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Abstract
In this paper, we study a special algebraic inequality containing a parameter, the sum
of reciprocals and the product of positive real numbers whose sum is 1. Using a new
optimization argument the best values of the parameter are determined. In the case
of three numbers the algebraic inequality has some interesting geometric
applications involving a generalization of Euler’s inequality about the ratio of radii of
circumscribed and inscribed circles of a triangle.
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1 Introduction
Inequalities with sharp constants, or at least when good estimates can be given of the
sharp constants, are of special interest both in themselves and when they are used for
various applications. Just as one example, we mention the recent paper [20] in this Journal.
Concerning the importance for various applications we refer to the recent books [21] and
[19], and the references therein.

Consider the inequality

n∑

i=1

1
xi

≥ λ

1 + nn–2(λ – n2)
∏n

i=1 xi
, (1)

where x1, x2, . . . , xn > 0;
∑n

i=1 xi = 1, for n ≥ 2. Here, λ > 0 is a real number and we are asked
to find the best (maximal possible) λ for each n (see [7]). If such a λ exists, then we will
denote it by λn. Note that the right-hand side of the inequality (1)

f (λ) =
λ

1 + nn–2(λ – n2)
∏n

i=1 xi
,

where x1, x2, . . . , xn > 0;
∑n

i=1 xi = 1, is a nondecreasing function of λ > 0. Hence, if (1) is
true for a certain λ = λn, then it is also true for all 0 < λ ≤ λn.
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By the Cauchy–Schwarz inequality
∑n

i=1
1
xi

≥ n2 = f (n2). Since the inequality holds true
for λ = n2, it also holds true for all 0 < λ ≤ n2. Hence, the best constant λ = λn, if it exists,
satisfies λn ≥ n2.

Case n = 2. For the case n = 2 there is no best constant. If n = 2, then we obtain the
inequality

1
x1

+
1
x2

≥ λ

1 + (λ – 22)x1x2
,

where x1, x2 > 0; x1 + x2 = 1. This inequality is true for any λ > 0. Indeed, if we multiply
both sides by (1 + (λ – 4)x1x2), then we obtain

1
x1

+
1
x2

+ (λ – 4)(x1 + x2) ≥ λ.

Since x1 + x2 = 1, the parameter λ cancels out, and we obtain

1
x1

+
1
x2

≥ 4,

which is always true.
Case n = 3. For case n = 3 the best constant is λ3 = 25. We obtain the inequality

1
x1

+
1
x2

+
1
x3

≥ λ

1 + 3(λ – 9)x1x2x3
,

where x1, x2, x3 > 0; x1 + x2 + x3 = 1. This inequality is true only for 0 < λ ≤ 25. We can show
this by substituting x1 = x2 = 1

4 , x3 = 1
2 in this inequality. On the other hand, we can prove

that

1
x1

+
1
x2

+
1
x3

≥ 25
1 + 48x1x2x3

,

holds true. Hence, λ = 25 is the maximum possible value for this inequality (see [2]). In
the solution to problem [2] it was noted by D.B. Leep that the case λ = 25 is equivalent
to a more general inequality s3

1s2 + 48s2s3 – 25s2
1s3 ≥ 0 for symmetric polynomials s1 =

x1 + x2 + x3, s2 = x1x2 + x2x3 + x3x1, s3 = x1x2x3, which can also be written as

x1(x2 – x3)2(3x1 – x2 – x3)2

+ x2(x1 – x3)2(3x2 – x1 – x3)2 + x3(x2 – x1)2(3x3 – x2 – x1)2 ≥ 0,

making case n = 3 almost trivial. Inequality (1) can also be written using symmetric poly-
nomials, but as the results for cases n = 4 and n = 5 below suggest, there is no simple
solution for n > 3. Let

s1 =
n∑

i=1

xi, sn–1 =
n∑

i=1

n∏

j=1,j �=i

xj, sn =
n∏

i=1

xi.

If λ > 0, then (1) is equivalent to the inequality

sn
1sn–1 + nn–2(λ – n2)sn–1sn – λsn–1

1 sn ≥ 0,

which is homogeneous with respect to its variables x1, . . . , xn.
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There are some geometric applications of case n = 3. The inequality

R
r

≥ 2 + μ
(a – b)2 + (b – c)2 + (c – a)2

(a + b + c)2 , (2)

where R and r are, respectively, the circumradius and inradius, and a, b, c are the sides of
a triangle, holds true if μ ≤ 8. Indeed, substituting a = b = 3, c = 2, and the corresponding
values of R = 9

4
√

2 and r =
√

2
2 in (2) we obtain μ ≤ 8. Hence, again, if we can prove (2) for

μ = 8, then μ = 8 will the best constant for the inequality (2). For μ = 8 we obtain

R
r

≥ 2 + 8
(a – b)2 + (b – c)2 + (c – a)2

(a + b + c)2 ,

which is a refinement of Euler’s inequality R
r ≥ 2 and follows directly from the case n = 3

(see [4, 5]).
Another geometric application is the following inequality about the sides a, b, c of a

triangle that follows directly from the case n = 3 (see [6]):

a3

b + c – a
+

b3

a + c – b
+

c3

a + b – c
+ 7(ab + bc + ca) ≥ 8

(
a2 + b2 + c2).

This inequality can also be written as a quintic inequality of symmetric polynomials

9
3∑

a5 – 15
6∑

a4b + 6
6∑

a3b2 + 25
3∑

a3bc – 16
3∑

ab2c2 ≥ 0,

which is a special case (v = 3) of the following inequality mentioned in [10] (see p. 244,
where v = u + 1)

v2
3∑

a5 – v(v + 2)
6∑

a4b + 2v
6∑

a3b2

+ (v + 2)2
3∑

a3bc – 4(v + 1)
3∑

ab2c2 ≥ 0.

This general inequality is also easily proved if we put a = x2 + x3, b = x1 + x3, c = x1 + x2,
and simplify to obtain

4x1(x2 – x3)2(vx1 – x2 – x3)2

+ 4x2(x1 – x3)2(vx2 – x1 – x3)2 + 4x3(x2 – x1)2(vx3 – x2 – x1)2 ≥ 0.

Similar quartic and sextic inequalities were studied in [8, 23], and their references (see also
[16], Chap. 3).

One more geometric application of case n = 3 is about the areas of triangles and needs
the introduction of some notations. Let M be a point in a triangle ABC. Extend lines AM,
BM, and CM to intersect the sides of triangle ABC at A0, B0, and C0, respectively (see
Fig. 1). Next, construct the parallel to A0C0 through M, which intersects BA and BC at C1

and A2, respectively. Analogously, draw the parallel through M to B0A0 (and to B0C0) to
find A1 and B2 (and B1 and C2). Denote

T1 = [MC1B2], T2 = [MA1C2], T3 = [MB1A2],
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Figure 1 Geometric application of case n = 3

S1 = [MA1A2], S2 = [MB1B2], S3 = [MC1C2],

P1 = [AB2C1], P2 = [BC2A1], P3 = [CA2B1],

where the square brackets stand for the area of the triangles (see [3, 6]). Then,

P1 + P2 + P3 + 7(S1 + S2 + S3) ≥ 8(T1 + T2 + T3).

Case n = 4. For the case n = 4 the best constant is λ4 = 582
√

97–2054
121 ≈ 30.4 (see [4]). In this

case, we obtain

1
x1

+
1
x2

+
1
x3

+
1
x4

≥ λ

1 + 16(λ – 16)x1x2x3x4
,

where x1, x2, x3, x4 > 0; x1 + x2 + x3 + x4 = 1. Again, this inequality is true only for λ ≤
582

√
97–2054
121 . Indeed, substituting in this inequality x1 = x2 = x3 = 5+

√
97

72 , x4 = 19–
√

97
24 , we ob-

tain 0 < λ ≤ 582
√

97–2054
121 . On the other hand, we can prove that the inequality holds true for

λ = 582
√

97–2054
121 . Hence, λ = 582

√
97–2054
121 is the maximum possible value for this inequality.

Case n = 5. For the case n = 5 we obtain the inequality

1
x1

+
1
x2

+
1
x3

+
1
x4

+
1
x5

≥ λ

1 + 125(λ – 25)x1x2x3x4x5
,

where x1, x2, x3, x4, x5 > 0; x1 + x2 + x3 + x4 + x5 = 1, and it was conjectured in [4] that the
best constant is

λ5 =
12,933,567 – 93,093

√
22,535

4,135,801
α

+
17,887,113 + 560,211

√
22,535

996,728,041
α2 –

288,017
17,161

≈ 40.09,

where α = 3
√

8119 + 48
√

22,535. This conjecture for λ5 will be proved in the current paper.
Also, it will be proved that the equality cases in this inequality occur when x1 = x2 = x3 =
x4 = x5 = 1

5 and when, for example, x1 = x2 = x3 = x4 = x = α
240 + 241

240α
+ 7

240 ≈ 0.173, x5 =
1 – 4x ≈ 0.308.

Case n = 6. This case was not studied before. Using Maple, the exact value of λ6 is cal-
culated. Case n = 6 is possibly the last case for which these calculations of the exact value
are possible.
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Case n ≥ 7. In view of the fact that quintic and higher-order equations are, in general,
not solvable in radicals, it is unlikely that there is a precise formula for the best constant
in the cases n ≥ 7. Therefore, for the greater values of n (n ≥ 7), instead of the exact value,
it is reasonable to find some bounds or approximations for λn. In the current paper, it is
proved that

n3

n – 1
≤ λn ≤ n3

n – 2
. (3)

Some possible improvements for this symmetric double inequality are also discussed.
It is interesting to compare the results of the current paper with the results for the fol-

lowing similar inequality

n∑

i=1

1
xi

≤ ν +
n2 – ν

nn ∏n
i=1 xi

, (4)

where x1, x2, . . . , xi > 0;
∑n

i=1 xi = 1. The best constant νn for this inequality is known for all
n > 1. See Corollary 2.13 in [12], where it is proved that ν ≤ νn = n2 – nn

(n–1)n–1 . In particular,
if ν = 0, then we obtain

n∑

i=1

1
xi

≤ 1
nn–2 ∏n

i=1 xi
, (5)

with the equality case possible only when x1 = · · · = xn = 1
n . Inequality (5) also follows from

the following inequality for Ei = 1
(n

i)
si (averages of si),

Eα1
1 · · ·Eαn

n ≤ Eβ1
1 · · ·Eβn

n ,

which holds if and only if

αm + 2αm+1 + · · · + (n – m + 1)αn ≥ βm + 2βm+1 + · · · + (n – m + 1)βn,

for each 1 ≤ m ≤ n (see [12], Theorem 1.1; [9], p. 94, item 77). Indeed, it is sufficient to note
that inequality (5) can be written as En–1 ≤ En–1

1 . This means that the above conditions for
αi, βi (i = 1, . . . , n) are satisfied as

α1 = · · · = αn–2 = 0, αn–1 = n – 1, αn = 0,

β1 = n – 1, β2 = · · · = βn = 0.

Since (5) will be essential in the following text, an independent proof of (5) and some
generalizations will be given in the Appendix. Note also that

lim
λ→+∞

λ

1 + nn–2(λ – n2)
∏n

i=1 xi
=

1
nn–2 ∏n

i=1 xi
.

Using this and by comparing (1) and (5), we obtain that if n > 2, then λn < +∞.
Special cases n = 3 and n = 4 of inequality (4) are also of interest for comparison with

the corresponding cases of inequality (1). If n = 3, then the best constant inequality is
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1
x1

+ 1
x2

+ 1
x3

≤ 9
4 + 1

4x1x2x3
, where x1, x2, x3 > 0; x1 + x2 + x3 = 1. Surprisingly, this inequality is

also equivalent to a geometric inequality. One can show that it simplifies to p2 ≥ 16Rr–5r2,
where p is the semiperimeter of a triangle. The last geometric inequality also follows from
the formula for the distance between the incenter I and the centroid G of a triangle: |IG|2 =
1
9 (p2 + 5r2 – 16Rr) (see [4]). If n = 4, then the best constant inequality is 1

x1
+ 1

x2
+ 1

x3
+ 1

x4
≤

176
27 + 1

27x1x2x3x4
, where x1, x2, x3, x4 > 0; x1 + x2 + x3 + x4 = 1 (see [25], Example 3).

The literature about symmetric polynomial inequalities is extensive [13–15, 17, 18, 24,
26]. Some of the results of the current paper were presented at the Maple Conference 2021
[1].

2 Main results
Let us consider all cases for n ≥ 3 in a unified way. Assume first that (x1, x2, . . . , xn) �=
( 1

n , 1
n , . . . , 1

n ). Then, by using (5), inequality (1) can be written as

n2(1 – nn ∏n
i=1 xi)

n2
∑n

i=1
1
xi

– nn ∏n
i=1 xi

≥ λ, (6)

where x1, x2, . . . , xn > 0;
∑n

i=1 xi = 1, for n ≥ 3. Let us denote the left-hand side of (6) by
g(x1, . . . , xn), which is defined for all points of the bounded set

C =

{
x
∣∣∣x = (x1, x2, . . . , xn); x1, x2, . . . , xn ≥ 0;

n∑

i=1

xi = 1

}
,

except for point P0( 1
n , 1

n , . . . , 1
n ). For the points of boundary

∂C =

{
x
∣∣∣x = (x1, x2, . . . , xn); x1, x2, . . . , xn ≥ 0;

n∑

i=1

xi = 1,
n∏

i=1

xi = 0

}
,

function g is undefined and, obviously, for each i = 1, . . . , n,

lim
xi→0

g(x1, . . . , xn) = +∞.

Lemma 1 If x > 0, then

lim
(x1,x2,...,xn)→(x,x,...,x)

(
∑n

i=1 xi) – n2
∑n

i=1
1
xi

(
∑n

i=1 xi)n – nn ∏n
i=1 xi

=
2

nnxn–1 .

Proof The limit can be interpreted as a single variable limit if we take

(x1, x2, . . . , xn) = (x + γ1t, x + γ2t, . . . , x + γnt),

where not all constants γi are equal and t → 0. Hence, we calculate

lim
t→0

(
∑n

i=1 (x + γit)) – n2
∑n

i=1
1

x+γit

(
∑n

i=1 (x + γit))n – nn ∏n
i=1 (x + γit)
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= lim
t→0

(
∑n

i=1 γi) – n2

(
∑n

i=1
1

x+γit )2

∑n
i=1

γi
(x+γit)2

n(
∑n

i=1 (x + γit))n–1(
∑n

i=1 γi) – nn(
∏n

i=1 (x + γit))(
∑n

i=1
γi

x+γit
)

= lim
t→0

–2n2

(
∑n

i=1
1

x+γi t )3 (
∑n

i=1
γi

(x+γit)2 )2 + n2

(
∑n

i=1
1

x+γi t )2 (
∑n

i=1
2γ 2

i
(x+γit)3 )

n(n – 1)(
∑n

i=1 (x + γit))n–2(
∑n

i=1 γi)2 – nn(
∏n

i=1 (x + γit))((
∑n

i=1
γi

x+γit
)2 –

∑n
i=1

γ 2
i

(x+γit)2 )

=
–2n2

( n
x )3 (

∑n
i=1 γi
x2 )2 + n2

( n
x )2

∑n
i=1 2γ 2

i
x3

n(�n – 1)(nx)n–2(
∑n

i=1 γi)2 – nnxn(����(
∑n

i=1 γi
x )2 –

∑n
i=1 γ 2

i
x2 )

=
2

nnxn–1 ,

where we used L’Hôpital’s rule twice and the fact that n
∑n

i=1 γ 2
i > (

∑n
i=1 γi)2 (the Cauchy–

Schwarz inequality, the equality case is not possible as not all γi are equal). The proof is
completed. �

In particular, if
∑n

i=1 xi = 1, then x = 1
n , and therefore, by Lemma 1,

lim
(x1,x2,...,xn)→( 1

n , 1
n ,..., 1

n )

n2(1 – nn ∏n
i=1 xi)

n2
∑n

i=1
1
xi

– nn ∏n
i=1 xi

=
n2

1 – lim(x1,x2,...,xn)→( 1
n , 1

n ,..., 1
n )

1– n2
∑n

i=1
1
xi

1–nn ∏n
i=1 xi

=
n2

1 – 2
nn( 1

n )n–1

=
n3

n – 2
.

As an immediate consequence of this and (6), we obtain an upper bound for the best con-
stant

λn ≤ n2

n – 2
. (7)

We want to use a well-known result in the analysis, which states that a continuous func-
tion over a compact set achieves its minimum (and maximum) values at certain points.
For this purpose, let us change function g(x1, . . . , xn), to a new function g1 so that g1 is de-
fined also at point P0( 1

n , 1
n , . . . , 1

n ) and points of ∂C, and g1 is continuous in the compact set
C = C ∪ ∂C:

g1(x1, . . . , xn) =

⎧
⎪⎪⎨

⎪⎪⎩

π
2 , if

∏n
i=1 xi = 0;

tan–1 n3

n–2 , if (x1, x2, . . . , xn) = ( 1
n , 1

n , . . . , 1
n );

tan–1 g(x1, . . . , xn), otherwise.

Since g1 is a continuous function in compact C, g1 reaches its extreme values somewhere in
C. Obviously, g1 reaches its maximum value π

2 at the boundary points ∂C where
∏n

i=1 xi =
0, and the minimum value at a point of C. The minimum of g is achieved at the same
point of C if the minimum point is different from P0( 1

n , 1
n , . . . , 1

n ). In any case, infx∈C g =
tan(minx∈C g1). We use an optimization argument similar to [12, 25] but with 3 variables, to
determine where these points must lie. This method can also be used for other inequalities
involving only symmetric polynomials s1, sn–1, and sn.

Let P(x1, x2, . . . , xn) be a minimum point of g1. Select any 3 of the coordinates of
(x1, x2, . . . , xn), say x1, x2, and x3. Let us assume that x1x2x3 = α and x1 + x2 + x3 = β . Since
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Figure 2 Parametric space curve (blue and green)
representing intersection of the plane x + y + z = β

(not shown) and the surface xyz = α (not shown)

P ∈ C, α,β > 0. Also, by the AM-GM inequality β3 ≥ 27α and it is known that if β3 = 27α,
then x1 = x2 = x3. Hence, suppose that β3 > 27α. Let us now take arbitrary positive num-
bers x, y, z such that xyz = α and x + y + z = β . Without loss of generality we can assume
that x ≤ y ≤ z. Since x + z = β – y and xz = α

y , the numbers x and z are the solutions of the
quadratic equation δ2 + (y – β)δ + α

y = 0. If we take y = t, then we obtain parametrization
of the curve obtained by intersection of the plane x + y + z = β and the surface xyz = α:

x =
–t + β ±

√
(t – β)2 – 4α

t

2
, y = t, z =

–t + β ∓
√

(t – β)2 – 4α
t

2
.

Parameter t changes in the interval [t1, t2], where t1 and t2 are the zeros of the cubic κ(t) =
t(t – β)2 – 4α in intervals (0, β

3 ) and ( β

3 ,β), respectively. The third zero t3 of κ(t) satisfies
t3 > β and therefore t3 /∈ [t1, t2]. Since we are interested only with the case x ≤ y ≤ z, we
will take one half of this curve (see Fig. 2)

x =
–t + β –

√
(t – β)2 – 4α

t

2
, y = t, z =

–t + β +
√

(t – β)2 – 4α
t

2
,

and in a smaller interval [t∗
1 , t∗

2 ], where t∗
1 and t∗

2 are the zeros of the cubic κ∗(t) = κ(t) –
t(3t – β)2 in intervals (t1, β

3 ) and ( β

3 , t2), respectively. Again, since the third zero t∗
3 of κ∗(t)

satisfies t∗
3 > β , t∗

3 /∈ [t1, t2]. Note that if t = t∗
1 , then x = y, and if t = t∗

2 , then y = z. Consider
the sum 1

x + 1
y + 1

z and note that

1
x

+
1
y

+
1
z

=
1
y

+
x + z

xz
=

1
y

+
β – y
α/y

=
1
t

+
βt – t2

α
.

Denote h(t) = 1
t + βt–t2

α
, where t ∈ [t∗

1 , t∗
2 ]. Hence, if t ∈ (t∗

1 , t∗
2 ), then h′(t) = – 1

t2 + β

α
– 2t

α
=

(z–t)(t–x)
xy2z > 0, and h′(t∗

1 ) = h′(t∗
2 ) = 0. Consequently, h(t) attains its minimum and maximum

in the interval [t∗
1 , t∗

2 ] at the endpoints t∗
1 , t∗

2 , respectively. We are interested in making
h smaller, which happens when the sum 1

x + 1
y + 1

z is smaller. Hence, the minimum of
1

x1
+ 1

x2
+ 1

x3
is reached when x1 = x2 ≤ x3. Since the coordinates x1, x2, and x3 were chosen

arbitrarily, these results hold for any trio of coordinates. Therefore, the left-hand side of
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(6) is minimal only when there are at most 2 distinct numbers in the set {x1, x2, . . . , xn}
Furthermore, if the two numbers are distinct, then the smaller one is repeated n – 1 times
in {x1, x2, . . . , xn} i.e., x1 = x2 = · · · = xn–1 ≤ xn. Consequently, in (6) we can restrict our-
selves only to the case where x1 = x2 = · · · = xn–1 = x, xn = 1 – (n – 1)x, where 0 < x ≤ 1

n . By
substituting these in (6) and simplifying, we obtain

n2

1 – (n – 1) (nx–1)2

((n–1)–n(n–2)x)(1–nnxn–1(1–(n–1)x))

≥ λ.

We will study the part of the denominator that is dependent on x, and for simplicity put
t = nx. Hence,

(t – 1)2

((n – 1) – (n – 2)t)(1 – ntn–1 + (n – 1)tn)

=
1

((n – 1) – (n – 2)t)(1 + 2t + 3t2 + · · · + (n – 1)tn–2)
.

Denote the polynomial in the denominator by

pn(t) =
(
(n – 1) – (n – 2)t

)(
1 + 2t + 3t2 + · · · + (n – 1)tn–2),

where 0 ≤ t ≤ 1. By taking the derivative and simplifying, we obtain

p′
n(t) = (n – 1)

(
1 · 2 + 2 · 3t + 3 · 4t2 + · · · + (n – 2) · (n – 1)tn–3)

– (n – 2)
(
12 + 22t + 32t2 + · · · + (n – 1)2tn–2)

= 1 · n + 2 · (n + 1)t + 3 · (n + 2)t2 + · · · + (n – 2) · (2n – 3)tn–3

– (n – 2)(n – 1)2tn–2.

Since p′
n(0) = n > 2 and p′

n(1) = – n(n–1)(n–2)
6 < 0, there is at least 1 zero of the polynomial

p′
n(t) in the interval (0, 1). On the other hand, by Descartes’ rule of signs (see p. 247 in

[11], or p. 28 in [22]) the number of positive zeros of p′
n(t) does not exceed the number of

sign changes in the sequence of coefficients of p′
n(t), which is 1. Hence, p′

n(t) has exactly
one zero tn in [0, 1], which is also the maximum point of pn(t). This means that there is
exactly one point x = tn

n in (0, 1
n ), such that x1 = x2 = · · · = xn–1 = x, xn = 1 – (n – 1)x makes

the left-hand side of (6) minimal. This minimal value is also the best constant for (1):

λn =
n2

1 – n–1
pn(tn)

. (8)

For n = 3, 4, 5, and 6 it is possible to find the exact values of tn and the corresponding λn.
• if n = 3, then p3(t) = (2 – t)(1 + 2t), and p′

3(t) = 3 – 4t. Therefore, t3 = 3
4 . By (8), the best

constant is λ3 = 32

1– 3–1
p3(t3)

= 25 (see [2]).

• if n = 4, then p4(t) = (3 – 2t)(1 + 2t + 3t2) and p′
4(t) = 4 + 10t – 18t2. Therefore,

t4 = 5+
√

97
18 . By (8), the best constant is λ4 = 42

1– 4–1
p4(t4)

= 582
√

97–2054
121 ≈ 30.423077 (see [4]).
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• if n = 5, then p5(t) = (4 – 3t)(1 + 2t + 3t2 + 4t3) and p′
5(t) = 5 + 12t + 21t2 – 48t3. Using

Cardano’s formula and Maple, we find that t5 = θ+7+241θ–1

48 , where
θ = (8119 + 48

√
22,535) 1

3 . By (8), the best constant is λ5 = 52

1– 5–1
p5(t5)

≈ 40.090307, which

coincides with the value of λ5 conjectured in [4].
• if n = 6, then

p6(t) = (5 – 4t)
(
1 + 2t + 3t2 + 4t3 + 5t4), p′

6(t) = 6 + 14t + 24t2 + 36t3 – 100t4.

Using Ferrari’s method and Maple, we find that

t6 =
9 + φ +

√
50ψ + 962 – 11,300ψ–1 + 47,258φ–1

100
,

where

φ =
√

–50ψ + 481 + 11,300ψ–1, ψ = (1473 +
√

13,712,905)
1
3 .

By (8), the best constant is λ6 = 62

1– 6–1
p6(t6)

≈ 52.358913.

For larger values of n, we can give some bounds for λn. We already found an upper bound
(7). We will now focus on a similar lower bound.

By the AM-GM inequality,

n∑

i=1

1
xi

≥ n
Gn

, (9)

where x1, x2, . . . , xn > 0;
∑n

i=1 xi = 1, Gn = n
√∏n

i=1 xi, and n ≥ 2. Let us show that if λ = n3

n–1 ,
then

n
Gn

≥ λ

1 + nn–2(λ – n2)Gn
n

, (10)

where (x1, x2, . . . , xn) �= ( 1
n , 1

n , . . . , 1
n ) and therefore Gn = n

√∏n
i=1 xi < 1

n . Indeed, we can sim-
plify (10) to

n2(1 – sn)
s(1 – sn–1)

≥ n3

n – 1
,

where s = nGn < 1. This is easily proved, as we can write it in the following form

1 +
1

s + s2 + · · · + sn–1 ≥ n
n – 1

,

where noting s < 1 completes the proof. From (1), (9), and (10) it follows that if λ ≤ n3

n–1 ,
then (1) holds true. This means that we have now a lower bound for the best constant:

λn ≥ n3

n – 1
. (11)

Combining (7) and (11) we obtain the following symmetric double inequality.
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Theorem 1 If n > 2, then

n3

n – 1
≤ λn ≤ n3

n – 2
. (12)

It is possible to improve these estimates in exchange for a less-elegant formula. For ex-
ample, if we put x1 = x2 = · · · = xn–1 = 1

n+1 , xn = 2
n+1 , then we obtain from (6) a new upper

bound for the best constant:

λn ≤ (n + 1)2 ·
1
2 – nn

(n+1)n

n+1
2n–1 – nn–2

(n+1)n–2

. (13)

One can check that (13) is sharper than (6) for all n > 3. We can also prove that n
n+1 ≤ tn

or equivalently, p′
n( n

n+1 ) ≥ 0 for all n ≥ 3. Indeed,

p′
n

(
n

n + 1

)
= 3n(n + 1)2

(
n

n + 1

)n((
1 +

1
n

)n

–
8
3

+
1
n

–
1

3n2

)
.

For n = 3, 4, . . . , 25 one can check directly that (1 + 1
n )n – 8

3 + 1
n – 1

3n2 ≥ 0. For n > 25, one
can use the fact that (1 + 1

n )n > 8
3 and 1

n > 1
3n2 .

Appendix
We will give a proof of (5) here. We can use the optimization argument given after
Lemma 1 of the current paper, to maximize the left-hand side of (5), while keeping the
right-hand side of (5) fixed. This is achieved when for any 3 of the coordinates, say x1, x2,
and x3, of (x1, x2, . . . , xn), x1 ≤ x2 = x3. Hence, we can restrict ourselves only to the case
where x1 = x and x2 = · · · = xn–1 = xn = 1–x

n–1 , where 0 < x ≤ 1
n . For this particular case (5) is

transformed into

1
x

+
(n – 1)2

1 – x
≤ (n – 1)n–1

nn–2x(1 – x)n–1 ,

which can be simplified to the correct inequality

(nx – 1)2((n – 2)(nx)n–3 + (n – 3)(nx)n–4 + · · · + 1
) ≥ 0.

The equality case is possible only when nx = 1.
Inequality (5) can also be written as the homogeneous inequality An–1

n Hn ≥ Gn
n, where

An, Hn, and Gn are, respectively, the arithmetic, harmonic, and geometric means of arbi-
trary positive numbers x1, . . . , xn:

An =
∑n

i=1 xi

n
, Hn =

n
∑n

i=1
1
xi

, Gn = n

√√√√
n∏

i=1

xi.

Since An ≥ Gn, automatically Al
nHn ≥ Gl+1

n for any real number l ≥ n – 1. It would be
natural to ask whether the general inequality Al

nHn ≥ Gl+1
n can hold true also for some

real number l < n – 1. The answer to this question is negative. A counterexample is found
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if one takes x1 = x2 = · · · = xn–1 = 1 and xn = x, where x → 0+. Indeed, if l < n – 1, then
Al

nHn = O(x) and Gl+1
n = O(x l+1

n ) � O(x).
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15. Mitrinović, D.S.: Inequalities concerning the elementary symmetric functions. Publ. Elektroteh. Fak. Univ. Beogr., Ser.

Mat. Fiz. 210(228), 17–19 (1968). https://www.jstor.org/stable/43667315
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Elektrotehničkog Fakulteta. Serija Matematika I Fizika, vol. 602/633, pp. 195–202 (1978).
http://www.jstor.org/stable/43660843

24. Rosset, S.: Normalized symmetric functions, Newton’s inequalities, and a new set of stronger inequalities. Am. Math.
Mon. 96(9), 815–819 (1989). https://www.jstor.org/stable/2324844

25. Sato, N.: Symmetric polynomial inequalities. Crux Math. Math. Mayhem 27, 529–533 (2001)
26. Tao, T.: A Maclaurin Type Inequality (2023). Preprint, Arxiv https://arxiv.org/pdf/2310.05328v2.pdf

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.youtube.com/watch?v=fGBkq2Ouh_c
https://youtu.be/o9BwsoVj8aY?si=3_H_zk2835kq3g7r
https://rgmia.org/pc/2009/problem3-09.pdf
http://www.jstor.org/stable/43667788
https://archive.org/details/kurosh-higher-algebra/page/237/mode/2up
http://pefmath2.etf.rs/files/71/182.pdf
https://www.jstor.org/stable/43667274
https://www.jstor.org/stable/43667315
https://www.emis.de/journals/JIPAM/images/014_99_JIPAM/014_99.pdf
https://www.jstor.org/stable/43678943
https://doi.org/10.1186/s13660-023-03066-1
http://www.jstor.org/stable/43660843
https://www.jstor.org/stable/2324844
https://arxiv.org/pdf/2310.05328v2.pdf

	The best constant for inequality involving the sum of the reciprocals and product of positive numbers with unit sum
	Abstract
	Mathematics Subject Classiﬁcation
	Keywords

	Introduction
	Main results
	Appendix
	Acknowledgements
	Data Availability
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author contributions
	References
	Publisher's Note


