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Abstract
The present investigation aims to examine the geometric properties of the
normalized form of the combination of generalized Lommel–Wright function
J

ν ,m
λ,μ(z) :=�m(λ + 1)�(λ +μ + 1)22λ+μz1–(ν/2)–λJ ν ,m

λ,μ (
√
z), where the function J ν ,m

λ,μ

satisfies the differential equation J ν ,m
λ,μ (z) := (1 – 2λ – ν)Jν ,mλ,μ(z) + z(Jν ,mλ,μ(z))

′ with

Jμ,m
ν ,λ (z) =

( z
2

)2λ+ν ∞∑
k=0

(–1)k

�m(k + λ + 1)�(kμ + ν + λ + 1)

( z
2

)2k

for λ ∈C \Z–, Z– := {–1, –2, –3, . . .},m ∈N, ν ∈ C, and μ ∈N0 :=N∪ {0}. In particular,
we employ a new procedure using mathematical induction, as well as an estimate for
the upper and lower bounds for the gamma function inspired by Li and Chen
(J. Inequal. Pure Appl. Math. 8(1):28, 2007), to evaluate the starlikeness and convexity
of order α, 0 ≤ α < 1. Ultimately, we discuss the starlikeness and convexity of order
zero for Jν ,m

λ,μ , and it turns out that they are useful to extend the range of validity for
the parameter λ to λ ≥ 0 where the main concept of the proofs comes from some
technical manipulations given by Mocanu (Libertas Math. 13:27–40, 1993). Our results
improve, complement, and generalize some well-known (nonsharp) estimates.
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1 Introduction and mathematical preliminaries
It is widely known that many functions could be called “special”. These include certain
elementary functions like the exponential, trigonometric, hyperbolic functions and their
inverses, logarithmic functions and poly-logarithms, but the class also expands into tran-
scendental functions like Bessel, Lamé, and Mathieu functions. Some of them play a sup-
plemental role, while others, such as the Bessel and Legendre functions, are of primary
importance. These functions appear as solutions of the differential equations and systems
used as mathematical models of scientific and other phenomena, particularly those sys-
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tems that change with time and space. We will restrict our present study to the generalized
Lommel–Wright function, which could be of particular interest in concrete problems in
mechanics, physics, astronomy, and engineering.

Geometric function theory is an area of complex analysis that investigates the geometric
properties of analytic functions. It is a mathematical field characterized by a combination
of geometry and complex analysis, and its origin began in the nineteenth century. More
recently, geometric function theory has become highly significant as the way of algebraic
geometry; in addition, the function theory on compact Riemann surfaces has found some
results by creating a finite-gap solutions to nonlinear integrable systems, which can be an
area of mathematics with a link to mathematical physics.

The theory of univalent functions is one of the greatest and most interesting fields in ge-
ometric function theory. Its origin starts from 1851, when the well-known mapping theo-
rem was constructed by Riemann in his doctoral thesis, and which can be regarded as one
of the most useful theorems in classical complex analysis. From a planar topology perspec-
tive, it is well known that there exist simply connected domains with rough boundaries,
and for these domains, there are no clear homeomorphisms between them. However, the
Riemann mapping theorem states that such simply connected domains are not only home-
omorphic but are also biholomorphic. The Riemann mapping theorem states that if D is
a nonempty domain that is a simply connected open subset in the complex plane C, then
there exists an injective and holomorphic mapping f that maps D onto the open unit disc
U := {z ∈ C : |z| < 1}. This function is known as the Riemann mapping. Nevertheless, his
proof was incomplete, while the proof was given completely in 1912 by Carathéodory us-
ing the Riemann surfaces. It was simplified by Koebe after two years in a way that did not
require these (see, for example, [1, 11, 13, 20, 23]).

In more recent years, significant efforts have been made to study the geometric proper-
ties of certain (normalized) special functions such as close-to-convexity, starlikeness, and
convexity mostly within U. For additional details, we refer, for example, to [18, 24–26] for
hypergeometric function, to [8, 9] for Bessel function, to [21, 30, 33] for generalized Struve
function, to [29] for Lommel function, to [32, 34] for generalized Lommel–Wright func-
tion, and to [17] for Fox–Wright function. In addition, some radii problems for the Bessel,
q-Bessel, Struve, and Lommel functions of the first kind were investigated in [2–7] and in
the references therein. It was shown that these radii are actually solutions of some tran-
scendental equations. These results could be important to deduce some of the geometric
properties of complex functions.

The contents of the present paper are summarized as follows. We outline first various
well-known mathematical facts that will be used in the subsequent sections. Moreover,
we examine the geometric properties of Jν,m

λ,μ , including the starlikeness and convexity of
order α, 0 ≤ α < 1, using the mathematical induction, as well as an estimate for the upper
and lower bounds for the gamma function inspired by [16]. In addition, we discuss the
starlikeness and convexity of order zero for Jν,m

λ,μ , and it turns out that they are useful to
extend the range of validity for the parameter λ where the leading concept of the proofs
comes from some technical manipulations by [19]. Our results improve, complement, and
generalize some well-known (nonsharp) estimates.

An analytic function f is called univalent (or schlicht) in a domain D ⊂ C, which is a
subset of the complex plane, if it is injective in D. Without loss of generality, we will assume
that f is normalized by the conditions f (0) = f ′(0) – 1 = 0 and is defined on U, that is, an
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analytic function having the Maclaurin series expansion of the form

f (z) =
∞∑

k=1

Akzk , z ∈U, with A1 = 1. (1.1)

This class of functions is denoted by A, while the subclass of A consisting of univalent
functions in U is denoted by S . The most classic example of a function in S is the Koebe
function, that is,

k(z) =
z

(1 – z)2 =
1
4

[(
1 + z
1 – z

)2

– 1
]

=
∞∑

k=1

kzk .

It maps the unit disc U onto C slit along the negative real axis from –1/4 to –∞, i.e.,
k(U) = C \ (–∞, –1/4]. It is well known that this function plays the extremal role in many
problems in the univalent function theory.

Besides, if g ∈A has the form g(z) =
∑∞

k=1 Bkzk , z ∈ U, with B1 = 1, then the convolution
of two power series f and g is given by (f ∗g)(z) :=

∑∞
k=1 AkBkzk , z ∈U. The aforementioned

definition of the convolution arises from the integration (see [11])

(f ∗ g)
(
r2eiθ ) =

1
2π

∫ 2π

0
f
(
rei(θ–t))g

(
reit)dt, r < 1.

We are now in a position to recall the most important subclasses of the class of analytic
functions, which can be regarded as the cornerstone in the theory of univalent functions,
that is, the subclasses of starlike and convex functions (these classes were introduced by
Robertson in 1936).

If f (U) is a starlike domain with respect to the origin, then f ∈ S is called starlike with
respect to the origin (or briefly, starlike), denoted by S∗. We shall recall that the domain
D ⊂C is starlike with respect to an interior point z0 ∈ D if the line segment that joins z0 to
any other point of D lies entirely in D. In particular, if z0 = 0, then the domain D is called
starlike domain. A function f ∈A belongs to the class S∗ if and only if Re(zf ′(z)/f (z)) > 0,
z ∈ U. The Koebe function and its rotations are an example of starlike functions, and this
function is extremal for the class S∗.

Moreover, if f (U) is a convex domain, then f ∈ S is called convex, denoted by K. It is
well known that the domain D ⊂ C is convex if the line segment joining any two points
of D lies entirely in D. Analytically, the convex functions f ∈ A can be represented as
Re(zf ′′(z)/f ′(z)) + 1 > 0, z ∈ U. The main branch of the function f (z) = – log(1 – z) ∈ K
since 1 + Re(zf ′′(z)/f ′(z)) = 1 + Re(z/(1 – z)) > 1/2 > 0 for all z ∈U.

Additionally, a function f ∈ A is starlike of order α, 0 ≤ α < 1, if and only if
Re(zf ′(z)/f (z)) > α, z ∈ U, and it belongs to the class of convex functions of order α, denoted
by K(α), if and only if Re(zf ′′(z)/f ′(z)) + 1 > α, z ∈U. As is well known, S∗(α) ⊂ S∗(0) =: S∗,
K(α) ⊂K(0) =: K and K ⊂ S∗ ⊂ S .
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Oteiza et al. in [10] introduced the generalized Lommel–Wright function Jν,m
λ,μ as

Jν,m
λ,μ (z) :=

∞∑
k=0

(–1)k

�(kμ + λ + ν + 1)�m(k + λ + 1)

(
z
2

)2k+2λ+ν

=
(

z
2

)2λ+ν

1�m+1

[
(1, 1)

(λ + 1, 1), . . . , (λ + 1, 1), (λ + ν + 1,μ)

∣∣∣∣ –
z2

4

]
(1.2)

for λ,ν ∈ C, m ∈ N := {1, 2, . . .}, and μ > 0. Here, p�q stands for the Fox–Wright function
defined by

p�q

[
(α1, A1), . . . , (αp, Ap)
(β1, B1), . . . , (βq, Bq)

∣∣∣∣z
]

:= p�q

[
(αp, Ap)
(βq, Bq)

∣∣∣∣z
]

=
∞∑

k=0

ψk
zk

k!
, (1.3)

where

ψk :=
�(α1 + A1k) · · ·�(αp + Apk)
�(β1 + B1k) · · ·�(βq + Bqk)

with Ai, Bj ∈ R
+ (i = 1, . . . , p, j = 1, . . . , q) and αi,βj ∈ C. It is observable that (1.3) is abso-

lutely convergent in the entire complex z–plane when � :=
∑q

j=1 Bj –
∑p

i=1 Ai > –1, while
if � = –1, it converges absolutely for |z| < ρ and |z| = ρ under the condition Re(σ ) > 1/2,
where

ρ :=

( p∏
i=1

A–Ai
i

)( q∏
j=1

B–Bj
j

)
, σ :=

q∑
j=1

βj –
p∑

i=1

αi +
p – q

2
.

We refer for additional information regarding the Fox–Wright functions to [15] and the
references therein.

We are now in a position to deduce certain special cases of the generalized Lommel–
Wright function. If we set m = 1 in (1.2), we get the Bessel–Maitland function introduced
by Pathak [22], which has the form

Jν
λ,μ(z) := Jν,1

λ,μ(z) =
∞∑

k=0

(–1)k

�(kμ + λ + ν + 1)�(k + λ + 1)

(
z
2

)2k+2λ+ν

for μ > 0 and λ,ν ∈ C. Putting λ = 1/2 and m = μ = 1 in (1.2), we have the Struve function
defined by

Hν(z) := Jν,1
1/2,ν(z) =

∞∑
k=0

(–1)k

�(k + ν + 3/2)�(k + 3/2)

(
z
2

)ν+2k+1

, ν ∈ C.

For λ = 0 and m = μ = 1 in (1.2), we get the Bessel function that has the power series ex-
pansion

Jν(z) := Jν,1
0,1 (z) =

∞∑
k=0

(–1)k

k!�(k + ν + 1)

(
z
2

)ν+2k

,

where z ∈ C \ {0}, ν ∈C with Reν > –1.
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In the following part of the paper, we need the next definition.

Definition 1.1 The normalized form of the combination of generalized Lommel–Wright
function is defined by

J
ν,m
λ,μ (z) := �m(λ + 1)�(λ + μ + 1)22λ+μz1–(ν/2)–λJ ν,m

λ,μ (
√

z),

where the function J ν,m
λ,μ satisfies the differential equation J ν,m

λ,μ (z) := (1 – 2λ – ν)Jν,m
λ,μ (z) +

z(Jν,m
λ,μ (z))′ for λ ∈C \Z–, Z– := {–1, –2, –3, . . .}, m ∈ N, ν ∈C, and μ ∈N0. Clearly, Jν,m

λ,μ can
be written as

J
ν,m
λ,μ (z) = z +

∞∑
k=1

(–1)k(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

zk+1, (1.4)

where (r)k denotes the Pochhammer symbol given by

(r)k :=

⎧⎨
⎩

1, if k = 0,

r(r + 1)(r + 2) · · · (r + k – 1), if k ∈N.

Remark 1.1 1. First, we will determine sufficient conditions such that Jν,m
λ,μ given by (1.4)

is well defined.
2. According to the definition of Pochhammer symbol, we should assume that kμ ∈ N

for all k ∈N, that it is equivalent to μ ∈N.
3. We should assume that the denominator of the above definition formula is not van-

ishing for any k ∈N, which is equivalent to

λ + 1 /∈ Z
–
0 , λ + ν + 1 /∈ Z

–
0 ⇔ λ /∈ Z

–, λ + ν /∈ Z
–. (1.5)

4. Moreover, we should prove that the power series of (1.4) converges in the whole open
unit disc U. The radius of convergence of this power series is

R := lim
k→∞

∣∣∣∣
ak

ak+1

∣∣∣∣ = lim
k→∞

∣∣∣∣
2k + 1

4k[(λ + 1)k]m(λ + ν + 1)kμ

· 4k+1[(λ + 1)k+1]m(λ + ν + 1)(k+1)μ

2(k + 1) + 1

∣∣∣∣

= lim
k→∞

∣∣∣∣
4(2k + 1)

2(k + 1) + 1

∣∣∣∣ · lim
k→∞

∣∣∣∣
[

(λ + 1)(λ + 2) · · · (λ + k + 1)
(λ + 1)(λ + 2) · · · (λ + k)

]m∣∣∣∣

· lim
k→∞

∣∣∣∣
(λ + ν + 1) · · · (λ + ν + kμ)(λ + ν + kμ + 1) · · · (λ + ν + kμ + μ)

(λ + μ + 1) · · · (λ + ν + kν)

∣∣∣∣

= 4 · 1 · lim
k→∞

∣∣(λ + k + 1)
∣∣m · lim

k→∞
∣∣(λ + ν + kμ + 1) · · · (λ + ν + kμ + μ)

∣∣.

Using assumptions (1.5) and the fact that μ ∈ N, the second of the above limits is +∞,
while the first one is

lim
n→∞

∣∣(λ + k + 1)
∣∣m =

⎧⎪⎪⎨
⎪⎪⎩

0, if m < 0,

1, if m = 0,

+∞, if m > 0.
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Therefore, R ≥ 1 if and only if m ≥ 0 and (1.5) is satisfied. Concluding, the power series
defined by (1.4) is correctly defined and converges in U only if we make the following
assumptions:

μ ∈N, λ /∈ Z
–, λ + ν /∈ Z

–, m ≥ 0. (1.6)

2 Sufficient conditions for starlikeness and convexity of order α

This section aims to investigate a fascinating aspect regarding the geometric properties
of the function defined by (1.4), such as starlikeness and convexity of order α, 0 ≤ α < 1,
inside the open unit disc using mathematical induction, as well as an estimation for the
upper and lower bounds for the gamma function inspired by [16]. Our results improve,
complement, and generalize some well-known (nonsharp) estimates given in the litera-
ture.

Theorem 2.1 Let μ ∈N, λ ∈N, ν ≥ 0, and m ∈ N. If

0 ≤ α < 1 –
1

(λ + 1)m(λ + ν + 1)μ – 1
=: αs (2.1)

or, equivalently,

(λ + 1)m(λ + ν + 1)μ >
2 – α

1 – α
, (2.2)

then J
ν,m
λ,μ ∈ S∗(α), 0 ≤ α < 1.

Proof To prove that Jν,m
λ,μ ∈ S∗(α), 0 ≤ α < 1, it is sufficient to show that

∣∣∣∣
z(Jν,m

λ,μ (z))′

J
ν,m
λ,μ (z)

– 1
∣∣∣∣ < 1 – α, z ∈U.

By making use of the maximum modulus principle of an analytic function as well as
the triangle inequality, together with assumptions (1.6) and the fact that �(ζ + 1) = ζ�(ζ ),
Re ζ > 0, we get

∣∣∣∣
(
J

ν,m
λ,μ (z)

)′ –
J

ν,m
λ,μ (z)

z

∣∣∣∣

=

∣∣∣∣∣
∞∑

k=1

(–1)kk(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m zk

∣∣∣∣∣

< sup
θ∈[0,2π ]

∣∣∣∣∣
∞∑

k=1

(–1)kk(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m eikθ

∣∣∣∣∣ <
∞∑

k=1

k(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m

= �m(λ + 1)�(λ + ν + 1) ·
∞∑

k=1

k(2k + 1)
4k�(λ + ν + kμ + 1)�m(λ + k + 1)

, z ∈U, (2.3)

since λ ∈ N and ν ≥ 0. Define F : [1, +∞) →R by

F(t) :=
t(2t + 1)

�(λ + ν + tμ + 1)�m(λ + t + 1)
, (2.4)
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where we assumed in addition, and according to the above assumptions, that λ > 0 and
λ + ν > 0. Differentiating logarithmically both sides of (2.4) to get

F ′(t)
F(t)

=
1
t

+
2

2t + 1
– mψ(λ + t + 1) – μψ(λ + ν + tμ + 1) =: G(λ), (2.5)

where ψ is the well-known digamma function defined by ψ(z) := �′(z)/�(z). Assume in
addition that λ ∈N to use in the further proof the induction method.

Now, to prove that G(λ) < 0 for all λ ∈ N, we will use the mathematical induction. For
λ = 1, we have

G(1) =
1
t

+
2

2t + 1
– mψ(t + 2) – μψ(ν + tμ + 2).

Using the fact that ν ≥ 0 and since we already know that t ≥ 1, μ ≥ 1, we have ν + tμ + 2 ≥
tμ + 2 ≥ t + 2 ≥ 3, and using the fact that the digamma function ψ is a strictly increasing
function on (0, +∞), it follows that ψ(t + 2) ≥ ψ(3), ψ(ν + tμ + 2) ≥ ψ(3). Thus, because
t ≥ 1, ν ≥ 0, μ ≥ 1, and m ∈N, we obtain that

G(1) ≤ 1 +
2
3

– mψ(3) – μψ(3) =
5
3

– (m + μ)ψ(3),

and we will prove that (5/3) – (m + μ)ψ(3) < 0. For this purpose, using the relation

ψ(ζ + 1) =
1
ζ

+ ψ(ζ ), Re ζ > 0, (2.6)

and the fact that ψ(1) = –γ , where γ is the Euler–Mascheroni constant given by

γ := lim
k→∞

( k∑
n=1

1
n

– ln k

)
= 0.57721566490 . . . , (2.7)

we obtain

5
3

– (m + μ)ψ(3) =
5
3

– (m + μ)
(

3
2

– γ

)
≤ 5

3
– (m + 1)

(
3
2

– γ

)
< 0

for μ ≥ 1 and m ≥ (1/3)(1 + 6γ )/(3 – 2γ ) = 0.8061280444 . . . . Therefore, G(1) < 0, when-
ever t ≥ 1, ν ≥ 0, μ ≥ 1, and m ≥ (1/3)(1 + 6γ )/(3 – 2γ ) = 0.8061280444 . . . .

Further, assuming that G(λ0) < 0 for some λ0 ∈N and using (2.6), we have

G(λ0 + 1) – G(λ0)

= –m
[
ψ(λ0 + t + 2) – ψ(λ0 + t + 1)

]
– μ

[
ψ(λ0 + ν + tμ + 2) – ψ(λ0 + ν + tμ + 1)

]

= –
m

λ0 + t + 1
–

μ

λ0 + ν + tμ + 1
< 0,

where t ≥ 1, ν ≥ 0, μ ≥ 1, and m ≥ 0. It follows that G(λ0 + 1) < G(λ0) < 0, therefore G(λ) <
0 for all λ ∈ N. The well-known relation

�(ζ ) = lim
k→+∞

k! kζ

ζ (ζ + 1) · · · (ζ + k)
, Re ζ > 0, (2.8)

leads to F(t) > 0 for all t ∈ [1, +∞).
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Finally, using that F(t) > 0 for all t ≥ 1 and the fact that G(λ) < 0 for all λ ∈N, from (2.5)
it follows that F ′(t) < 0, t ∈ [1, +∞), hence the function F is strictly decreasing on [1, +∞).

Consequently, the right-hand side of (2.3) implies that

�m(λ + 1)�(λ + ν + 1)
∞∑

k=1

k(2k + 1)
4k�(λ + ν + kμ + 1)�m(λ + k + 1)

<
�m(λ + 1)�(λ + ν + 1)

�(λ + ν + μ + 1)�m(λ + 2)
,

and so

∣∣∣∣
(
J

ν,m
λ,μ (z)

)′ –
J

ν,m
λ,μ (z)

z

∣∣∣∣ <
�m(λ + 1)�(λ + ν + 1)

�(λ + ν + μ + 1)�m(λ + 2)
, z ∈U. (2.9)

On the other hand, from the maximum modulus theorem of an analytic function, it finds

∣∣∣∣
J

ν,m
λ,μ (z)

z

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑

k=1

(–1)k(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

zk

∣∣∣∣∣

> 1 – sup
θ∈[0,2π ]

∣∣∣∣∣
∞∑

k=1

(–1)k(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

eikθ

∣∣∣∣∣

≥ 1 –
∞∑

k=1

2k + 1
4k[(λ + 1)k]m(λ + ν + 1)kμ

, z ∈U,

and the above inequality could be rewritten as

∣∣∣∣
J

ν,m
λ,μ (z)

z

∣∣∣∣ > 1 – �m(λ + 1)�(λ + ν + 1) ·
∞∑

k=1

2k + 1
4k�(λ + ν + kμ + 1)�m(λ + k + 1)

, z ∈U.

If we define G : [1, +∞) →R by G(t) := F(t)/t where F is defined by (2.4), since we already
proved that F is a strictly decreasing function on [1, +∞), it follows that G is also a strictly
decreasing on the same interval. Therefore, the above inequality leads to

∣∣∣∣
J

ν,m
λ,μ (z)

z

∣∣∣∣ > 1 – 3�m(λ + 1)�(λ + ν + 1) ·
∞∑

k=1

1
4k�(λ + ν + μ + 1)�m(λ + 2)

= 1 –
�m(λ + 1)�(λ + ν + 1)

�(λ + ν + μ + 1)�m(λ + 2)
> 0, z ∈U. (2.10)

From inequalities (2.9) and (2.10) we deduce that

∣∣∣∣
z(Jν,m

λ,μ (z))′

J
ν,m
λ,μ (z)

– 1
∣∣∣∣ <

�m(λ + 1)�(λ + ν + 1)
�(λ + ν + μ + 1)�m(λ + 2) – �m(λ + 1)�(λ + ν + 1)

, z ∈ U,

and a simple computation shows that the right-hand side of the above inequality is less or
equal than 1 – α if and only if (2.1) holds, or equivalently (2.2). �
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Theorem 2.2 Let μ ∈N, λ ∈N, ν ≥ 0, and m ∈ N \ {1}. If

0 ≤ α < 1 –
2

(λ + 1)m(λ + ν + 1)μ – 2
=: αc (2.11)

or, equivalently,

(λ + 1)m(λ + ν + 1)μ >
2(2 – α)

1 – α
, (2.12)

then J
ν,m
λ,μ ∈K(α), 0 ≤ α < 1.

Proof We would like to find sufficient conditions such that Jν,m
λ,μ ∈ K(α), 0 ≤ α < 1, with

J
ν,m
λ,μ given by (1.4) under the assumptions of Theorem 2.1 that are λ,μ, m ∈ N and ν ≥ 0.

To prove the required result, it is sufficient to show that

∣∣∣∣
z(Jν,m

λ,μ (z))′′

(Jν,m
λ,μ (z))′

∣∣∣∣ < 1 – α, z ∈U.

Using the maximum modulus principle of the analytic functions and the triangle in-
equality, we obtain

∣∣z(Jν,m
λ,μ (z)

)′′∣∣ =

∣∣∣∣∣
∞∑

k=1

(–1)kk(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m zk

∣∣∣∣∣

< sup
θ∈[0,2π ]

∣∣∣∣∣
∞∑

k=1

(–1)kk(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m eikθ

∣∣∣∣∣

<
∞∑

k=1

k(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m

= �m(λ + 1)�(λ + ν + 1)

·
∞∑

k=1

k(k + 1)(2k + 1)
4k�(λ + ν + kμ + 1)�m(λ + k + 1)

, z ∈U. (2.13)

Consider the function H : [1, +∞) →R defined by

H(t) :=
t(t + 1)(2t + 1)

�(λ + ν + tμ + 1)�m(λ + t + 1)
. (2.14)

Differentiating logarithmically both sides of (2.14), we get

H ′(t)
H(t)

=
1
t

+
1

t + 1
+

2
2t + 1

– mψ(λ + t + 1) – μψ(λ + ν + tμ + 1) =: L(λ), (2.15)

where ψ stands for the digamma function.
Now, using the mathematical induction, we will prove that L(λ) < 0 for all λ ∈ N. For

λ = 1, we have

L(1) =
1
t

+
1

t + 1
+

2
2t + 1

– mψ(t + 2) – μψ(ν + tμ + 2).
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According to the assumptions that ν ≥ 0, t ≥ 1, and μ ∈ N, we get ν + tμ + 2 ≥ tμ + 2 ≥
t + 2 ≥ 3, and using again the fact that ψ is a strictly increasing function on (0, +∞), we
deduce that ψ(t + 2) ≥ ψ(3), ψ(ν + tμ + 2) ≥ ψ(3), hence

L(1) ≤ 1 +
1
2

+
2
3

– mψ(3) – μψ(3) =
13
6

– (m + μ)ψ(3).

Moreover, (13/6) – (m + μ)ψ(3) < 0 because by using (2.6) and the fact that ψ(1) = –γ we
get

13
6

– (m + μ)ψ(3) =
13
6

– (m + μ)
(

3
2

– γ

)
≤ 13

6
– (m + 1)

(
3
2

– γ

)
< 0,

and this last inequality holds under our assumptions μ ≥ 1 and m ≥ (2/3)(2 + 3γ )/(3 –
2γ ) = 1.347966458 . . . . Consequently, L(1) < 0, whenever t ≥ 1, ν ≥ 1, μ ≥ 1, and m ≥
(2/3)(2 + 3γ )/(3 – 2γ ) = 1.347966458 . . . .

Assuming that L(λ0) < 0 for some λ0 ∈N, we have

L(λ0 + 1) – L(λ0)

= –m
[
ψ(λ0 + t + 2) – ψ(λ0 + t + 1)

]
– μ

[
ψ(λ0 + ν + tμ + 2) – ψ(λ0 + ν + tμ + 1)

]

= –
m

λ0 + t + 1
–

μ

λ0 + ν + tμ + 1
< 0,

where t ≥ 1, ν ≥ 0, μ ≥ 1, and m ≥ 0. It follows that L(λ0 + 1) < L(λ0) < 0, therefore L(λ) < 0
for all λ ∈N. Using again relation (2.8), we get that H(t) > 0 for all x ≥ 1, and from relation
(2.15) and the fact that L(λ) < 0 for all λ ∈ N, we conclude that H ′(t) < 0, t ∈ [1, +∞).
Therefore, the function H is strictly decreasing on [1, +∞), hence from (2.13) we have

�m(λ + 1)�(λ + ν + 1)
∞∑

k=1

k(k + 1)(2k + 1)
4k�(λ + ν + kμ + 1)�m(λ + k + 1)

<
2�m(λ + 1)�(λ + ν + 1)

�(λ + ν + μ + 1)�m(λ + 2)
,

and (2.13) leads to the inequality

∣∣z(Jν,m
λ,μ (z)

)′′∣∣ <
2�m(λ + 1)�(λ + ν + 1)

�(λ + ν + μ + 1)�m(λ + 2)
, z ∈U. (2.16)

From the maximum modulus principle of an analytic function, we get

∣∣(Jν,m
λ,μ (z)

)′∣∣ ≥ 1 –

∣∣∣∣∣
∞∑

k=1

(–1)k(k + 1)(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

zk

∣∣∣∣∣

> 1 – sup
θ∈[0,2π ]

∣∣∣∣∣
∞∑

k=1

(–1)k(k + 1)(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

eikθ

∣∣∣∣∣

≥ 1 –
∞∑

k=1

(k + 1)(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

, z ∈U,
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and the above inequality could be rewritten as

∣∣(Jν,m
λ,μ (z)

)′∣∣ > 1 –�m(λ+ 1)�(λ+ν + 1) ·
∞∑

k=1

(k + 1)(2k + 1)
4k�(λ + ν + kμ + 1)�m(λ + k + 1)

, z ∈U.

If we define the function L : [1, +∞) → R by L(t) := H(t)/t, where H is given by (2.14),
since we already proved that H is a strictly decreasing function on [1, +∞), it follows that
L is also strictly decreasing on the same interval. Therefore, the above inequality implies
that

∣∣(Jν,m
λ,μ (z)

)′∣∣ > 1 – 6�m(λ + 1)�(λ + ν + 1) ·
∞∑

k=1

1
4k�(λ + ν + μ + 1)�m(λ + 2)

= 1 –
2�m(λ + 1)�(λ + ν + 1)

�(λ + ν + μ + 1)�m(λ + 2)
> 0, z ∈U. (2.17)

From inequalities (2.16) and (2.17) we conclude that

∣∣∣∣
z(Jν,m

λ,μ (z))′′

(Jν,m
λ,μ (z))′

∣∣∣∣ <
2�m(λ + 1)�(λ + ν + 1)

�(λ + ν + μ + 1)�m(λ + 2) – 2�m(λ + 1)�(λ + ν + 1)
, z ∈U,

and a simple computation shows that the right-hand side of the above inequality is less or
equal to 1 – α if and only if (2.11) holds, which is equivalent to (2.12). �

Example 2.1 If we take in Theorems 2.1 and 2.2 the particular values λ = 1, μ = 3, m = 2,
and ν = 0.5, we get that

J
0.5,2
1,3 (z) = z – 0.004761904762z2 + 0.0000008222230443z3 – 2.121318485 · 10–11z4

+ 1.405428395 · 10–16z5 – 3.216716321 · 10–22z6 + 3.072295397 · 10–28z7

– 1.396355734 · 10–34z8 + 3.326860555 · 10–41z9 + · · · ∈ S∗(αs) ∩K(αc),

where

αs = 0.9936102236 . . . and αc = 0.9871382637 . . . ,

and the image of the open unit disc U by J
0.5,2
1,3 is shown in Fig. 1(a).

Example 2.2 For the special case λ = μ = 1, m = 3, and ν = 0.2, Theorems 2.1 and 2.2 lead
to

J
0.2,3
1,1 (z) = z – 0.04261363636z2 + 0.0002055055766z3 – 0.0000002675853863z4

+ 0.0000000001323224437z5 – 3.019105272 · 10–14z6

+ 3.611954874 · 10–18z7 – 2.481683640 · 10–22z8

+ 1.048404154 · 10–26z9 · · · ∈ S∗(αs) ∩K(αc)



Zayed and Bulboacă Journal of Inequalities and Applications         (2024) 2024:32 Page 12 of 27

Figure 1 Figures for Examples 2.1 and 2.2

with

αs = 0.9397590361 . . . and αc = 0.8717948718 . . . ,

while the image of J0.2,3
1,1 (U) is presented in Fig. 1(b).

Using Theorem 1 of [27], we obtain in the following result a sufficient condition for the
parameters λ ≥ 1, μ, m ∈N, and ν ≥ 0 such that Jν,m

λ,μ ∈ S∗(α), which extends Theorem 2.1,
where we assumed that λ ∈N.

Theorem 2.3 Suppose that μ ∈ N, λ ≥ 1, ν ≥ 0, and m ∈N. If

0 ≤ α < 1 –
1

(λ + 1)m(λ + ν + 1)μ – 1
= αs

or, equivalently,

(λ + 1)m(λ + ν + 1)μ >
2 – α

1 – α
, (2.18)

then J
ν,m
λ,μ ∈ S∗(α).

Proof As is well known from [27, Theorem 1], if f is of the form (1.1) and satisfies
∑∞

k=2(k –
α)|Ak| ≤ 1 – α, then f ∈ S∗(α). Thus, according to (1.4), it is enough to prove that

H1 :=
∞∑

k=2

(k – α)
∣∣∣∣

(–1)k–1(2k – 1)
4k–1[(λ + 1)k–1]m(λ + ν + 1)(k–1)μ

∣∣∣∣ ≤ 1 – α.

Since λ > –1 and μ ∈N, we have

H1 =
∞∑

k=2

(k – α)(2k – 1)
4k–1[(λ + 1)k–1]m(λ + ν + 1)(k–1)μ
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=
∞∑

k=1

k(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

+ (1 – α)
∞∑

k=1

2k + 1
4k[(λ + 1)k]m(λ + ν + 1)kμ

= �m(λ + 1)�(λ + ν + 1)

( ∞∑
k=1

k(2k + 1)
4k�m(λ + k + 1)�(λ + ν + 1 + kμ)

+ (1 – α)
∞∑

k=1

2k + 1
4k�m(λ + k + 1)�(λ + ν + 1 + kμ)

)
. (2.19)

Consider the function U : [1, +∞) →R defined by

U(t) :=
t(2t + 1)

�(λ + ν + tμ + 1)�m(λ + t + 1)
.

Now, we would like to show that U(t + 1) < U(t) for t ≥ 1, hence we will give a negative
upper bound for

U(t + 1) – U(t)

=
(t + 1)(2t + 3)

�(λ + ν + tμ + μ + 1)�m(λ + t + 2)
–

t(2t + 1)
�(λ + ν + tμ + 1)�m(λ + t + 1)

=
1

�m(λ + t + 2)

(
(t + 1)(2t + 3)

�(λ + ν + tμ + μ + 1)
–

t(2t + 1)(λ + t + 1)m

�(λ + ν + tμ + 1)

)
. (2.20)

In Theorem 1 of [16], it was proved that

tt–γ

et–1 < �(t) <
tt–1/2

et–1 , t > 1,

but

tt–γ

et–1

∣∣∣∣
t=1

= 1 = �(1) =
tt–1/2

et–1

∣∣∣∣
t=1

= 1,

therefore, we conclude that

tt–γ

et–1 ≤ �(t) ≤ tt–1/2

et–1 , t ≥ 1, (2.21)

where γ is the Euler–Mascheroni constant given by (2.7), relation (2.20) becomes

U(t + 1) – U(t)

≤ 1
�m(λ + t + 2)

·
[

(t + 1)(2t + 3)eλ+ν+tμ+μ

(λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ
–

t(2t + 1)(λ + t + 1)meλ+ν+tμ

(λ + ν + tμ + 1)λ+ν+tμ+1/2

]

=
eλ+ν+tμ+μ

�m(λ + t + 2)
· U1(t)

(λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ (λ + ν + tμ + 1)λ+ν+tμ+1/2 , (2.22)

where

U1(t) := (t + 1)(2t + 3)(λ + ν + tμ + 1)λ+ν+tμ+1/2
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– t(2t + 1)(λ + t + 1)m(λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ e–μ,

and could be written as

U1(t) = (λ + ν + tμ + 1)λ+ν+tμ+1/2
[

(t + 1)(2t + 3)

– t(2t + 1)(λ + t + 1)m (λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ

(λ + ν + tμ + 1)λ+ν+tμ+1/2eμ

]
.

Since λ ≥ 1, μ ∈N, m ≥ 1, and ν ≥ 0, we have

U1(t) ≤ (λ + ν + tμ + 1)λ+ν+tμ+1/2
[

(t + 1)(2t + 3)

– t(2t + 1)(t + 2)
(λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ

(λ + ν + tμ + 1)λ+ν+tμ+1/2 · 1
eμ

]

= (λ + ν + tμ + 1)λ+ν+tμ+1/2[(t + 1)(2t + 3) – t(2t + 1)(t + 2)A(y)
]
, (2.23)

where, using the same above assumptions, we have

A(y) :=
(y + μ)y+μ–γ

yy– 1
2

· 1
eμ

with y = λ + ν + tμ + 1 ≥ μ + 2 for t ≥ 1.

It is well known that

(
1 +

1
x

)x

< e <
(

1 +
1
x

)x+1

, x > 0,

and replacing t := y/μ, since μ ≥ 1, we get

(
1 +

μ

y

)y

< eμ <
(

1 +
μ

y

)y+μ

, y > 0.

From the assumption μ ≥ 1, using the second of the above inequalities, it follows

A(y) :=
(y + μ)y+μ–γ

yy– 1
2

· 1
eμ

>
(y + μ)y+μ–γ

yy– 1
2

· yy+μ

(y + μ)y+μ
=

yμ+ 1
2 –γ

(1 + μ

y )γ
=: B(y), y ≥ μ + 2,

and since the function B is strictly increasing on [μ + 2, +∞), we have

B(y) ≥ B(μ + 2) =
(μ + 2)μ+ 1

2 –γ

(1 + μ

μ+2 )γ
=

(μ + 2)μ+ 1
2 –γ

2γ (μ + 1)γ
=: �(μ), y ≥ μ + 2.

Using the MAPLE™ computer software code “minimize(�,μ ≥ 1)”, we obtain that

B(y) ≥ min
{
�(μ) : μ ≥ 1

}
= �(1) =

(μ + 2) 3
2 –γ

2γ (μ + 1)γ
= 1.238116644 . . . , y ≥ μ + 2,

which leads to A(y) > 1.2381, y ≥ μ + 2. Therefore, using (2.23) we deduce

U1(t) < (λ + ν + tμ + 1)λ+ν+tμ+1/2[(t + 1)(2t + 3) – t(2t + 1)(t + 2) · 1.2381
]
, t ≥ 1,
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or

U1(t) < (λ + ν + tμ + 1)λ+ν+tμ+1/2U2(t), t ≥ 1, (2.24)

where

U2(t) := (t + 1)(2t + 3) – 1.2381t(2t + 1)(t + 2), t ≥ 1.

A simple computation shows that

U ′
2(t) = –7.4286t2 – 8.3810t + 2.5238 < 0, t ≥ 1,

hence U2 is a strictly decreasing function on [1, +∞) that implies

U2(t) ≤ U2(1) = –13.2858 . . . < 0, t ≥ 1,

and according to (2.24) this inequality implies U1(t) < 0 for all t ≥ 1. Therefore, taking into
the account inequality (2.22), we obtain that U(t + 1) < U(t) for t ≥ 1. Consequently, since
U(k + 1) < U(k) for all k ∈N, for the first term of the sum (2.19), we deduce that

∞∑
k=1

k(2k + 1)
4k�m(λ + k + 1)�(λ + ν + 1 + kμ)

<
1

�(λ + ν + μ + 1)�m(λ + 2)
. (2.25)

To evaluate the second term of the sum (2.19), we will define the function V : [1, +∞) →
R by

V (t) :=
2t + 1

�(λ + ν + tμ + 1)�m(λ + t + 1)
.

Since

V (t + 1) – V (t) =
U(t + 1)

t + 1
–

U(t)
t

<
1
t
(
U(t + 1) – U(t)

)
, t ≥ 1,

and because we already proved that U(t + 1) – U(t) < 0 for all t ≥ 1, it follows that V (t +
1) – V (t) < 0, t ≥ 1. Similarly, for the second term of the sum (2.19), we have

∞∑
k=1

2k + 1
4k�m(λ + k + 1)�(λ + ν + 1 + kμ)

<
1

�(λ + ν + μ + 1)�m(λ + 2)
. (2.26)

Using relation (2.19) combined with inequalities (2.25) and (2.26), it follows that

H1 < (2 – α)
�m(λ + 1)�(λ + ν + 1)

�m(λ + 2)�(λ + ν + 1 + μ)
=

2 – α

(λ + 1)m(λ + ν + 1)μ
,

and from assumption (2.18) it follows that H1 ≤ 1 – α, thus Jν,m
λ,μ ∈ S∗(α). �

Using similar reasons, the next theorem gives us sufficient conditions such that Jν,m
λ,μ ∈

K(α) for a much weaker assumption on λ, that is, only λ ≥ 1.
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Theorem 2.4 Suppose that μ ∈ N, λ ≥ 1, ν ≥ 0, and m ∈N. If

0 ≤ α < 1 –
2

(λ + 1)m(λ + ν + 1)μ – 2
= αc

or, equivalently,

(λ + 1)m(λ + ν + 1)μ >
2(2 – α)

1 – α
, (2.27)

then J
ν,m
λ,μ ∈K(α).

Proof As is well known, a function f of the form (1.1) belongs to the class K(α) if and only
if zf ′(z) ∈ S∗(α).

Since

z
(
J

ν,m
λ,μ (z)

)′ = z +
∞∑

k=1

Bkzk , z ∈ U,

with

Bk :=
(–1)k–1k(2k – 1)

4k–1[(λ + 1)k–1]m(λ + ν + 1)(k–1)μ
, k ≥ 2,

according to [27, Theorem 1], to prove our result, we will show that
∑∞

k=2(k – α)|Bk| ≤
1 – α. A simple computation leads to the fact that this inequality is equivalent to

H2 :=
∞∑

k=2

(k – α)
∣∣∣∣

(–1)k–1k(2k – 1)
4k–1[(λ + 1)k–1]m(λ + ν + 1)(k–1)μ

∣∣∣∣ ≤ 1 – α.

Using that λ > –1 and μ ∈ N, it follows

H2 =
∞∑

k=2

(k – α)k(2k – 1)
4k–1[(λ + 1)k–1]m(λ + ν + 1)(k–1)μ

=
∞∑

k=1

k(k + 1)(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

+ (1 – α)
∞∑

k=1

(k + 1)(2k + 1)
4k[(λ + 1)k]m(λ + ν + 1)kμ

= �m(λ + 1)�(λ + ν + 1)

( ∞∑
k=1

k(k + 1)(2k + 1)
4k�m(λ + k + 1)�(λ + ν + 1 + kμ)

+ (1 – α)
∞∑

k=1

(k + 1)(2k + 1)
4k�m(λ + k + 1)�(λ + ν + 1 + kμ)

)
. (2.28)

Consider the functions Û : [1, +∞) →R and V̂ : [1, +∞) →R defined by

Û(t) :=
t(t + 1)(2t + 1)

�(λ + ν + tμ + 1)�m(λ + t + 1)

and

V̂ (t) :=
(t + 1)(2t + 1)

�(λ + ν + tμ + 1)�m(λ + t + 1)
,

respectively.
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First, we would like to show that Û(t + 1) < Û(t) for t ≥ 1, hence we will try to find a
negative upper bound for the difference

Û(t + 1) – Û(t)

=
(t + 1)(t + 2)(2t + 3)

�(λ + ν + tμ + μ + 1)�m(λ + t + 2)
–

t(t + 1)(2t + 1)
�(λ + ν + tμ + 1)�m(λ + t + 1)

=
t + 1

�m(λ + t + 2)

(
(t + 2)(2t + 3)

�(λ + ν + tμ + μ + 1)
–

t(2t + 1)(λ + t + 1)m

�(λ + ν + tμ + 1)

)
. (2.29)

Using again the double inequality (2.21), from relation (2.29) it follows that

Û(t + 1) – Û(t)

≤ t + 1
�m(λ + t + 2)

·
(

(t + 2)(2t + 3)eλ+ν+tμ+μ

(λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ
–

t(2t + 1)(λ + t + 1)meλ+ν+tμ

(λ + ν + tμ + 1)λ+ν+tμ+1/2

)

=
(t + 1)eλ+ν+tμ+μ

�m(λ + t + 2)
· Û1(t)

(λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ (λ + ν + tμ + 1)λ+ν+tμ+1/2 ,

(2.30)

where

Û1(t) := (t + 2)(2t + 3)(λ + ν + tμ + 1)λ+ν+tμ+1/2

– t(2t + 1)(λ + t + 1)m(λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ e–μ

or

Û1(t) = (λ + ν + tμ + 1)λ+ν+tμ+1/2
[

(t + 2)(2t + 3)

– t(2t + 1)(λ + t + 1)m (λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ

(λ + ν + tμ + 1)λ+ν+tμ+1/2eμ

]
.

Since λ ≥ 1, μ ∈N, m ≥ 1, and ν ≥ 0, we get

Û1(t) ≤ (λ + ν + tμ + 1)λ+ν+tμ+1/2(t + 2)
[

2t + 3

– t(2t + 1)
(λ + ν + tμ + μ + 1)λ+ν+tμ+μ+1–γ

(λ + ν + tμ + 1)λ+ν+tμ+1/2 · 1
eμ

]

= (λ + ν + tμ + 1)λ+ν+tμ+1/2(t + 2)
[
2t + 3 – t(2t + 1)Â(y)

]
, (2.31)

where, using again the above mentioned assumptions, we deduce that

Â(y) :=
(y + μ)y+μ–γ

yy– 1
2

· 1
eμ

with y = λ + ν + tμ + 1 ≥ μ + 2 for t ≥ 1.

Since Â(y) has the same form like in the proof of Theorem 2.3, using the MAPLE™ com-
puter software, we obtain Â(y) > 1.2381, y ≥ μ + 2, and from inequality (2.31) we get

Û1(t) < (λ + ν + tμ + 1)λ+ν+tμ+1/2(t + 2)
[
2t + 3 – t(2t + 1) · 1.2381

]
, t ≥ 1,
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or

Û1(t) < (λ + ν + tμ + 1)λ+ν+tμ+1/2(t + 2)Û3(t), t ≥ 1, (2.32)

where

Û2(t) := 2t + 3 – 1.2381t(2t + 1) = –2.4762t2 + 0.7619t + 3, t ≥ 1.

Since Û2(t) = 0 if t ∈ {–0.9575518016, 1.265241003}, it follows that

Û2(t) = –2.4762t2 + 0.7619t + 3, t ≥ 2,

and according to (2.32) and (2.30) it follows that Û(t + 1) < Û(t) for t ≥ 2.
To show that the last inequality holds also for t = 1, we should prove that

Û(2) – Û(1) =
2

�m(λ + 3)

(
15

�(λ + ν + 2μ + 1)
–

3(λ + 2)m

�(λ + ν + μ + 1)

)
< 0

for λ ≥ 1, μ ∈N, m ≥ 1, and ν ≥ 0 or, equivalently,

�(λ + ν + μ + 1)
�(λ + ν + 2μ + 1)

<
(λ + 2)m

5

⇔ S(λ,ν,μ) :=
1

(λ + ν + 2μ)(λ + ν + 2μ – 1) · · · (λ + ν + μ + 1)

<
(λ + 2)m

5
=: T(λ, m).

Since λ ≥ 1, μ ∈N, m ≥ 1, and ν ≥ 0, we have

T(λ, m) ≥ T(1, 1) =
3
5

and S(λ,ν,μ) ≤ S(1, 0, 1) =
1
3

,

therefore

S(λ,ν,μ) ≤ 1
3

<
3
5

≤ T(λ, m).

Hence, the inequality Û(t + 1) < Û(t) holds also for t = 1, therefore Û(t + 1) < Û(t) for
t ∈ {1} ∪ [2, +∞).

For the second term of sum (2.28), we see that for the previously defined function V̂ we
have

V̂ (t + 1) – V̂ (t) =
Û(t + 1)

t + 1
–

Û(t)
t

<
1
t
(
Û(t + 1) – Û(t)

)
, t ∈ {1} ∪ [2, +∞),

and because we already proved that Û(t + 1) – Û(t) < 0 for all t ∈ {1} ∪ [2, +∞), it follows
that V̂ (t + 1) – V̂ (t) < 0, t ∈ {1} ∪ [2, +∞).

Consequently, sinceN ⊂ {1}∪[2, +∞), like in the proof of Theorem 2.3, the above results
yield that

Û(k) ≤ Û(1) =
6

�(λ + ν + μ + 1)�m(λ + 2)
, k ∈N,
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and

V̂ (k) ≤ V̂ (1) =
6

�(λ + ν + μ + 1)�m(λ + 2)
, k ∈N.

It follows that for both terms of the sums that appeared in (2.28) we have

∞∑
k=1

k(k + 1)(2k + 1)
4k�m(λ + k + 1)�(λ + ν + 1 + kμ)

<
2

�(λ + ν + μ + 1)�m(λ + 2)
, (2.33)

and

∞∑
k=1

(k + 1)(2k + 1)
4k�m(λ + k + 1)�(λ + ν + 1 + kμ)

<
2

�(λ + ν + μ + 1)�m(λ + 2)
. (2.34)

Finally, from relation (2.28) together with inequalities (2.33) and (2.34), we deduce that

H2 < 2(2 – α)
�m(λ + 1)�(λ + ν + 1)

�m(λ + 2)�(λ + ν + 1 + μ)
=

2(2 – α)
(λ + 1)m(λ + ν + 1)μ

,

and from assumption (2.27) it follows that H2 ≤ 1 – α, therefore J
ν,m
λ,μ ∈K(α). �

Using Theorems 2.3 and 2.4, in the next two examples we find the order of starlikeness
and convexity for the functions J

3,2
1.5,2.5 and J

2,2
0.2,3.5, and we emphasize that λ /∈ N, hence

these results cannot be obtained from Theorems 2.1 and 2.2, respectively.

Example 2.3 Taking in Theorems 2.3 and 2.4 the values λ = 2.5, μ = 3, m = 2, and ν = 1.5,
we get that

J
1.5,2
2.5,3(z) = z – 0.0002915451895z2 + 0.000000008331766962z3

– 5.617751131 · 10–14z4 + 1.271982052 · 10–19z5 – 1.188430019 · 10–25z6

+ 5.259621189 · 10–32z7 – 1.218192959 · 10–38z8

+ 1.592722130 · 10–45z9 + · · · ∈ S∗(αs) ∩K(αc),

where

αs = 0.9996111219 . . . and αc = 0.9992219413 . . . ,

and the image of the open unit disc U by J
1.5,2
2.5,3 is presented in Fig. 2 (a).

Example 2.4 Putting λ = 3.5, μ = m = 2, and ν = 0.2, Theorems 2.3 and 2.4 lead to

J
0.2,2
3.5,2(z) = z – 0.001382494850z2 + 0.0000003691147274z3 – 3.623361937 · 10–11z4

+ 1.653880131 · 10–15z5 – 4.020055735 · 10–20z6 + 5.702411482 · 10–25z7

– 5.047520972 · 10–30z8 + 2.935433795 · 10–35z9 + · · · ∈ S∗(αs) ∩K(αc)
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Figure 2 Figures for Examples 2.3 and 2.4

with

αs = 0.9981532694 . . . and αc = 0.9962997054 . . . ,

and the image of J0.2,2
3.5,2(U) is shown in Fig. 2(b).

Remark 2.1 1. We could see that Theorems 2.3 and 2.4 are more general than Theorems
2.1 and 2.2, respectively. That is because in the first case we replace the assumption λ ∈N

with λ ≥ 1, while in the second case the assumptions λ ∈N and m ∈N \ {1} were replaced
by λ ≥ 1 and m ∈N only.

2. Remark that

minαs =
2
3

under the assumptions of Theorems 2.1 and 2.3, hence if the parameters satisfy the con-
ditions of these two theorems, then J

ν,m
λ,μ ∈ S(2/3). Also,

minαc =
2
3

and minαc = 0

under the assumptions of Theorems 2.2 and 2.4, respectively. Thus, if the parameters sat-
isfy the conditions of Theorem 2.2, then J

ν,m
λ,μ ∈ K(2/3), while if they satisfy the assump-

tions of Theorem 2.4, then J
ν,m
λ,μ ∈K(0) =: K.

3 Sufficient conditions for starlikeness and convexity
In this section we give sufficient conditions for the starlikeness and convexity of Jν,m

λ,μ by
using the next results, respectively.

Lemma 3.1 [19, Corollary 1.2] If f (z) = z + ak+1zk+1 + · · · , k ≥ 1, is analytic in U and

∣∣f ′(z) – 1
∣∣ <

k + 1√
(k + 1)2 + 1

, z ∈U,

then f ∈ S∗.
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Remark that for k = 1 the above result was previously obtained by [28, Theorem 3], and
we will use it in our next first result.

Lemma 3.2 [19, Theorem 2] If f (z) = z + ak+1zk+1 + · · · , k ≥ 1, is analytic in U and

∣∣f ′′(z)
∣∣ ≤ k

k + 1
, z ∈U,

then |f ′′(z)/f ′(z)| ≤ 1, z ∈ U, and hence f ∈K. This result is sharp.

Theorem 3.1 Let μ ∈N, λ ≥ 0, ν ∈R with λ + ν + μ ≥ 1, λ + ν /∈ Z
–, and m ∈N. If

7
6

– m
[

ln(λ + 1) +
1

λ + 3/2
–

1
λ + 2

]

– μ

[
ln(λ + ν + μ) +

1
λ + ν + μ + 0.5

–
1

λ + ν + μ + 1

]
≤ 0, (3.1)

and

(λ + 1)m(λ + ν + 1)μ ≥ √
5, (3.2)

then J
ν,m
λ,μ ∈ S∗.

Proof To prove the above result, we will use Lemma 3.1 for the particular case k = 1. Thus,
to obtain J

ν,m
λ,μ ∈ S∗, it is sufficient to show that

∣∣(Jν,m
λ,μ (z)

)′ – 1
∣∣ <

2√
5

, z ∈U. (3.3)

Like in the proof of Theorem 2.1, from the assumptions of the parameters we have that

∣∣(Jν,m
λ,μ (z)

)′ – 1
∣∣

=

∣∣∣∣∣
∞∑

k=1

(–1)k(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m zk

∣∣∣∣∣

< sup
θ∈[0,2π ]

∣∣∣∣∣
∞∑

k=1

(–1)k(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m einθ

∣∣∣∣∣ <
∞∑

k=1

(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m

= �m(λ + 1)�(λ + ν + 1) ·
∞∑

k=1

(k + 1)(2k + 1)
4k�(λ + ν + kμ + 1)�m(λ + k + 1)

, z ∈U. (3.4)

If we define the function K : [1, +∞) →R by

K(t) :=
(t + 1)(2t + 1)

�(λ + ν + tμ + 1)�m(λ + t + 1)
,

then

K ′(t)
K(t)

=
1

t + 1
+

2
2t + 1

– mψ(λ + t + 1) – μψ(λ + ν + tμ + 1) =: K̂(t). (3.5)



Zayed and Bulboacă Journal of Inequalities and Applications         (2024) 2024:32 Page 22 of 27

On the other hand, by using the left-hand side of the inequality (see [14, Lemma 1])

ln t –
1
t

< ψ(t) < ln t –
1
2t

, t ∈ (0, +∞), (3.6)

followed by the left-hand side of (see [12, ineq. (13)])

1
t + 0.5

< ln

(
1 +

1
t

)
<

1
t + 0.4

, t ∈ [1, +∞), (3.7)

since λ ≥ 0, m ≥ 0, and μ ∈N, it follows that

K̂(1) <
7
6

– m
[

ln(λ + 1) +
1

λ + 3/2
–

1
λ + 2

]

– μ

[
ln(λ + ν + μ) +

1
λ + ν + μ + 0.5

–
1

λ + ν + μ + 1

]
≤ 0

under assumption (3.1). Since K̂ is a strictly decreasing function on [1, +∞), then K̂(t) ≤
K̂(1) < 0, t ≥ 1, and using that K(t) > 0, t ≥ 1, relation (3.5) leads to K ′(t) < 0, t ≥ 1. This
last inequality implies that K is also a strictly decreasing function on [1, +∞), and from
(3.4) we get

∣∣(Jν,m
λ,μ (z)

)′ – 1
∣∣ <

2�m(λ + 1)�(λ + ν + 1)
�(λ + ν + μ + 1)�m(λ + 2)

, z ∈U.

A simple computation shows that under assumption (3.2) the right-hand side of the above
inequality is less or equal than 2/

√
5. Thus, according to (3.3), the required result fol-

lows. �

Theorem 3.2 Let μ ∈N, λ ≥ 0, ν ∈R with λ + ν + μ ≥ 1, λ + ν /∈ Z
–, and m ∈N. If

13
6

– m
[

ln(λ + 1) +
1

λ + 3/2
–

1
λ + 2

]

– μ

[
ln(λ + ν + μ) +

1
λ + ν + μ + 0.5

–
1

λ + ν + μ + 1

]
≤ 0, (3.8)

and

(λ + 1)m(λ + ν + 1)μ ≥ 4, (3.9)

then J
ν,m
λ,μ ∈K.

Proof To use Lemma 3.2 for k = 1, we should prove that under our assumption we have

∣∣(Jν,m
λ,μ (z)

)′′(z)
∣∣ ≤ 1

2
, z ∈U. (3.10)

Using similar computations like in the proof of Theorem 2.2, we get

∣∣(Jν,m
λ,μ (z)

)′′∣∣ =

∣∣∣∣∣
∞∑

k=1

(–1)kk(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m zk–1

∣∣∣∣∣
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< sup
θ∈[0,2π ]

∣∣∣∣∣
∞∑

n=1

(–1)kk(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m ei(k–1)θ

∣∣∣∣∣

<
∞∑

k=1

k(k + 1)(2k + 1)
4k(λ + ν + 1)kμ[(λ + 1)k]m , z ∈U. (3.11)

If we define the function Q : [1, +∞) →R by

Q(t) :=
t(t + 1)(2t + 1)

�(λ + ν + tμ + 1)�m(λ + t + 1)
,

then

Q′(t)
Q(t)

=
1
t

+
1

t + 1
+

2
2t + 1

– mψ(λ + t + 1) – μψ(λ + ν + tμ + 1) =: Q̂(t). (3.12)

Like in the proof of Theorem 3.1, using (3.6), (3.7) and the facts that m,μ ≥ 0, we obtain

Q̂(1) <
13
6

– m
[

ln(λ + 1) +
1

λ + 3/2
–

1
λ + 2

]

– μ

[
ln(λ + ν + μ) +

1
λ + ν + μ + 0.5

–
1

λ + ν + μ + 1

]
≤ 0,

under assumption (3.8). Since Q̂ is a strictly decreasing function on [1, +∞), then Q̂(t) ≤
Q̂(1) < 0, x ≥ 1, and using that Q(t) > 0, t ≥ 1, relation (3.12) yields that Q′(t) < 0, t ≥ 1.
This last inequality implies that Q is also a strictly decreasing function on [1, +∞), and
from (3.11) we get

∣∣(Jν,m
λ,μ (z)

)′′∣∣ <
2�m(λ + 1)�(λ + ν + 1)

�(λ + ν + μ + 1)�m(λ + 2)
, z ∈ U.

Consequently, assumption (3.9) implies that the right-hand side of the above inequality
is less or equal than 1/2, and according to (3.10), we obtain our result. �

Example 3.1 In this example we will show that Theorem 3.1 is useful if α = 0 for the case
λ ≥ 0, which is not included in the assumptions of Theorems 2.1 or 2.3, where it was as-
sumed that λ ∈ N or λ ≥ 1, respectively. We mention that for α = 0 assumption (3.2) is
stronger than (2.18), but with the additional condition (3.1) we could obtain the starlike-
ness of some functions like J

0.2,3
0.8,1.

Thus, if we put in Theorem 3.1 the values λ = 0.2, μ = 1, m = 3, and ν = 0.1, we get that

J
0.1,3
0.2,1(z) = z – 0.3338675214z2 + 0.005680244799z3 – 0.00001838532122z4

+ 0.00000001854980606z5 – 7.605778219 · 10–12z6

+ 1.496644711 · 10–15z7 – 1.584478248 · 10–19z8

+ 9.809893741 · 10–24z9 + · · · ∈ S∗,

and the image of U by J
0.1,3
0.2,1 is shown in Fig. 3(a).
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Figure 3 Figures for Example 3.1

Taking in Theorem 3.1 the values λ = 0.1, μ = 1, m = 2, and ν = 0.8, we get that

J
0.8,2
0.1,1(z) = z – 0.3262287951z2 + 0.01062856085z3 – 0.00009925548431z4

+ 0.0000003873247036z5 – 0.0000000007712106488z6

+ 8.874725574 · 10–13z7 – 6.428343262 · 10–16z8

+ 3.119153053 · 10–19z9 + · · · ∈ S∗,

and the image of J0.8,2
0.1,1(U) is shown in Fig. 3(b).

Example 3.2 Next we will show that Theorem 3.2 is useful for α = 0 for the case λ ≥ 0,
which is not included in the assumptions of Theorems 2.2 or 2.4, where we assumed that
λ ∈ N or λ ≥ 1, respectively. We emphasize that for α = 0 assumption (3.9) is stronger
than (2.27), but adding condition (3.8) we could obtain the convexity of some functions
like J

0.8,2
0.7,1.

Taking in Theorem 3.2 the values λ = 0.7, μ = 1, m = 2, and ν = 0.8, we have

J
0.8,2
0.7,1(z) = z – 0.1038062284z2 + 0.001695183036z3 – 0.000009630940061z4

+ 0.00000002547972595z5 – 3.686564775 · 10–11z6

+ 3.235204040 · 10–14z7 – 1.851779260 · 10–17z8

+ 7.296671191 · 10–21z9 + · · · ∈K,

and the image of U by J
0.8,2
0.7,1 is shown in Fig. 4(a).

Putting in Theorem 3.1 the values λ = 0.5, μ = 1.5, m = 3, and ν = 0.7, we get that

J
0.7,3
0.5,1.5(z) = z – 0.05870665083z2 + 0.0002004168671z3 – 0.0000001289274849z4

+ 2.486094240 · 10–11z5 – 1.860843213 · 10–15z6

+ 6.383641038 · 10–20z7 – 1.127257518 · 10–24z8
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Figure 4 Figures for Example 3.2

+ 1.116507623 · 10–29z9 + · · · ∈K,

while the image of J0.7,3
0.5,1.5(U) is shown in Fig. 4(b).

Note that all the figures of this article were made by using the MAPLE™computer soft-
ware.

4 Concluding remarks and outlook
In the present section the highlights of the paper are listed below:

1. In Theorem 2.1 we have used the principle of mathematical induction to generate the
starlikeness of order αs, given by (2.1), for the function J

ν,m
λ,μ (z) defined by (1.4) for μ ∈ N,

λ ∈ N, ν ≥ 0, and m ∈ N. Further, in Theorem 2.2, the mathematical induction was also
used to obtain the convexity of order αc for μ ∈N, λ ∈N, ν ≥ 0, and m ∈N \ {1};

2. In Theorems 2.3 and 2.4, an estimate for the upper and lower bounds for the gamma
function inspired by [16] has been used to evaluate the orders αs for μ ∈ N, λ ≥ 1, ν ≥ 0,
m ∈N, and αc for μ ∈N, λ ≥ 1, ν ≥ 0, and m ∈N;

3. It could be seen that in [31] and [34] the authors investigated the orders of starlike-
ness and convexity of order αs and αc, respectively, using some well-known estimation for
gamma, digamma, and Fox–Wright functions. It is worth mentioning that our results in
this paper slightly improve the results in [31] and [34];

4. Finally, the starlikeness and convexity of order zero for Jν,m
λ,μ are studied using some

technical manipulations proved by [19] that if f (z) = z + an+1zn+1 + · · · , n ≥ 1 is analytic in
U and |f ′(z) – 1| < (n + 1)/

√
(n + 1)2 + 1, z ∈ U, and |f ′′(z)| ≤ n/(n + 1), z ∈ U, then f ∈ S∗

and f ∈ K, respectively. These results are useful to extend the range of validity for the
parameter λ to λ ≥ 0.

Acknowledgements
The authors are grateful to the referees for the valuable remarks, comments, and advices that helped us to improve the
quality of the manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with
The Egyptian Knowledge Bank (EKB).
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32. Zayed, H.M., Bulboacă, T.: Normalized generalized Bessel function and its geometric properties. J. Inequal. Appl. 2022,
158 (2022). https://journalofinequalitiesandapplications.springeropen.com/articles/10.1186/s13660-022-02891-0
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