The best constant for inequality involving the sum of the reciprocals and product of positive numbers with unit sum

Yagub N. Aliyev ${ }^{1 *}$

"Correspondence
yaliyev@ada.edu.az
${ }^{1}$ School of IT and Engineering, ADA University, Ahmadbey Aghaoglu str. 61, Baku 1008, Azerbaijan

Abstract

In this paper, we study a special algebraic inequality containing a parameter, the sum of reciprocals and the product of positive real numbers whose sum is 1 . Using a new optimization argument the best values of the parameter are determined. In the case of three numbers the algebraic inequality has some interesting geometric applications involving a generalization of Euler's inequality about the ratio of radii of circumscribed and inscribed circles of a triangle.

Mathematics Subject Classification: Primary 26D05; secondary 52A40 Keywords: Best constant; Symmetric polynomials; Algebraic inequality; Geometric inequality; Euler's inequality

1 Introduction

Inequalities with sharp constants, or at least when good estimates can be given of the sharp constants, are of special interest both in themselves and when they are used for various applications. Just as one example, we mention the recent paper [20] in this Journal. Concerning the importance for various applications we refer to the recent books [21] and [19], and the references therein.

Consider the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{x_{i}} \geq \frac{\lambda}{1+n^{n-2}\left(\lambda-n^{2}\right) \prod_{i=1}^{n} x_{i}} \tag{1}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{n}>0 ; \sum_{i=1}^{n} x_{i}=1$, for $n \geq 2$. Here, $\lambda>0$ is a real number and we are asked to find the best (maximal possible) λ for each n (see [7]). If such a λ exists, then we will denote it by λ_{n}. Note that the right-hand side of the inequality (1)

$$
f(\lambda)=\frac{\lambda}{1+n^{n-2}\left(\lambda-n^{2}\right) \prod_{i=1}^{n} x_{i}}
$$

where $x_{1}, x_{2}, \ldots, x_{n}>0 ; \sum_{i=1}^{n} x_{i}=1$, is a nondecreasing function of $\lambda>0$. Hence, if (1) is true for a certain $\lambda=\lambda_{n}$, then it is also true for all $0<\lambda \leq \lambda_{n}$.
© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

By the Cauchy-Schwarz inequality $\sum_{i=1}^{n} \frac{1}{x_{i}} \geq n^{2}=f\left(n^{2}\right)$. Since the inequality holds true for $\lambda=n^{2}$, it also holds true for all $0<\lambda \leq n^{2}$. Hence, the best constant $\lambda=\lambda_{n}$, if it exists, satisfies $\lambda_{n} \geq n^{2}$.
Case $n=2$. For the case $n=2$ there is no best constant. If $n=2$, then we obtain the inequality

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}} \geq \frac{\lambda}{1+\left(\lambda-2^{2}\right) x_{1} x_{2}}
$$

where $x_{1}, x_{2}>0 ; x_{1}+x_{2}=1$. This inequality is true for any $\lambda>0$. Indeed, if we multiply both sides by $\left(1+(\lambda-4) x_{1} x_{2}\right)$, then we obtain

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+(\lambda-4)\left(x_{1}+x_{2}\right) \geq \lambda .
$$

Since $x_{1}+x_{2}=1$, the parameter λ cancels out, and we obtain

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}} \geq 4
$$

which is always true.
Case $n=3$. For case $n=3$ the best constant is $\lambda_{3}=25$. We obtain the inequality

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \geq \frac{\lambda}{1+3(\lambda-9) x_{1} x_{2} x_{3}},
$$

where $x_{1}, x_{2}, x_{3}>0 ; x_{1}+x_{2}+x_{3}=1$. This inequality is true only for $0<\lambda \leq 25$. We can show this by substituting $x_{1}=x_{2}=\frac{1}{4}, x_{3}=\frac{1}{2}$ in this inequality. On the other hand, we can prove that

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \geq \frac{25}{1+48 x_{1} x_{2} x_{3}}
$$

holds true. Hence, $\lambda=25$ is the maximum possible value for this inequality (see [2]). In the solution to problem [2] it was noted by D.B. Leep that the case $\lambda=25$ is equivalent to a more general inequality $s_{1}^{3} s_{2}+48 s_{2} s_{3}-25 s_{1}^{2} s_{3} \geq 0$ for symmetric polynomials $s_{1}=$ $x_{1}+x_{2}+x_{3}, s_{2}=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}, s_{3}=x_{1} x_{2} x_{3}$, which can also be written as

$$
\begin{aligned}
& x_{1}\left(x_{2}-x_{3}\right)^{2}\left(3 x_{1}-x_{2}-x_{3}\right)^{2} \\
& \quad+x_{2}\left(x_{1}-x_{3}\right)^{2}\left(3 x_{2}-x_{1}-x_{3}\right)^{2}+x_{3}\left(x_{2}-x_{1}\right)^{2}\left(3 x_{3}-x_{2}-x_{1}\right)^{2} \geq 0,
\end{aligned}
$$

making case $n=3$ almost trivial. Inequality (1) can also be written using symmetric polynomials, but as the results for cases $n=4$ and $n=5$ below suggest, there is no simple solution for $n>3$. Let

$$
s_{1}=\sum_{i=1}^{n} x_{i}, \quad s_{n-1}=\sum_{i=1}^{n} \prod_{j=1, j \neq i}^{n} x_{j}, \quad s_{n}=\prod_{i=1}^{n} x_{i} .
$$

If $\lambda>0$, then (1) is equivalent to the inequality

$$
s_{1}^{n} s_{n-1}+n^{n-2}\left(\lambda-n^{2}\right) s_{n-1} s_{n}-\lambda s_{1}^{n-1} s_{n} \geq 0
$$

which is homogeneous with respect to its variables x_{1}, \ldots, x_{n}.

There are some geometric applications of case $n=3$. The inequality

$$
\begin{equation*}
\frac{R}{r} \geq 2+\mu \frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}{(a+b+c)^{2}} \tag{2}
\end{equation*}
$$

where R and r are, respectively, the circumradius and inradius, and a, b, c are the sides of a triangle, holds true if $\mu \leq 8$. Indeed, substituting $a=b=3, c=2$, and the corresponding values of $R=\frac{9}{4 \sqrt{2}}$ and $r=\frac{\sqrt{2}}{2}$ in (2) we obtain $\mu \leq 8$. Hence, again, if we can prove (2) for $\mu=8$, then $\mu=8$ will the best constant for the inequality (2). For $\mu=8$ we obtain

$$
\frac{R}{r} \geq 2+8 \frac{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}}{(a+b+c)^{2}}
$$

which is a refinement of Euler's inequality $\frac{R}{r} \geq 2$ and follows directly from the case $n=3$ (see $[4,5]$).
Another geometric application is the following inequality about the sides a, b, c of a triangle that follows directly from the case $n=3$ (see [6]):

$$
\frac{a^{3}}{b+c-a}+\frac{b^{3}}{a+c-b}+\frac{c^{3}}{a+b-c}+7(a b+b c+c a) \geq 8\left(a^{2}+b^{2}+c^{2}\right)
$$

This inequality can also be written as a quintic inequality of symmetric polynomials

$$
9 \sum^{3} a^{5}-15 \sum^{6} a^{4} b+6 \sum^{6} a^{3} b^{2}+25 \sum^{3} a^{3} b c-16 \sum^{3} a b^{2} c^{2} \geq 0
$$

which is a special case $(v=3)$ of the following inequality mentioned in [10] (see p. 244, where $v=u+1$)

$$
\begin{aligned}
& v^{2} \sum^{3} a^{5}-v(v+2) \sum^{6} a^{4} b+2 v \sum^{6} a^{3} b^{2} \\
& \quad+(v+2)^{2} \sum^{3} a^{3} b c-4(v+1) \sum^{3} a b^{2} c^{2} \geq 0
\end{aligned}
$$

This general inequality is also easily proved if we put $a=x_{2}+x_{3}, b=x_{1}+x_{3}, c=x_{1}+x_{2}$, and simplify to obtain

$$
\begin{aligned}
& 4 x_{1}\left(x_{2}-x_{3}\right)^{2}\left(v x_{1}-x_{2}-x_{3}\right)^{2} \\
& \quad+4 x_{2}\left(x_{1}-x_{3}\right)^{2}\left(v x_{2}-x_{1}-x_{3}\right)^{2}+4 x_{3}\left(x_{2}-x_{1}\right)^{2}\left(v x_{3}-x_{2}-x_{1}\right)^{2} \geq 0
\end{aligned}
$$

Similar quartic and sextic inequalities were studied in [8,23], and their references (see also [16], Chap. 3).
One more geometric application of case $n=3$ is about the areas of triangles and needs the introduction of some notations. Let M be a point in a triangle $A B C$. Extend lines $A M$, $B M$, and $C M$ to intersect the sides of triangle $A B C$ at A_{0}, B_{0}, and C_{0}, respectively (see Fig. 1). Next, construct the parallel to $A_{0} C_{0}$ through M, which intersects $B A$ and $B C$ at C_{1} and A_{2}, respectively. Analogously, draw the parallel through M to $B_{0} A_{0}$ (and to $B_{0} C_{0}$) to find A_{1} and $B_{2}\left(\right.$ and B_{1} and $\left.C_{2}\right)$. Denote

$$
T_{1}=\left[M C_{1} B_{2}\right], \quad T_{2}=\left[M A_{1} C_{2}\right], \quad T_{3}=\left[M B_{1} A_{2}\right],
$$

Figure 1 Geometric application of case $n=3$

$$
\begin{array}{llc}
S_{1}=\left[M A_{1} A_{2}\right], & S_{2}=\left[M B_{1} B_{2}\right], & S_{3}=\left[M C_{1} C_{2}\right], \\
P_{1}=\left[A B_{2} C_{1}\right], & P_{2}=\left[B C_{2} A_{1}\right], & P_{3}=\left[C A_{2} B_{1}\right],
\end{array}
$$

where the square brackets stand for the area of the triangles (see [3, 6]). Then,

$$
P_{1}+P_{2}+P_{3}+7\left(S_{1}+S_{2}+S_{3}\right) \geq 8\left(T_{1}+T_{2}+T_{3}\right)
$$

Case $n=4$. For the case $n=4$ the best constant is $\lambda_{4}=\frac{582 \sqrt{97}-2054}{121} \approx 30.4$ (see [4]). In this case, we obtain

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}} \geq \frac{\lambda}{1+16(\lambda-16) x_{1} x_{2} x_{3} x_{4}},
$$

where $x_{1}, x_{2}, x_{3}, x_{4}>0 ; x_{1}+x_{2}+x_{3}+x_{4}=1$. Again, this inequality is true only for $\lambda \leq$ $\frac{582 \sqrt{97}-2054}{121}$. Indeed, substituting in this inequality $x_{1}=x_{2}=x_{3}=\frac{5+\sqrt{97}}{72}, x_{4}=\frac{19-\sqrt{97}}{24}$, we obtain $0<\lambda \leq \frac{582 \sqrt{97}-2054}{121}$. On the other hand, we can prove that the inequality holds true for $\lambda=\frac{582 \sqrt{97}-2054}{121}$. Hence, $\lambda=\frac{582 \sqrt{97}-2054}{121}$ is the maximum possible value for this inequality.

Case $n=5$. For the case $n=5$ we obtain the inequality

$$
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}}+\frac{1}{x_{5}} \geq \frac{\lambda}{1+125(\lambda-25) x_{1} x_{2} x_{3} x_{4} x_{5}}
$$

where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}>0 ; x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1$, and it was conjectured in [4] that the best constant is

$$
\begin{aligned}
\lambda_{5}= & \frac{12,933,567-93,093 \sqrt{22,535}}{4,135,801} \alpha \\
& +\frac{17,887,113+560,211 \sqrt{22,535}}{996,728,041} \alpha^{2}-\frac{288,017}{17,161} \approx 40.09,
\end{aligned}
$$

where $\alpha=\sqrt[3]{8119+48 \sqrt{22,535}}$. This conjecture for λ_{5} will be proved in the current paper. Also, it will be proved that the equality cases in this inequality occur when $x_{1}=x_{2}=x_{3}=$ $x_{4}=x_{5}=\frac{1}{5}$ and when, for example, $x_{1}=x_{2}=x_{3}=x_{4}=x=\frac{\alpha}{240}+\frac{241}{240 \alpha}+\frac{7}{240} \approx 0.173, x_{5}=$ $1-4 x \approx 0.308$.

Case $n=6$. This case was not studied before. Using Maple, the exact value of λ_{6} is calculated. Case $n=6$ is possibly the last case for which these calculations of the exact value are possible.

Case $n \geq 7$. In view of the fact that quintic and higher-order equations are, in general, not solvable in radicals, it is unlikely that there is a precise formula for the best constant in the cases $n \geq 7$. Therefore, for the greater values of $n(n \geq 7)$, instead of the exact value, it is reasonable to find some bounds or approximations for λ_{n}. In the current paper, it is proved that

$$
\begin{equation*}
\frac{n^{3}}{n-1} \leq \lambda_{n} \leq \frac{n^{3}}{n-2} \tag{3}
\end{equation*}
$$

Some possible improvements for this symmetric double inequality are also discussed.
It is interesting to compare the results of the current paper with the results for the following similar inequality

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{x_{i}} \leq v+\frac{n^{2}-v}{n^{n} \prod_{i=1}^{n} x_{i}} \tag{4}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{i}>0 ; \sum_{i=1}^{n} x_{i}=1$. The best constant v_{n} for this inequality is known for all $n>1$. See Corollary 2.13 in [12], where it is proved that $v \leq v_{n}=n^{2}-\frac{n^{n}}{(n-1)^{n-1}}$. In particular, if $v=0$, then we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{x_{i}} \leq \frac{1}{n^{n-2} \prod_{i=1}^{n} x_{i}}, \tag{5}
\end{equation*}
$$

with the equality case possible only when $x_{1}=\cdots=x_{n}=\frac{1}{n}$. Inequality (5) also follows from the following inequality for $E_{i}=\frac{1}{\binom{n}{i}} s_{i}$ (averages of s_{i}),

$$
E_{1}^{\alpha_{1}} \cdots E_{n}^{\alpha_{n}} \leq E_{1}^{\beta_{1}} \cdots E_{n}^{\beta_{n}}
$$

which holds if and only if

$$
\alpha_{m}+2 \alpha_{m+1}+\cdots+(n-m+1) \alpha_{n} \geq \beta_{m}+2 \beta_{m+1}+\cdots+(n-m+1) \beta_{n},
$$

for each $1 \leq m \leq n$ (see [12], Theorem 1.1; [9], p. 94, item 77). Indeed, it is sufficient to note that inequality (5) can be written as $E_{n-1} \leq E_{1}^{n-1}$. This means that the above conditions for $\alpha_{i}, \beta_{i}(i=1, \ldots, n)$ are satisfied as

$$
\begin{aligned}
& \alpha_{1}=\cdots=\alpha_{n-2}=0, \quad \alpha_{n-1}=n-1, \quad \alpha_{n}=0 \\
& \beta_{1}=n-1, \quad \beta_{2}=\cdots=\beta_{n}=0 .
\end{aligned}
$$

Since (5) will be essential in the following text, an independent proof of (5) and some generalizations will be given in the Appendix. Note also that

$$
\lim _{\lambda \rightarrow+\infty} \frac{\lambda}{1+n^{n-2}\left(\lambda-n^{2}\right) \prod_{i=1}^{n} x_{i}}=\frac{1}{n^{n-2} \prod_{i=1}^{n} x_{i}} .
$$

Using this and by comparing (1) and (5), we obtain that if $n>2$, then $\lambda_{n}<+\infty$.
Special cases $n=3$ and $n=4$ of inequality (4) are also of interest for comparison with the corresponding cases of inequality (1). If $n=3$, then the best constant inequality is
$\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}} \leq \frac{9}{4}+\frac{1}{4 x_{1} x_{2} x_{3}}$, where $x_{1}, x_{2}, x_{3}>0 ; x_{1}+x_{2}+x_{3}=1$. Surprisingly, this inequality is also equivalent to a geometric inequality. One can show that it simplifies to $p^{2} \geq 16 R r-5 r^{2}$, where p is the semiperimeter of a triangle. The last geometric inequality also follows from the formula for the distance between the incenter I and the centroid G of a triangle: $|I G|^{2}=$ $\frac{1}{9}\left(p^{2}+5 r^{2}-16 R r\right)$ (see [4]). If $n=4$, then the best constant inequality is $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\frac{1}{x_{4}} \leq$ $\frac{176}{27}+\frac{1}{27 x_{1} x_{2} x_{3} x_{4}}$, where $x_{1}, x_{2}, x_{3}, x_{4}>0 ; x_{1}+x_{2}+x_{3}+x_{4}=1$ (see [25], Example 3).
The literature about symmetric polynomial inequalities is extensive [13-15, 17, 18, 24, 26]. Some of the results of the current paper were presented at the Maple Conference 2021 [1].

2 Main results

Let us consider all cases for $n \geq 3$ in a unified way. Assume first that $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq$ $\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$. Then, by using (5), inequality (1) can be written as

$$
\begin{equation*}
\frac{n^{2}\left(1-n^{n} \prod_{i=1}^{n} x_{i}\right)}{\frac{n^{2}}{\sum_{i=1}^{n} \frac{1}{x_{i}}}-n^{n} \prod_{i=1}^{n} x_{i}} \geq \lambda, \tag{6}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{n}>0 ; \sum_{i=1}^{n} x_{i}=1$, for $n \geq 3$. Let us denote the left-hand side of (6) by $g\left(x_{1}, \ldots, x_{n}\right)$, which is defined for all points of the bounded set

$$
C=\left\{\mathbf{x} \mid \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; x_{1}, x_{2}, \ldots, x_{n} \geq 0 ; \sum_{i=1}^{n} x_{i}=1\right\}
$$

except for point $P_{0}\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$. For the points of boundary

$$
\partial C=\left\{\mathbf{x} \mid \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; x_{1}, x_{2}, \ldots, x_{n} \geq 0 ; \sum_{i=1}^{n} x_{i}=1, \prod_{i=1}^{n} x_{i}=0\right\}
$$

function g is undefined and, obviously, for each $i=1, \ldots, n$,

$$
\lim _{x_{i} \rightarrow 0} g\left(x_{1}, \ldots, x_{n}\right)=+\infty .
$$

Lemma 1 If $x>0$, then

$$
\lim _{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow(x, x, \ldots, x)} \frac{\left(\sum_{i=1}^{n} x_{i}\right)-\frac{n^{2}}{\sum_{i=1}^{n} \frac{1}{x_{i}}}}{\left(\sum_{i=1}^{n} x_{i}\right)^{n}-n^{n} \prod_{i=1}^{n} x_{i}}=\frac{2}{n^{n} x^{n-1}} .
$$

Proof The limit can be interpreted as a single variable limit if we take

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x+\gamma_{1} t, x+\gamma_{2} t, \ldots, x+\gamma_{n} t\right),
$$

where not all constants γ_{i} are equal and $t \rightarrow 0$. Hence, we calculate

$$
\lim _{t \rightarrow 0} \frac{\left(\sum_{i=1}^{n}\left(x+\gamma_{i} t\right)\right)-\frac{n^{2}}{\sum_{i=1}^{n} \frac{1}{x+\gamma_{i} t}}}{\left(\sum_{i=1}^{n}\left(x+\gamma_{i} t\right)\right)^{n}-n^{n} \prod_{i=1}^{n}\left(x+\gamma_{i} t\right)}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow 0} \frac{\left(\sum_{i=1}^{n} \gamma_{i}\right)-\frac{n^{2}}{\left(\sum_{i=1}^{n} \frac{1}{x+\gamma_{i} i}\right)^{2}} \sum_{i=1}^{n} \frac{\gamma_{i}}{\left(x+\gamma_{i} t\right)^{2}}}{n\left(\sum_{i=1}^{n}\left(x+\gamma_{i} t\right)\right)^{n-1}\left(\sum_{i=1}^{n} \gamma_{i}\right)-n^{n}\left(\prod_{i=1}^{n}\left(x+\gamma_{i} t\right)\right)\left(\sum_{i=1}^{n} \frac{\gamma_{i}}{x+\gamma_{i} t}\right)} \\
& =\lim _{t \rightarrow 0} \frac{\frac{-2 n^{2}}{\left(\sum_{i=1}^{n}+1\right.}\left(\sum_{i=1}^{n} \frac{\gamma_{i}}{\left(x+\gamma_{i} t\right)^{2}}\right)^{2}+\frac{n^{2}}{\left(\sum_{i=1}^{n} \frac{1}{\left.x+\gamma_{i}\right)^{2}}\right.}\left(\sum_{i=1}^{n} \frac{2 \gamma_{i}^{2}}{\left(x+\gamma_{i} t^{3}\right.}\right)}{n(n-1)\left(\sum_{i=1}^{n}\left(x+\gamma_{i} t\right)\right)^{n-2}\left(\sum_{i=1}^{n} \gamma_{i}\right)^{2}-n^{n}\left(\prod_{i=1}^{n}\left(x+\gamma_{i} t\right)\right)\left(\left(\sum_{i=1}^{n} \frac{\gamma_{i}}{x+\gamma_{i}}\right)^{2}-\sum_{i=1}^{n} \frac{\gamma_{i}^{2}}{\left(x+\gamma_{i} t\right)^{2}}\right)} \\
& =\frac{\frac{-2 n^{2}}{\left(\frac{2}{x}\right)^{3}}\left(\frac{\sum_{i=1}^{n} \gamma_{i}}{x^{2}}\right)^{2}+\frac{n^{2}}{\left(\frac{n}{x}\right)^{2}} \frac{\frac{\sum_{i=1}^{n}}{x^{3}} \gamma_{i}^{2}}{x^{2}}}{\left.n(\nmid h-1)(n x)^{n-2}\left(\sum_{i=1}^{n} \gamma_{i}\right)^{2}-n^{n} x^{n}\left(\frac{\sum_{i=1}^{n}+x^{2}}{x}\right)^{2}-\frac{\sum_{i=1}^{n} \gamma_{i}^{2}}{x^{2}}\right)}=\frac{2}{n^{n} x^{n-1}},
\end{aligned}
$$

where we used L'Hôpital's rule twice and the fact that $n \sum_{i=1}^{n} \gamma_{i}^{2}>\left(\sum_{i=1}^{n} \gamma_{i}\right)^{2}$ (the CauchySchwarz inequality, the equality case is not possible as not all γ_{i} are equal). The proof is completed.

In particular, if $\sum_{i=1}^{n} x_{i}=1$, then $x=\frac{1}{n}$, and therefore, by Lemma 1 ,

$$
\begin{aligned}
& x_{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)} \frac{n^{2}\left(1-n^{n} \prod_{i=1}^{n} x_{i}\right)}{\sum_{i=1}^{n} \frac{1}{x_{i}}}-n^{n} \prod_{i=1}^{n} x_{i} \\
& \\
& =\frac{n^{2}}{1-\lim _{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)} \frac{\sum_{i=1}^{n}-\frac{n^{2}}{1-n^{n}} \prod_{i=1}^{n} x_{i}}{n}}
\end{aligned} \frac{n^{2}}{1-\frac{2}{n^{n}\left(\frac{1}{n}\right)^{n-1}}}=\frac{n^{3}}{n-2} .
$$

As an immediate consequence of this and (6), we obtain an upper bound for the best constant

$$
\begin{equation*}
\lambda_{n} \leq \frac{n^{2}}{n-2} . \tag{7}
\end{equation*}
$$

We want to use a well-known result in the analysis, which states that a continuous function over a compact set achieves its minimum (and maximum) values at certain points. For this purpose, let us change function $g\left(x_{1}, \ldots, x_{n}\right)$, to a new function g_{1} so that g_{1} is defined also at point $P_{0}\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ and points of ∂C, and g_{1} is continuous in the compact set $\bar{C}=C \cup \partial C$:

$$
g_{1}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}\frac{\pi}{2}, & \text { if } \prod_{i=1}^{n} x_{i}=0 ; \\ \tan ^{-1} \frac{n^{3}}{n-2}, & \text { if }\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right) ; \\ \tan ^{-1} g\left(x_{1}, \ldots, x_{n}\right), & \text { otherwise }\end{cases}
$$

Since g_{1} is a continuous function in compact \bar{C}, g_{1} reaches its extreme values somewhere in \bar{C}. Obviously, g_{1} reaches its maximum value $\frac{\pi}{2}$ at the boundary points ∂C where $\prod_{i=1}^{n} x_{i}=$ 0 , and the minimum value at a point of C. The minimum of g is achieved at the same point of C if the minimum point is different from $P_{0}\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$. In any case, $\inf _{\mathrm{x} \in C} g=$ $\tan \left(\min _{\mathrm{x} \in \overline{\mathrm{C}}} g_{1}\right)$. We use an optimization argument similar to [12, 25] but with 3 variables, to determine where these points must lie. This method can also be used for other inequalities involving only symmetric polynomials s_{1}, s_{n-1}, and s_{n}.
Let $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a minimum point of g_{1}. Select any 3 of the coordinates of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, say x_{1}, x_{2}, and x_{3}. Let us assume that $x_{1} x_{2} x_{3}=\alpha$ and $x_{1}+x_{2}+x_{3}=\beta$. Since

Figure 2 Parametric space curve (blue and green) representing intersection of the plane $x+y+z=\beta$ (not shown) and the surface $x y z=\alpha$ (not shown)

$P \in C, \alpha, \beta>0$. Also, by the AM-GM inequality $\beta^{3} \geq 27 \alpha$ and it is known that if $\beta^{3}=27 \alpha$, then $x_{1}=x_{2}=x_{3}$. Hence, suppose that $\beta^{3}>27 \alpha$. Let us now take arbitrary positive numbers x, y, z such that $x y z=\alpha$ and $x+y+z=\beta$. Without loss of generality we can assume that $x \leq y \leq z$. Since $x+z=\beta-y$ and $x z=\frac{\alpha}{y}$, the numbers x and z are the solutions of the quadratic equation $\delta^{2}+(y-\beta) \delta+\frac{\alpha}{y}=0$. If we take $y=t$, then we obtain parametrization of the curve obtained by intersection of the plane $x+y+z=\beta$ and the surface $x y z=\alpha$:

$$
x=\frac{-t+\beta \pm \sqrt{(t-\beta)^{2}-\frac{4 \alpha}{t}}}{2}, \quad y=t, \quad z=\frac{-t+\beta \mp \sqrt{(t-\beta)^{2}-\frac{4 \alpha}{t}}}{2} .
$$

Parameter t changes in the interval $\left[t_{1}, t_{2}\right]$, where t_{1} and t_{2} are the zeros of the cubic $\kappa(t)=$ $t(t-\beta)^{2}-4 \alpha$ in intervals $\left(0, \frac{\beta}{3}\right)$ and $\left(\frac{\beta}{3}, \beta\right)$, respectively. The third zero t_{3} of $\kappa(t)$ satisfies $t_{3}>\beta$ and therefore $t_{3} \notin\left[t_{1}, t_{2}\right]$. Since we are interested only with the case $x \leq y \leq z$, we will take one half of this curve (see Fig. 2)

$$
x=\frac{-t+\beta-\sqrt{(t-\beta)^{2}-\frac{4 \alpha}{t}}}{2}, \quad y=t, \quad z=\frac{-t+\beta+\sqrt{(t-\beta)^{2}-\frac{4 \alpha}{t}}}{2},
$$

and in a smaller interval $\left[t_{1}^{*}, t_{2}^{*}\right]$, where t_{1}^{*} and t_{2}^{*} are the zeros of the cubic $\kappa^{*}(t)=\kappa(t)-$ $t(3 t-\beta)^{2}$ in intervals $\left(t_{1}, \frac{\beta}{3}\right)$ and $\left(\frac{\beta}{3}, t_{2}\right)$, respectively. Again, since the third zero t_{3}^{*} of $\kappa^{*}(t)$ satisfies $t_{3}^{*}>\beta$, $t_{3}^{*} \notin\left[t_{1}, t_{2}\right]$. Note that if $t=t_{1}^{*}$, then $x=y$, and if $t=t_{2}^{*}$, then $y=z$. Consider the sum $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ and note that

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{y}+\frac{x+z}{x z}=\frac{1}{y}+\frac{\beta-y}{\alpha / y}=\frac{1}{t}+\frac{\beta t-t^{2}}{\alpha} .
$$

Denote $h(t)=\frac{1}{t}+\frac{\beta t-t^{2}}{\alpha}$, where $t \in\left[t_{1}^{*}, t_{2}^{*}\right]$. Hence, if $t \in\left(t_{1}^{*}, t_{2}^{*}\right)$, then $h^{\prime}(t)=-\frac{1}{t^{2}}+\frac{\beta}{\alpha}-\frac{2 t}{\alpha}=$ $\frac{(z-t)(t-x)}{x y^{2} z}>0$, and $h^{\prime}\left(t_{1}^{*}\right)=h^{\prime}\left(t_{2}^{*}\right)=0$. Consequently, $h(t)$ attains its minimum and maximum in the interval $\left[t_{1}^{*}, t_{2}^{*}\right]$ at the endpoints t_{1}^{*}, t_{2}^{*}, respectively. We are interested in making h smaller, which happens when the sum $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ is smaller. Hence, the minimum of $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}$ is reached when $x_{1}=x_{2} \leq x_{3}$. Since the coordinates x_{1}, x_{2}, and x_{3} were chosen arbitrarily, these results hold for any trio of coordinates. Therefore, the left-hand side of
(6) is minimal only when there are at most 2 distinct numbers in the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ Furthermore, if the two numbers are distinct, then the smaller one is repeated $n-1$ times in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ i.e., $x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$. Consequently, in (6) we can restrict ourselves only to the case where $x_{1}=x_{2}=\cdots=x_{n-1}=x, x_{n}=1-(n-1) x$, where $0<x \leq \frac{1}{n}$. By substituting these in (6) and simplifying, we obtain

$$
\frac{n^{2}}{1-(n-1) \frac{(n x-1)^{2}}{((n-1)-n(n-2) x)\left(1-n^{n} x^{n-1}(1-(n-1) x)\right)}} \geq \lambda
$$

We will study the part of the denominator that is dependent on x, and for simplicity put $t=n x$. Hence,

$$
\begin{aligned}
& \frac{(t-1)^{2}}{((n-1)-(n-2) t)\left(1-n t^{n-1}+(n-1) t^{n}\right)} \\
& \quad=\frac{1}{((n-1)-(n-2) t)\left(1+2 t+3 t^{2}+\cdots+(n-1) t^{n-2}\right)} .
\end{aligned}
$$

Denote the polynomial in the denominator by

$$
p_{n}(t)=((n-1)-(n-2) t)\left(1+2 t+3 t^{2}+\cdots+(n-1) t^{n-2}\right),
$$

where $0 \leq t \leq 1$. By taking the derivative and simplifying, we obtain

$$
\begin{aligned}
p_{n}^{\prime}(t)= & (n-1)\left(1 \cdot 2+2 \cdot 3 t+3 \cdot 4 t^{2}+\cdots+(n-2) \cdot(n-1) t^{n-3}\right) \\
& -(n-2)\left(1^{2}+2^{2} t+3^{2} t^{2}+\cdots+(n-1)^{2} t^{n-2}\right) \\
= & 1 \cdot n+2 \cdot(n+1) t+3 \cdot(n+2) t^{2}+\cdots+(n-2) \cdot(2 n-3) t^{n-3} \\
& -(n-2)(n-1)^{2} t^{n-2} .
\end{aligned}
$$

Since $p_{n}^{\prime}(0)=n>2$ and $p_{n}^{\prime}(1)=-\frac{n(n-1)(n-2)}{6}<0$, there is at least 1 zero of the polynomial $p_{n}^{\prime}(t)$ in the interval $(0,1)$. On the other hand, by Descartes' rule of signs (see p. 247 in [11], or p. 28 in [22]) the number of positive zeros of $p_{n}^{\prime}(t)$ does not exceed the number of sign changes in the sequence of coefficients of $p_{n}^{\prime}(t)$, which is 1 . Hence, $p_{n}^{\prime}(t)$ has exactly one zero t_{n} in $[0,1]$, which is also the maximum point of $p_{n}(t)$. This means that there is exactly one point $x=\frac{t_{n}}{n}$ in $\left(0, \frac{1}{n}\right)$, such that $x_{1}=x_{2}=\cdots=x_{n-1}=x, x_{n}=1-(n-1) x$ makes the left-hand side of (6) minimal. This minimal value is also the best constant for (1):

$$
\begin{equation*}
\lambda_{n}=\frac{n^{2}}{1-\frac{n-1}{p_{n}\left(t_{n}\right)}} . \tag{8}
\end{equation*}
$$

For $n=3,4,5$, and 6 it is possible to find the exact values of t_{n} and the corresponding λ_{n}.

- if $n=3$, then $p_{3}(t)=(2-t)(1+2 t)$, and $p_{3}^{\prime}(t)=3-4 t$. Therefore, $t_{3}=\frac{3}{4}$. By (8$)$, the best constant is $\lambda_{3}=\frac{3^{2}}{1-\frac{3-1}{p_{3}\left(t_{3}\right)}}=25$ (see [2]).
- if $n=4$, then $p_{4}(t)=(3-2 t)\left(1+2 t+3 t^{2}\right)$ and $p_{4}^{\prime}(t)=4+10 t-18 t^{2}$. Therefore, $t_{4}=\frac{5+\sqrt{97}}{18} . \operatorname{By}(8)$, the best constant is $\lambda_{4}=\frac{4^{2}}{1-\frac{4-1}{p_{4}\left(t_{4}\right)}}=\frac{582 \sqrt{97}-2054}{121} \approx 30.423077$ (see [4]).
- if $n=5$, then $p_{5}(t)=(4-3 t)\left(1+2 t+3 t^{2}+4 t^{3}\right)$ and $p_{5}^{\prime}(t)=5+12 t+21 t^{2}-48 t^{3}$. Using Cardano's formula and Maple, we find that $t_{5}=\frac{\theta+7+241 \theta^{-1}}{48}$, where $\theta=(8119+48 \sqrt{22,535})^{\frac{1}{3}}$. By (8), the best constant is $\lambda_{5}=\frac{5^{2}}{1-\frac{5-1}{p_{5}\left(t_{5}\right)}} \approx 40.090307$, which coincides with the value of λ_{5} conjectured in [4].
- if $n=6$, then

$$
p_{6}(t)=(5-4 t)\left(1+2 t+3 t^{2}+4 t^{3}+5 t^{4}\right), \quad p_{6}^{\prime}(t)=6+14 t+24 t^{2}+36 t^{3}-100 t^{4} .
$$

Using Ferrari's method and Maple, we find that

$$
t_{6}=\frac{9+\phi+\sqrt{50 \psi+962-11,300 \psi^{-1}+47,258 \phi^{-1}}}{100}
$$

where

$$
\phi=\sqrt{-50 \psi+481+11,300 \psi^{-1}}, \quad \psi=(1473+\sqrt{13,712,905})^{\frac{1}{3}} .
$$

By (8), the best constant is $\lambda_{6}=\frac{6^{2}}{1-\frac{6-1}{p_{6}\left(t_{6}\right)}} \approx 52.358913$.
For larger values of n, we can give some bounds for λ_{n}. We already found an upper bound (7). We will now focus on a similar lower bound.

By the AM-GM inequality,

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{x_{i}} \geq \frac{n}{G_{n}} \tag{9}
\end{equation*}
$$

where $x_{1}, x_{2}, \ldots, x_{n}>0 ; \sum_{i=1}^{n} x_{i}=1, G_{n}=\sqrt[n]{\prod_{i=1}^{n} x_{i}}$, and $n \geq 2$. Let us show that if $\lambda=\frac{n^{3}}{n-1}$, then

$$
\begin{equation*}
\frac{n}{G_{n}} \geq \frac{\lambda}{1+n^{n-2}\left(\lambda-n^{2}\right) G_{n}^{n}}, \tag{10}
\end{equation*}
$$

where $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \neq\left(\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\right)$ and therefore $G_{n}=\sqrt[n]{\prod_{i=1}^{n} x_{i}}<\frac{1}{n}$. Indeed, we can simplify (10) to

$$
\frac{n^{2}\left(1-s^{n}\right)}{s\left(1-s^{n-1}\right)} \geq \frac{n^{3}}{n-1}
$$

where $s=n G_{n}<1$. This is easily proved, as we can write it in the following form

$$
1+\frac{1}{s+s^{2}+\cdots+s^{n-1}} \geq \frac{n}{n-1}
$$

where noting $s<1$ completes the proof. From (1), (9), and (10) it follows that if $\lambda \leq \frac{n^{3}}{n-1}$, then (1) holds true. This means that we have now a lower bound for the best constant:

$$
\begin{equation*}
\lambda_{n} \geq \frac{n^{3}}{n-1} \tag{11}
\end{equation*}
$$

Combining (7) and (11) we obtain the following symmetric double inequality.

Theorem 1 If $n>2$, then

$$
\begin{equation*}
\frac{n^{3}}{n-1} \leq \lambda_{n} \leq \frac{n^{3}}{n-2} . \tag{12}
\end{equation*}
$$

It is possible to improve these estimates in exchange for a less-elegant formula. For example, if we put $x_{1}=x_{2}=\cdots=x_{n-1}=\frac{1}{n+1}, x_{n}=\frac{2}{n+1}$, then we obtain from (6) a new upper bound for the best constant:

$$
\begin{equation*}
\lambda_{n} \leq(n+1)^{2} \cdot \frac{\frac{1}{2}-\frac{n^{n}}{(n+1)^{n}}}{\frac{n+1}{2 n-1}-\frac{n^{n-2}}{(n+1)^{n-2}}} . \tag{13}
\end{equation*}
$$

One can check that (13) is sharper than (6) for all $n>3$. We can also prove that $\frac{n}{n+1} \leq t_{n}$ or equivalently, $p_{n}^{\prime}\left(\frac{n}{n+1}\right) \geq 0$ for all $n \geq 3$. Indeed,

$$
p_{n}^{\prime}\left(\frac{n}{n+1}\right)=3 n(n+1)^{2}\left(\frac{n}{n+1}\right)^{n}\left(\left(1+\frac{1}{n}\right)^{n}-\frac{8}{3}+\frac{1}{n}-\frac{1}{3 n^{2}}\right) .
$$

For $n=3,4, \ldots, 25$ one can check directly that $\left(1+\frac{1}{n}\right)^{n}-\frac{8}{3}+\frac{1}{n}-\frac{1}{3 n^{2}} \geq 0$. For $n>25$, one can use the fact that $\left(1+\frac{1}{n}\right)^{n}>\frac{8}{3}$ and $\frac{1}{n}>\frac{1}{3 n^{2}}$.

Appendix

We will give a proof of (5) here. We can use the optimization argument given after Lemma 1 of the current paper, to maximize the left-hand side of (5), while keeping the right-hand side of (5) fixed. This is achieved when for any 3 of the coordinates, say x_{1}, x_{2}, and x_{3}, of $\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{1} \leq x_{2}=x_{3}$. Hence, we can restrict ourselves only to the case where $x_{1}=x$ and $x_{2}=\cdots=x_{n-1}=x_{n}=\frac{1-x}{n-1}$, where $0<x \leq \frac{1}{n}$. For this particular case (5) is transformed into

$$
\frac{1}{x}+\frac{(n-1)^{2}}{1-x} \leq \frac{(n-1)^{n-1}}{n^{n-2} x(1-x)^{n-1}}
$$

which can be simplified to the correct inequality

$$
(n x-1)^{2}\left((n-2)(n x)^{n-3}+(n-3)(n x)^{n-4}+\cdots+1\right) \geq 0 .
$$

The equality case is possible only when $n x=1$.
Inequality (5) can also be written as the homogeneous inequality $A_{n}^{n-1} H_{n} \geq G_{n}^{n}$, where A_{n}, H_{n}, and G_{n} are, respectively, the arithmetic, harmonic, and geometric means of arbitrary positive numbers x_{1}, \ldots, x_{n} :

$$
A_{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}, \quad H_{n}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}, \quad G_{n}=\sqrt[n]{\prod_{i=1}^{n} x_{i}}
$$

Since $A_{n} \geq G_{n}$, automatically $A_{n}^{l} H_{n} \geq G_{n}^{l+1}$ for any real number $l \geq n-1$. It would be natural to ask whether the general inequality $A_{n}^{l} H_{n} \geq G_{n}^{l+1}$ can hold true also for some real number $l<n-1$. The answer to this question is negative. A counterexample is found
if one takes $x_{1}=x_{2}=\cdots=x_{n-1}=1$ and $x_{n}=x$, where $x \rightarrow 0^{+}$. Indeed, if $l<n-1$, then $A_{n}^{l} H_{n}=O(x)$ and $G_{n}^{l+1}=O\left(x^{\frac{l+1}{n}}\right) \gg O(x)$.

Acknowledgements

This work was completed with the support of ADA University Faculty Research and Development Fund.

Data Availability

No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Author contributions

Y.A. wrote the main manuscript text and prepared Figs. 1-2.

Received: 17 December 2023 Accepted: 19 February 2024 Published online: 01 March 2024

References

1. Aliyev, Y.: The best constant inequalities and their applications. Maple Conference 2021, Maple In Mathematics. Prerecorded video: https://www.youtube.com/watch?v=fGBkq2Ouh_c. Session video. https://youtu.be/o9BwsoVj8aY?si=3_H_zk2835kq3g7r
2. Aliyev, Y.N.: Problem 11199. Am. Math. Mon. 113(1), 80 (2006). Solution 114(7), 649, (2007)
3. Aliyev, Y.N.: Hexagons and inequalities. Crux Math. Math. Mayhem 32(7), 456-461 (2006)
4. Aliyev, Y.N.: The best constant for an algebraic inequality. JIPAM. J. Inequal. Pure Appl. Math. 8(2), 79 (2007)
5. Aliyev, Y.N.: Poblem 127. La Gaceta de la RSME 12(2), 315 (2009). Solution 13(2), 308-309, (2010)
6. Aliyev, Y.N.: New inequalities on triangle areas. J. Qafqaz Univ. 25, 129-135 (2009)
7. Aliyev, Y.N.: Problem 3. The RGMIA Problem Corner (2009). https://rgmia.org/pc/2009/problem3-09.pdf
8. Bottema, O., Groenman, J.T.: On some triangle inequalities. In: Publikacije Elektrotehničkog Fakulteta. Serija Matematika I Fizika, vol. 577/598, pp. 11-20 (1977). http://www.jstor.org/stable/43667788
9. Hardy, G., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge Mathematical Library (1952)
10. Harris, W.R.: Real even symmetric ternary forms. J. Algebra 222(1), 204-245 (1999)
11. Kurosh, A.: Higher Algebra. Mir, Moscow (1980). https://archive.org/details/kurosh-higher-algebra/page/237/mode/2up
12. Mitev, T.P.: New inequalities between elementary symmetric polynomials. JIPAM. J. Inequal. Pure Appl. Math. 4(2), 48 (2003)
13. Mitrinović, D.S.: Inequalities concerning the elementary symmetric functions. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 182, 17-20 (1967). http://pefmath2.etf.rs/files/71/182.pdf
14. Mitrinović, D.S.: Some inequalities involving elementary symmetric functions. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 182, 21-27 (1967). https://www.jstor.org/stable/43667274
15. Mitrinović, D.S.: Inequalities concerning the elementary symmetric functions. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 210(228), 17-19 (1968). https://www.jstor.org/stable/43667315
16. Mitrinović, D.S., Pečarić, J.E., Volenec, V.: Recent Advances in Geometric Inequalities. Math. Appl. (East European Ser.), vol. 28. Kluwer Academic, Dordrecht (1989)
17. Niculescu, C.P.: A new look at Newton's inequalities. JIPAM. J. Inequal. Pure Appl. Math. 1(2), 17 (2000). https://www.emis.de/journals/JIPAM/images/014_99_JIPAM/014_99.pdf
18. Niculescu, C.P.: Interpolating Newton's inequalities. Bull. Math. Soc. Sci. Math. Roum. 47(1-2), 67-83 (2004). https://www.jstor.org/stable/43678943
19. Niculescu, C.P., Persson, L.E.: Convex Functions and Their Applications. A Contemporary Approach, 2nd edn. CMS Books in Mathematics. Springer, Cham (2018)
20. Persson, L.E., Samko, N., Tephnadze, G.: Sharpness of some Hardy-type inequalities. J. Inequal. Appl. 2023, 155 (2023). https://doi.org/10.1186/s13660-023-03066-1
21. Persson, L.E., Tephnadze, G., Weisz, F:: Martingale Hardy Spaces and Summability of Vilenkin-Fourier Series. Springer, Berlin (2022)
22. Prasolov, V.V.: Polynomials, 2nd edn. Springer, Berlin (2010)
23. Rigby, J.F.: Quartic and sextic inequalities for the sides of triangles, and best possible inequalities. In: Publikacije Elektrotehničkog Fakulteta. Serija Matematika I Fizika, vol. 602/633, pp. 195-202 (1978). http://www.jstor.org/stable/43660843
24. Rosset, S.: Normalized symmetric functions, Newton's inequalities, and a new set of stronger inequalities. Am. Math. Mon. 96(9), 815-819 (1989). https://www.jstor.org/stable/2324844
25. Sato, N.: Symmetric polynomial inequalities. Crux Math. Math. Mayhem 27, 529-533 (2001)
26. Tao, T.: A Maclaurin Type Inequality (2023). Preprint, Arxiv https://arxiv.org/pdf/2310.05328v2.pdf

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

