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1 Introduction and preliminary
The important role played by Jensen’s inequality as an application of convex functions
in mathematics, statistics, economics, probability theory, etc. is well known, see [14, 20].
Many other inequalities can be obtained from it. A function f : I ⊆ R → R is said to be
convex if

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y)

for every x, y ∈ I and t ∈ [0, 1]. The classical integral form of Jensen’s inequality states that

f
(

1
d – c

∫ d

c
g(x) dx

)
≤ 1

d – c

∫ d

c
f
(
g(x)

)
dx, (1)

where g is an integrable function on [c, d] with a ≤ g(x) ≤ b and f is a convex function
on [a, b]. In recent years, many papers dealing with refinements of Jensen’s inequality for
important generalized convex functions have appeared in the literature, see [6–8, 11, 16,
18, 22, 23] and the references therein.

The analogue of the arithmetic mean in the context of finite measure spaces (X,�,μ) is
the integral arithmetic mean, which, for a μ-integrable function f : X → R, is the number

M1(f ) :=
1

μ(X)

∫

X
f dμ.

In probability theory, M1(f ) represents the mathematical expectation of the random vari-
able f . There are many results on the integral arithmetic mean. A basic one is the integral
form of Jensen’s inequality:
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Theorem 1.1 Let (X,�,μ) be a finite measure space and g : X → R be a μ-integrable
function. If f is a convex function given on an interval I ⊆ R that includes the image of g ,
then M1(g) ∈ I and

f
(
M1(g)

) ≤ M1(fog),

provided that fog is μ-integrable.

A significant generalization of convex functions is that of invex functions introduced by
Hanson in [5]. Recall some notions in the invexity analysis that will be used throughout
the paper. A set S ⊆R is said to be invex with respect to the map η : S × S →R if

y + tη(x, y) ∈ S (2)

for every x, y ∈ S and t ∈ [0, 1]. It is obvious that every convex set is invex with respect to
the map η(x, y) = x – y, but there exist invex sets that are not convex. Recall that for x, y ∈ S
the η-path Pxy is a subset of S defined by

Pxy :=
{

x + tη(y, x)|0 ≤ t ≤ 1
}

.

An important generalization of convex functions is the class of preinvex functions intro-
duced in [24, 25] by Weir and Mond and Weir and Jeyakumar and then applied to the es-
tablishment of the sufficient optimality conditions and duality in nonlinear programming.
There have been some works in the literature that are investigated by preinvex functions
(e.g. see [1, 2, 10, 12, 13, 21, 25–27] and the references therein).

Let S ⊆ R be an invex set with respect to η : S × S → R. Then the function f : S → R is
said to be preinvex with respect to η if

f
(
y + tη(x, y)

) ≤ tf (x) + (1 – t)f (y) (3)

for every x, y ∈ S and t ∈ [0, 1]. Every convex function is preinvex with respect to the map
η(x, y) = x – y, but the converse does not hold. Recall that the mapping η : S × S → R is
said to satisfy the conditions C if

η
(
y, y + tη(x, y)

)
= –tη(x, y),

η
(
x, y + tη(x, y)

)
= (1 – t)η(x, y)

for every x, y ∈ S and t ∈ [0, 1]. From conditions C we have

η
(
y + t2η(x, y), y + t1η(x, y)

)
= (t2 – t1)η(x, y) (4)

for every x, y ∈ S and every t1, t2 ∈ [0, 1]. The Hermite–Hadamard inequality for preinvex
functions is introduced in [19] as follows:

f
(

a +
1
2
η(b, a)

)
≤ 1

η(b, a)

∫ a+η(b,a)

a
f (x) dx ≤ f (a) + f (b)

2
, (5)
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where a, b ∈ S. Since then, numerous articles have been published in this category (see,
for example, [9, 12] and the references therein). It would be worthwhile to give the exact
(precise conditions) Jensen’s inequality for preinvex functions. We also recall the following
theorem from [14, p. 25].

Theorem 1.2 Let f : I →R be a convex function on the interval I ⊆R. Then f is continuous
on the int(I) and has finite one-sided derivatives f ′

–(x) and f ′
+(x) at every point x ∈ int(I).

Moreover,

f (y) ≥ f (x) + (y – x)f ′
+(x)

for every y ∈ I .

The main purpose of this paper is to introduce some generalized versions of integral
Jensen’s inequality for preinvex functions defined on the invex subsets of a real line.

2 Main results
In this section we establish some versions of integral Jensen-type inequality for preinvex
functions. At first, to reach our goal, in the following result some necessary and sufficient
conditions for a real-valued function to be preinvex are introduced.

Proposition 2.1 Let S ⊆R be an invex set with respect to η : S × S →R. Suppose that f is
a real-valued function on S. Then:

(i) If f : S → R is a preinvex function and η satisfies conditions C, then the restriction of
f to any η-path in S is a convex function.

(ii) If for every x, y ∈ S, f (x + η(y, x)) ≤ f (y) and the restriction of f to any η-path in S is a
convex function, then f is a preinvex function on S.

Proof (i) Suppose that f is preinvex on S and x, y ∈ S. Assume that z, w ∈ Pxy with z =
x + t1η(y, x) and w = x + t2η(y, x) for some t1, t2 ∈ [0, 1]. By using (4) for every λ ∈ [0, 1], we
obtain

(1 – λ)z + λw = z + λ(w – z)

= z + λ(t2 – t1)η(y, x)

= z + λη
(
x + t2η(y, x), x + t1η(y, x)

)
= z + λη(w, z).

From this and the preinvexity of f we deduce that

f
(
(1 – λ)z + λw

)
= f

(
z + λη(w, z)

) ≤ (1 – λ)f (z) + λf (w),

which shows thatf is convex on Pxy.
(ii) Let x, y ∈ S and t ∈ [0, 1]. By the convexity of f on the Pxy, we have

f
(
x + tη(y, x)

)
= f

(
(1 – t)x + t

(
x + η(y, x)

))

≤ (1 – t)f (x) + tf
(
x + η(y, x)

) ≤ (1 – t)f (x) + tf (y),

which shows the preinvexity of f on S, and the proof is completed. �
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Remark 2.1 Note that Pavić in [19, p. 3576] Theorem 5.4 introduced a similar result to
Proposition 2.1 (i) by using the convexity of a preinvex function on each invex hall in R

n

instate of η-paths. But we do not know in general whether for each η the corresponding
invex hall and η-paths are equivalent or not?

Note that by Proposition 2.1 we can construct several examples of preinvex functions.
The next example illustrates how Proposition 2.1 works for particular nontrivial functions
η and f .

Example 2.1 Let S := [–3, –2] ∪ [–1, 2]. It is easy to see that S is an invex set with respect
to η : S × S →R defined by

η(x, y) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x – y, x, y ∈ [–3, –2],

x – y, x, y ∈ [–1, 2],

–3–, y x ∈ [–1, 2], y ∈ [–3, –2],

–1 – y, x ∈ [–3, –2], y ∈ [–1, 2].

Moreover, η satisfies condition C (see [26, p., 231]). Then

Pyx =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[y, x], x, y ∈ [–3, –2] or x, y ∈ [–1, 2], y < x,

[x, y], x, y ∈ [–3, –2] or x, y ∈ [–1, 2], x < y,

[–3, y], x ∈ [–1, 2], y ∈ [–3, –2],

[–1, y], x ∈ [–3, 2], y ∈ [–1, 2].

Define the function f : S →R as follows:

f (x) :=

⎧
⎨

⎩
ex, x ∈ [–3, –2],

x2 – 4, x ∈ [–1, 2].

We see that for every x, y ∈ S, f (y + η(x, y)) ≤ f (x) and η satisfies condition C. Simple com-
putation shows that the restriction of f to any η-path Pyx in S is a convex function. Now,
by Proposition 2.1 (ii), f is a preinvex function on S.

In the next example we obtain a preinvex function by combining Theorem 5 in [4, p.
319] and Theorem 1.2 in [24, p. 178].

Example 2.2 Let S := R. Define the map η as follows:

η(x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

x – y, x ≤ 0, y ≤ 0,

x – y, x ≥ 0, y ≥ 0,

y – x, otherwise.

Then the function f : S → R defined by f (x) := –4|x| + 3e–|x| is a preinvex function on S,
which is not convex.
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A generalization of Theorem 1.2 is given in the following theorem.

Theorem 2.1 Let S ⊆ R be an invex set with respect to η : S × S → R, and η satisfies
conditions C. Suppose that f : S →R is a preinvex function. Then:

(i) f has finite left and right derivatives at each point of int(S);
(ii) for every x, y ∈ int(S) with η(x, y) 	= 0, we have

f (y) ≥ f (x) + η(y, x)f ′
+(x). (6)

Proof (i) Let x ∈ int(S). By the invexity of S there exist x1, x2 ∈ S and δ > 0 such that

x + tη(x1, x) < x < x + tη(x2, x)

for all t ∈ [0, δ). Pick

A1 :=
{

x + tη(x1, x)|t ∈ [0, δ)
}

,

A2 :=
{

x + tη(x2, x)|t ∈ [0, δ)
}

.

It is easy to see that A1, A2, A := A1 ∪ A2 are convex sets and x is an interior point of S.
Since f is preinvex on S, by Proposition 2.1 (i), f is convex on A. Therefore, both f ′

–(x) and
f ′
+(x) are finite by Theorem 1.2.

(ii) Let x, y ∈ int(S) and t ∈ (0, 1). By the preinvexity of f , we have

f
(
x + tη(y, x)

) ≤ (1 – t)f (x) + tf (y).

Dividing by t and taking limit as t → 0 imply that

f (y) – f (x) ≥ lim
t→0

f (x + tη(y, x)) – f (x)
t

= η(y, x) lim
t→0

f (x + tη(y, x)) – f (x)
tη(y, x)

= η(y, x) lim
u→0

f (x + u) – f (x)
u

= η(y, x)f ′
+(x). �

The following example fulfills the conditions of Theorem 2.1.

Example 2.3 Pick S := [–2, 2] and define the mapping η : S × S →R as follows:

η(x, y) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x – y, x ≥ 0, y ≥ 0,

x – y, x < 0, y < 0,

–2 – y, x > 0, y ≤ 0,

2 – y, x ≤ 0, y > 0.

Then S is an invex set with respect to η(x, y), and η satisfies condition C. Now, the func-
tion f : S → R defined as f (x) := –2|x| is a preinvex function and has finite left and right
derivatives at each point of int(S) = (–2, 2), (see [27, p., 611]).
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First of our approach is the following special case.

Theorem 2.2 Let S ⊆ R be an invex set with respect to η : S × S → R, and η satisfies
conditions C. Suppose that f : S → R is a preinvex function. Assume that g : J → R is an
integrable function for some interval J ⊆R. Let c, d ∈ J , c < d be such that for every x ∈ [c, d],
g(x) ∈ Pab(or Pba) for a := g(c), b := g(d)(or b := g(c), a := g(d)). Then the following inequality
holds:

f
(

1
d – c

∫ d

c
g(x) dx

)

≤ 1
η(b, a)

∫

Pab

fog(x) dx
(

or
1

η(a, b)

∫

Pba

fog(x) dx
)

,
(7)

provided that fog is integrable, where
∫

Pab
is denoted for integral over Pab.

Proof Let a, b ∈ S. By Proposition 2.1, f is convex on Pab(or Pba). Hence, (7) is an imme-
diate consequence of Jensen’s inequality (1). �

The following example gives an application of Theorem 2.2.

Example 2.4 Pick S := I1 ∪ I4, where

I1 := (–5, –3], I2 := [–1, 0], I3 := [0,
√

2 – 1], I4 := I2 ∪ I3.

Define the mapping η : S × S → S as follows:

η(x, y) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x – y, x, y ∈ Ii, i = 1, 2, 3,

–1 – y, x ∈ I1, y ∈ I2,

–y, x ∈ I1, y ∈ I3,

–3 – y, x ∈ I4, y ∈ I1.

It is easy to see that S is an invex set with respect to η : S × S →R and η satisfies condition
C. Define the integrable function g : [– π

2 , π
2 ] →R as

g(x) :=

⎧
⎨

⎩
–5 – 2 sin x, – π

2 ≤ x < 0,

–1 +
√

2 sin x, 0 ≤ x ≤ π
2 .

Moreover, by using Proposition 2.1, the function f : S →R defined by

f (x) :=

⎧
⎨

⎩
ex6 , x ∈ I1,

1 + x10, x ∈ I4,

is a preinvex function. Let c, d ∈ [– π
2 , π

2 ] with c < d and g(c) := b, g(d) := a. To examine
Theorem 2.2, we consider four cases.

(i) If a, b ∈ Ii, i = 1, 2, 3, then Pab is the line segment between a and b; hence we obtain
(7) by using Jensen’s inequality (1).
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(ii) If a ∈ I4 and b ∈ I1, then c ∈ [– π
2 , 0), d ∈ [0, π

2 ], and η(a, b) = –3 – b, so Pba = [b, –3].
Therefore,

1
d – c

∫ d

c
g(x) dx =

1
d – c

(∫ 0

c
(–5 – 2 sin x) dx +

∫ d

0
(–1 +

√
2 sin x) dx

)

=
1

d – c
{2 +

√
2 + 5c – d – 2 cos c –

√
2 cos d} := e1.

(8)

Now, by Theorem 2.2, we have

f (e1) ≤ 1
η(a, b)

∫

Pba

fog(x) dx =
1

–3 – b

∫ –3

b
e(5+2 sin x)6

dx. (9)

(iii) If a ∈ I1 and b ∈ I2, then c ∈ [0, π
4 ], d ∈ [– π

2 , 0), and η(a, b) = –1 – b, so Pba = [–1, b].
Hence

1
d – c

∫ d

c
g(x) dx =

1
d – c

(∫ 0

d
(–5 – 2 sin x) dx +

∫ c

0
(–1 +

√
2 sin x) dx

)

=
1

d – c
{2 +

√
2 + 5d – c – 2 cos d –

√
2 cos c} := e2.

(10)

Thus by Theorem 2.2 we get

f (e2) ≤ 1
–1 – b

∫ b

–1
(–1 +

√
2 sin x)10 dx. (11)

(iv) If a ∈ I1 and b ∈ I3, then c ∈ [ π
4 , π

2 ], d ∈ [– π
2 , 0), and η(a, b) = –b, so Pba = [0, b]. Hence

by (10) we have

1
d – c

∫ d

c
g(x) dx

=
1

d – c

(∫ 0

d
(–5 – 2 sin x) dx +

∫ c

0
(–1 +

√
2 sin x) dx

)

=
1

d – c
{4 + 5d –

√
2c – 2 cos c – 2 cos d} := e3.

(12)

So using Theorem 2.2 implies that

f (e3) ≤ –
1
b

∫ b

–
√

2
(–1 +

√
2 sin x)10 dx. (13)

Motivated by [14, Theorem 1.8.1, p. 47] and [20, Theorem 2.23, p. 64], we introduce
the following theorem, which is a generalization of Jensen’s Theorem 1.1 in the preinvex
functions setting.

Theorem 2.3 Let (X,�,μ) be a finite measure space and g : X → R be a μ-integrable
function. Suppose that S ⊆ R is an invex set with respect to η : S × S → R and S includes
the image of g . If f : S →R is a preinvex function, then:

(i) M1(g) ∈ S;
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(ii) If ψ(x) := η(g(x), M1(g)) and ψ(x) 	= 0 for every x ∈ S such that g(x) 	= M1(g), then there
exists K ∈R such that the following inequality holds:

f
(

1
μ(X)

∫

X
g dμ

)
≤ 1

μ(X)

∫

X
(fog) dμ – K

1
μ(X)

∫

X
ψ dμ, (14)

provided that ψ and fog are μ-integrable.

Proof (i) If M1(g) /∈ S, then g(x) 	= M1(g) for every x ∈ X, hence the function h : X → R

defined by h(x) := M1(g) – g(x) (or –h) is a positive function and

∫

X
h dμ =

∫

X

(
M1(g) – g(x)

)
dμ = μ(X)M1(g) –

∫

X
g dμ = 0,

which is a contradiction.
(ii) If M1(g) ∈ int(S) and K := f ′

+(M1(g)), then by Theorem 2.1 we have

f
(
g(x)

) ≥ f
(
M1(g)

)
+ η

(
g(x), M1(g)

)
f ′
+
(
M1(g)

)

= f
(
M1(g)

)
+ η

(
g(x), M1(g)

)
K

(15)

for every x ∈ X, and (14) follows by integrating both sides of (15) over X. Now, suppose that
M1(g) := b is a boundary point of S. Since

∫
X(M1(g) – g(x)) dμ = 0, so we have g = M1(g)

almost everywhere. Let A := {x ∈ X|g(x) = M1(g)}, then

f
(

1
μ(X)

∫

X
g dμ

)
= f (b)

and
∫

X
(fog) dμ =

∫

A
f (b) dμ = f (b),

equality in (14) holds if we choose K = 0. �

The following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.1 Suppose that the conditions of Theorem 2.3 are satisfied. Additionally, if

1
μ(X)

∫

X
η
(
g(x), M1(g)

)
dμ = 0, (16)

then

f
(

1
μ(X)

∫

X
g dμ

)
≤ 1

μ(X)

∫

X
(fog) dμ. (17)

Note that in the trivial case if η(y, x) := y – x, then S and f will be a convex set and a
convex function, respectively, and Corollary 2.1 gives us the usual Jensen’s inequality pre-
sented in Theorem 1.1. In the following corollary we obtain the left-hand side of Hermite–
Hadamard inequality as a consequence of Theorem 2.3.
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Corollary 2.2 Under the conditions of Theorem 2.3, if a, b ∈ S with η(b, a) 	= 0 and a <
a + η(b, a), then we have

f
(

a +
1
2
η(b, a)

)
≤ 1

η(b, a)

∫ a+η(b,a)

a
f (x) dx. (18)

Proof Let the function g : Pab → Pab be defined by g(x) = x. It is easy to see that

M1(g) =
1

η(b, a)

∫ a+η(b,a)

a
x dx = a +

1
2
η(b, a)

and

η
(
g(x), M1(g)

)
= η

(
x, a +

1
2
η(b, a)

)
.

Now, if we use the change of variable x := a + sη(b, a), s ∈ [0, 1], then by (4) we obtain

∫ a+η(b,a)

a
η
(
g(x), M1(g)

)
dx =

∫ a+η(b,a)

a
η

(
x, a +

1
2
η(b, a)

)
dx

= η(b, a)
∫ 1

0

(
s –

1
2

)
ds = 0.

(19)

Therefore, by Corollary 2.1, we deduce that

f
(

a +
1
2
η(b, a)

)
= f

(
1

η(b, a)

∫ a+η(b,a)

a
g(x) dx

)

≤ 1
η(b, a)

∫ a+η(b,a)

a
f (x) dx,

(20)

which is the left-hand side of inequality (5), and the proof is completed. �

To introduce an application of Theorem 2.3, we recall the definition of a special measure
from [15, p. 262] and [17, p. 469], see also [3, 55–69]..

Definition 2.1 A real Borel measure μ on I = [a, b] is said to be
Steffensen–Popoviciu measure provided that
(i) μ(I) > 0,
(ii)

∫ b
a f (x) dμ(x) ≥ 0 for every nonnegative f ∈ C.

Several examples of Steffensen–Popoviciu measures can be found in [17, p. 471].

Example 2.5 Set X := [–1, 1]. According to [17, p. 471], dμ(x) := (x2 – a) dx for every 0 <
a < 1

3 is a Steffensen–Popoviciu measure on X. Choose a := 1
6 . Then we have

μ(X) =
∫

[–1,1]

(
x2 –

1
6

)
dx =

∫ 1

–1

(
x2 –

1
6

)
dx =

1
3

.

Define the μ-integrable function g : X →R as follows:

g(x) := 4x2 – 1, x ∈ [–1, 1].
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Note that Im(g) = [–2, 2], and by simple computation we obtain

M1(g) =
1

μ(X)

∫

X
g dμ = 3

∫ 1

–1

(
x2 –

1
6

)(
4x2 – 1

)
dx =

22
15

. (21)

Pick S := [–2, 2] and consider the mapping η defined in Example 2.3. Since f1(x) := ex is
an increasing and convex function on [–2, 2] and h(x) := –2|x| is a preinvex function on
[–2, 2], so by Theorem 5 in [4, p. 319] the function

f (x) := e–2|x| for all x ∈ [–2, 2]

is a preinvex function (which is not convex). Since

K = f ′
+
(
M1(g)

)
= f ′

+

(
22
15

)
= –2f

(
22
15

)
,

therefore by using Theorem 2.3 and equality (21), we get

f
(

22
15

)
≤ 3

∫

X
e–|4x2–2| dμ + 6f

(
22
15

)∫

X
η

(
4x2 – 2,

22
15

)
dμ. (22)

Taking into account that 4x2 – 2 ≥ 0 on [–1, –
√

2
2 ] ∪ [

√
2

2 , 1] and 4x2 – 2 ≤ 0 on [–
√

2
2 ,

√
2

2 ],
by using the definition of η, we obtain

∫ 1

–1
η

(
4x2 – 2,

22
15

)
dμ

=
∫ –

√
2

2

–1

(
x2 –

1
6

)
η

(
4x2 – 2,

22
15

)
dx +

∫ √
2

2

–
√

2
2

(
x2 –

1
6

)
η

(
4x2 – 2,

22
15

)
dx

+
∫ 1

√
2

2

(
x2 –

1
6

)
η

(
4x2 – 2,

22
15

)
dx

=
∫ –

√
2

2

–1

(
x2 –

1
6

)(
4x2 –

52
15

)
dx +

8
15

∫ √
2

2

–
√

2
2

(
x2 –

1
6

)
dx

+
∫ 1

√
2

2

(
x2 –

1
6

)
η

(
4x2 –

52
15

)
dx = –

4
√

2 – 3
45

.

(23)

Therefore, by combining (22) and (23), we have

9 + 8
√

2
45

f
(

22
15

)
≤

∫

X
e–|4x2–2| dμ.

3 Conclusions
In this paper, we have used the class of preinvex functions, which is an important gener-
alization of the class of convex functions. Some generalized versions of integral Jensen’s
inequality are introduced in Theorems 2.1, 2.2, and 2.3. Theorem 2.3 is a new approach to
Jensen’s integral inequality that is an improvement of Theorem 1.1. A version of Hermite–
Hadamard inequality is also obtained as a consequence. The study of integral Jensen’s in-
equality for other types of generalized convex functions are our intend to explore in future
works.
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