1
2 , ∀q ∈ L2([0, 1]). Consider a closed unit

Table 1 Numerical results for Example 5.1

Case Zhao et al. Thong et al. Gang et al. Abuchu et al.

Case A Sec. 0.0672 0.0446 0.0455 0.0439
No. of Iter. 67 67 58 38

Case B Sec. 0.0688 0.0485 0.0227 0.0034
No. of Iter. 27 26 23 19

Case C Sec. 0.0511 0.0393 0.0145 0.0145
No. of Iter. 82 84 69 35

Case D Sec. 0.0104 0.0088 0.0069 0.0054
No. of Iter. 95 98 81 41
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Figure 1 Plot of Errors against number of iterations for Example 5.1; Top Left: Case A; Top Right: Case B;
Bottom Left: Case C; Bottom Right: Case D

ball K := {q ∈ L2([0, 1]) : ‖q‖ ≤ 1}. Define a projection from L2([0, 1]) onto K by

PK(q) =

⎧
⎨

⎩

q
‖q‖L2

, if ‖q‖L2 > 1,

q, if ‖q‖L2 ≤ 1.

Let L : L2([0, 1]) → L2([0, 1]) be an operator defined by (Lq)(t) = max{0, q(t)
2 }, ∀q ∈

L2([0, 1]), t∈ [0, 1]. It is easily verifiable that L is pseudo-monotone (so, quasi-monotone),
and VI(L,K) = {0}. Also, let T : L2([0, 1]) → L2([0, 1]) be a mapping given by (T q)(t) =
∫ 1

0 tq(s) ds, t ∈ [0, 1]. The operator T defined here is nonexpansive and hence quasi-
nonexpansive (see [33]). It can also be easily seen that 0 ∈ F(T ). Thus, � := VI(L,K) ∩
F(T ) �= ∅. Let h : L2([0, 1]) → L2([0, 1]) be a mapping defined by (h(q))(t) = 1

2 q(t), t ∈ [0, 1].
Then h is a contraction. If we take TOL = ‖qn – qn–1‖ ≤ 10–5 as the stopping criterion, we
obtain the following table and graphs using the following as starting points:

Case A: q0(t) = 2t3 + t, q1(t) = sin(t2),
Case B: q0(t) = 2et + t2, q1(t) = sin(2t),
Case C: q0(t) = 2et+1 + t, q1(t) = sin(2t2),
Case D: q0(t) = et2 + t3, q1(t) = cos(2t3) + et – 2t3.
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Table 2 Numerical results for Example 5.2

Case Zhao et al. Thong et al. Gang et al. Abuchu et al.

Case A Sec. 121.5575 39.1899 26.7381 25.7266
No. of Iter. 206 46 22 20

Case B Sec. 236.0356 72.8521 44.1703 36.5203
No. of Iter. 88 38 19 18

Case C Sec. 110.5115 35.1408 20.4326 16.7390
No. of Iter. 206 50 24 20

Case D Sec. 324.9522 41.5406 29.8858 18.5931
No. of Iter. 488 52 29 21

Figure 2 Plot of Errors against number of iterations for Example 5.2; Top Left: Case A; Top Right: Case B;
Bottom Left: Case C; Bottom Right: Case D

6 Conclusion
A modified Tseng inertial iterative algorithm for solving quasi-monotone variational in-
equality and fixed point problems when the underlying operator is quasi-nonexpansive in
real Hilbert spaces was introduced and studied. We established strong convergence of the
proposed Algorithm 3.2 without prior knowledge of the Lipschitz constant of the cost op-
erator under the adaptive step size condition and other certain mild assumptions on the
algorithm parameters. The algorithm, which is embellished with inertial extrapolation and
viscosity terms as well as good relaxation of the cost operator (quasi-monotone operator),
generally exhibited enhanced efficiency and applicability. Finally, we presented some nu-
merical experiments to demonstrate the applicability and the advantages of our algorithm.
Tables 1 and 2 and Figs. 1 and 2 reveal that our algorithm perform more favourable in com-
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parison to some related methods in literature. Our results complement and extend some
recent results in the literature.
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