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Abstract
To make better decisions on approximation, we may need to increase reliable and
useful information on different aspects of approximation. To enhance information
about the quality and certainty of approximating the solution of an Apollonius-type
quadratic functional equation, we need to measure both the quality and the certainty
of the approximation and the maximum errors. To measure the quality of it, we use
fuzzy sets, and to achieve its certainty, we use the probability distribution function. To
formulate the above problem, we apply the concept of Z-numbers and introduce a
special matrix of the form diag(A,B,C) (named the generalized Z-number) where A is a
fuzzy time-stamped set, B is the probability distribution function, and C is a degree of
reliability of A that is described as a value of A ∗ B. Using generalized Z-numbers, we
define a novel control function to investigate H–U–R stability to approximate the
solution of an Apollonius-type quadratic functional equation with quality and
certainty of the approximation.

Mathematics Subject Classification: 54B82; 46B52

Keywords: Stability; Decision theory; Approximation; Apollonius-type quadratic
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1 Introduction
In many practical problems, the fuzzy probability approach can be an important compo-
nent of decision making. In the real world, we consider various aspects of uncertainty that
are not always well represented in fuzzy sets of information uncertainty. To overcome this
problem, Zadeh introduced the Z-number (Z-N) in 2011 [25]; for more on the subject, see
Aliev et al. [3] and Allahviranloo et al. [4]. A Z-N is an ordered binary of the form (A, B)
where the first component shows the fuzzy value and the second shows the uncertainty
of the first. Based on the Z-N theory, we provide a model which considers both certainty
and quality for the solution of an Apollonius-type quadratic functional equation.

The question of stability of functional equations was first raised by Ulam, and then Hy-
ers investigated stability for mappings from one Banach space to another. Stability analysis
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in the sense of Ulam–Hyers can be used to find an approximate solution for a wide selec-
tion of functional equations such as integral equations, differential equations, fractional
equations, etc.; see [2, 5, 6, 8–11, 17–20, 22, 24, 26]. The functional equation

ϒ(τ – x) + ϒ(τ – y) =
1
2
ϒ(x – y) + 2ϒ

(
τ –

x + y
2

)
(1.1)

is called a quadratic functional equation of Apollonius-type, and Kim et al. [16] studied the
stability of generalized Hyers–Ulam type for equation (1.1). Park–Rassias [21] and Wang
[23] introduced the generalized quadratic functional equation of Apollonius-type:

ϒ

( n∑
i=1

τi –
n∑

i=1

xi

)
+ ϒ

( n∑
i=1

τi –
n∑

i=1

yi

)

=
1
2
ϒ

( n∑
i=1

xi –
n∑

i=1

yi

)
+ 2ϒ

( n∑
i=1

τi –
∑n

i=1 xi +
∑n

i=1 yi

2

)
.

(1.2)

Note that every solution of Eq. (1.2) is said to be a generalized quadratic mapping of
Apollonius-type. Since Eq. (1.2) includes a quadratic function, we will need a bilinear
space, so here we consider such equations in a C-module space. In Sect. 2 of this arti-
cle, we provide appropriate concepts and results, and in Sect. 3, we prove the H–U–R
stability for (1.2) which shows both certainty and quality for the solution of a quadratic
functional equation of Apollonius-type.

2 Basic concepts
Let �1 = [0, 1], and let x�1 be given as follows:

x�1 = diag �1 =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

θ1
. . .

θn

⎤
⎥⎥⎦ = diag[θ1, . . . , θn], θ1, . . . , θn ∈ �1

⎫⎪⎪⎬
⎪⎪⎭

.

We write diag[θ1, . . . , θn] � diag[κ1, . . . ,κn] when θi ≤ κi for every i = 1, . . . , n.

Definition 2.1 ([13]) A mapping � : x�1 × x�1 → x�1 is called a generalized continuous
t-norm (GCTN) if for all �,κ ,� , y,κn,�n ∈ x�1 , 1 = diag[1, . . . , 1] the following conditions
are satisfied:

(t1) � � 1 = � ;
(t2) � � κ = κ �� ;
(t3) � � (κ � �) = (� � κ) � �;
(t4) � � κ and � � y imply that � �� � κ � y;
(t4) If limn→∞ κn = κ and limn→∞ �n = � , we have limn→∞(κn ��n) = κ �� .

In this paper, we choose the minimum t-norm �M = x�1 × x�1 → x�1 which is defined
as follows:

� �M κ = diag[�1, . . . ,�n] �M diag[κ1, . . . ,κn] = diag
[
min{�1,κ1}, . . . , min{�n,κn}

]
.
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Definition 2.2 ([7]) Let ℘ ∈ R and ℘ ∈ (0, 1], and let K = R or C. Let X be a linear space
over K. A fuzzy set ℵ℘ : X × (0,∞) → �1 is a ℘-fuzzy norm (℘-FN) on X if and only if we
have

(℘N1) ℵ℘(x, ζ ) = 1 if and only if x = 0 for ζ ∈ (0,∞);
(℘N2) ℵ℘(γ x, ζ ) = ℵ℘(x, ζ

|γ |℘ ) for all γ 	= 0 ∈K, all x ∈ X and for ζ ∈ (0,∞);
(℘N3) ℵ℘(x + y, ζ + δ) ≥ ℵ℘(x, ζ ) � ℵ℘(y, δ) for all x, y ∈ X and any ζ , δ ∈ (0,∞);
(℘N4) limζ→+∞ ℵ℘(x, ζ ) = 1 for any ζ ∈ (0,∞).
A ℘-Banach FN space is a complete ℘-FN space.

Now, we use the concept of probability distribution functions to measure the certainty
of a vector [1], where we put

ε0(ζ ) =

⎧⎨
⎩

0, if ζ ≤ 0,

1, if ζ > 0.
(2.1)

Definition 2.3 Assume ℘ ∈ (0, 1) and let K = R or K = C. A ℘-random normed space (℘-
RNS) is a triple (X, ℘μ,�′), where X is a vector space over K, �′ is a continuous t-norm,
and ℘μ is a mapping from X into D+ such that the following conditions hold:

(μ1) ℘μx(ζ ) = ε0(ζ ) for all ζ > 0 if and only if x = 0;
(μ2) ℘μαx(ζ ) = ℘μx( ζ

|α|℘ ) for all x ∈ X and α 	= 0;
(μ3) ℘μx+y(ζ + δ) ≥ ℘μx(ζ )�′ ℘μy(δ) for all x, y ∈ X and ζ , δ ≥ 0, where ℘μx denotes the

value of ℘μ at a point x ∈ X .

Let ℘ ∈R and ℘ ∈ (0, 1], and let K = R or C. We define a matrix-valued function Z̃ : X ×
R

+ → x�1 with Z̃(x, ζ ) = diag[ℵ℘(x, ζ ), ℘μx(ζ ),ℵ℘(x, ζ )� ℘μx(ζ )], and call it a generalized
Z-number (GZ-N), when for all x, y ∈ X, ζ , δ > 0, and α 	= 0 the following conditions are
satisfied:

(Z1) Z̃(x, ζ ) = diag[1, 1, 1] if and only if x = 0;
(Z2) Z̃(αx, ζ ) = Z̃(x, ζ

|α|℘ );
(Z3) Z̃(x + y, ζ + δ) � Z̃(x, ζ ) �M Z̃(y, δ).

Now we prove the above conditions. According to the conditions (℘N1) and (μ1), we have

Z̃(x, ζ ) = diag
[ℵ℘(x, ζ ), ℘μx(t),ℵ℘(x, ζ ) � ℘μx(ζ )

]
= diag[1, 1, 1 � 1] = diag[1, 1, 1]

if and only if x = 0, therefore (Z1) is established.
According to the conditions (℘N2) and (μ2), we have

Z̃(αx, ζ ) = diag
[ℵ℘(αx, ζ ), ℘μαx(t),ℵ℘(αx, ζ ) � ℘μαx(t)

]

= diag
[
ℵ℘

(
x,

ζ

|α|℘
)

, ℘μx

(
ζ

|α|℘
)

,ℵ℘

(
x,

ζ

|α|℘
)
� ℘μx

(
ζ

|α|℘
)]

= Z̃
(

x,
ζ

|α|℘
)

,

therefore (Z2) is established.
According to the conditions (℘N3) and (μ3), we have

Z̃(x + y, ζ + δ) = diag
[ℵ℘(x + y, ζ + δ), ℘μx+y(ζ + δ),ℵ℘(x + y, ζ + δ) � ℘μx+y(ζ + δ)

]
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� diag
[ℵ℘(x, ζ ) � ℵ℘(y, δ), ℘μx(ζ ) � ℘μy(δ),

(ℵ℘(x, ζ ) � ℵ℘(y, δ)
)

�
(
℘μx(ζ ) � ℘μy(δ)

)]
= diag

[ℵ℘(x, ζ ) � ℵ℘(y, δ), ℘μx(ζ ) � ℘μy(δ),
(ℵ℘(x, ζ )

� ℘μx(ζ )
)
�
(ℵ℘(y, δ) � ℘μy(δ)

)]
= Z̃(x, ζ ) �M Z̃(y, δ),

therefore (Z3) is established.

Theorem 2.4 ([12, 14, 15]) Let (�, d) be a complete generalized metric space (GMS) and
� : � → � such that for all x, y ∈ �,

d(�x,�y) ≤ L d(x, y),

with L ∈ (0, 1).
Then, for each given x ∈ �, either d(�nx,�n+1x) = ∞ for all n ≥ 0, or there exists a non-

negative integer n0 such that d(�nx,�n+1x) < ∞ for all n ≥ n0, limn→∞ �nx = y∗, and y∗ is
the fixed point of � in the set �∗ = {y ∈ �|d(�n0 x, y) < ∞} and d(y, y∗) ≤ 1

1–L d(y,�y) for all
y ∈ �∗.

Lemma 2.5 ([21]) If ϒ : K → H with ϒ(0) = 0 is a solution of (1.2) for all τ1, . . . , τn, x1, . . . ,
xn, y1, . . . , yn ∈ K, where K and H are real vector spaces, then ϒ : K → H is a quadratic
function, i.e., ϒ(κω) = κ2ϒ(ω) for κ ∈K and ω ∈ K.

3 Measure of the quality and the certainty of the approximation of the
solution of quadratic functional equation of Apollonius-type with GZ-N

We consider a function ϒ : K → H such that K is a ℘-N left C-module and H is a ℘-N left
Banach C-module, and let n ≥ 2 be a fixed integer. We show the H–U–R stability of (1.2)
via Theorem 2.4 to measure both the quality and certainty of the approximation of (1.2).
For the function ϒ : K → H, we define the difference operator

Dbϒ(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn) := ϒ

( n∑
i=1

bτi –
n∑

i=1

bxi

)
+ ϒ

( n∑
i=1

bτi –
n∑

i=1

byi

)

–
1
2
ϒ

( n∑
i=1

bxi –
n∑

i=1

byi

)

– 2b2ϒ

( n∑
i=1

τi –
∑n

i=1 xi +
∑n

i=1 yi

2

)

for all τi, xi, yi ∈ K, b ∈ C1 = {b ∈C||b| = 1}, and i = 1, . . . , n.

Theorem 3.1 (i) Let ϒ : K → H with ϒ(0) = 0, and assume there exists a function�(x, ζ ) =
diag[ϕ(x, ζ ),ψ(x, ζ ),ϕ(x, ζ ) �ψ(x, ζ )] with ϕ : K3n ×R

+ → �1, ψ : K3n → D+ such that

Z̃
(
Dbϒ(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn), ζ

)� �
(
(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn), ζ

)
(3.1)
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and

�
(
(2τ1, . . . , 2τn, 2x1, . . . , 2xn, 2y1, . . . , 2yn), ζ

)

� �

(
(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn),

ζ

4℘L

) (3.2)

for all τi, xi, yi ∈ K, b ∈ C1, i = 1, . . . , n and for some L ∈ (0, 1), then there exists a unique
generalized quadratic mapping of Apollonius-type � : K → H such that

Z̃
(
ϒ(x) – �(x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
(1 – L)ζ

2℘L

)
, (3.3)

for all x ∈ K.
(ii) If instead we assume that (3.1) holds and

�
(
(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn), ζ

)

� �

(
(2τ1, . . . , 2τn, 2x1, . . . , 2xn, 2y1, . . . , 2yn),

4℘ζ

L

)
,

(3.4)

for all τi, xi, yi ∈ K, i = 1, . . . , n, b ∈ C1, and some L ∈ (0, 1), then there exists a unique gen-
eralized quadratic mapping of Apollonius-type � : K → H such that

Z̃
(
ϒ(x) – �(x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
(1 – L)ζ

2℘

)
(3.5)

for all x ∈ K.
Moreover, in both cases, if ϒ(tx) is continuous in t ∈ C for each fixed x ∈ K, then � is

C-Q, i.e., �(bx) = b2�(x) for all x ∈ K and all b ∈C.

Proof For all τi, xi, yi ∈ K, i = 1, . . . , n, using (3.2) we have

lim
k→∞

�
((

2kτ1, . . . , 2kτn, 2kx1, . . . , 2kxn, 2ky1, . . . , 2kyn
)
, 4k℘ζ

)
= 1, (3.6)

and letting τi = xi = x
n and yi = 0, as well as b = 1, in (3.1) and using ϒ(0) = 0, we have

Z̃
(

ϒ(x) – 4ϒ

(
x
2

)
, ζ
)

��

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘

)
(3.7)

for all x ∈ and for all i = 1, . . . , n. Consider the set � := {μ|μ : K → H,μ(0) = 0} and

∇(μ,� ) = inf

{
K ∈ (0,∞)

∣∣∣

Z̃
(
μ(x) – � (x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘K

)
∀x ∈ K

}
.

(3.8)
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We now show the completeness of (�,∇). We begin by showing ∇(μ,� ) = 0 if and only if
μ = � . Assume that ∇(μ,� ) = 0. Then

∇(μ,� ) (3.9)

= inf

{
K ≥ 0 : Z̃

(
μ(x) – � (x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘K

)
,

∀μ,� ∈ �, x ∈ K, ζ ∈ (0, +∞)
}

= 0,

and so

Z̃
(
μ(x) – ð(x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘K

)
, (3.10)

for all x ∈ K, ζ > 0 and K ∈ [0, +∞). Letting K → 0 in (3.10), we get

Z̃
(
μ(x) – ð(x), ζ

)
= 1.

Thus μ(x) = ð(x) for every x ∈ K, and vice versa. In addition, we have ∇(μ,ð) = ∇(ð,μ) for
every μ,ð ∈ �. Now we show ∇(μ, w) ≤ ∇(μ,ð) + ∇(ð, w). Let ∇(μ,ð) = ρ1 ∈ (0, +∞) and
∇(ð, w) = ρ2 ∈ (0, +∞). Then, we have

Z̃
(
μ(x) – ð(x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘ρ1

)
,

Z̃
(
ð(x) – w(x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘ρ2

)
,

for all x ∈ K and ζ ∈ (0, +∞). Now, the triangle inequality, (Z3), implies that

Z̃
(
μ(x) – w(x), (ρ1 + ρ2)ζ

)� Z̃
(
μ(x) – ð(x),ρ1ζ

)
� Z̃

(
ð(x) – w(x),ρ2ζ

)

� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘

)

��

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘

)

= �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘

)
,

for all x ∈ K and ζ ∈ (0, +∞). Then, ∇(μ, w) ≤ ρ1 + ρ2 and ∇(μ, w) ≤ ∇(μ,ð) + ∇(ð, w). To
prove the completeness of (�,∇), assume {℘k} is a Cauchy sequence in � such that for
every x ∈ K,ρ � 0, and ζ ∈ (0, +∞), we have

�(x, ζ ) � 1 – ρ.



Ahadi et al. Journal of Inequalities and Applications         (2024) 2024:24 Page 7 of 12

Choose q0 ∈ N such that

∇(℘q,℘p) < ρ ∀q, p ≥ q0.

Then

Z̃
(
℘q(x) – ℘p(x), ζ

)� Z̃
(
℘q(x) – ℘p(x),ρζ

)

� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘K

)

� 1 – ρ,

for every x ∈ K and ζ ∈ (0, +∞), i.e.,

Z̃
(
℘q(x) – ℘p(x), ζ

)� 1 – ρ.

For a fixed x ∈ K, {℘q(x)}k is Cauchy in the complete space (R, Z̃,�). Now, since K is com-
pact, we conclude that {℘q(x)}k is uniformly convergent (say) ℘ from K to (R, Z̃,�). Note
also that ℘ ∈ �. Thus we have proved the completeness of (�,∇).

We now define a function � : � → � by

(�μ)(x) =
1
4
μ(2x), ∀μ ∈ �, x ∈ K. (3.11)

Let μ,� ∈ � and K ∈ [0,∞] such that ∇(μ,� ) < K , and by (3.8) we have

Z̃
(
μ(x) – � (x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘K

)
, ∀x ∈ K. (3.12)

Now using (3.1), (3.2), and (3.12), we have

Z̃
(
4–1μ(2x) – 4–1� (2x), ζ

)� �

(
(x/n, . . . , x/n︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

),
ζ

2℘KL

)
∀x ∈ K. (3.13)

Hence, we have that ∇(�μ,�� ) ≤ L∇(μ,� ). It follows from (3.7) that ∇(�ϒ ,ϒ) ≤ L <
∞. So, by Theorem 2.4, � has a unique fixed point � : K → H in the set �∗ = {μ ∈
�|∇(ϒ ,μ) < ∞} such that

�(x) := lim
k→∞

(
�kϒ

)
(x) = lim

k→∞
1
4k ϒ

(
2kx

)
(3.14)

and �(2x) = 22�(x) for all x ∈ K. Also,

∇(�,ϒ) ≤ 1
1 – L

∇(�ϒ ,ϒ) ≤ L
1 – L

. (3.15)

Thus (3.3) holds for all x ∈ K.
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Now, we prove part (ii). It follows from (3.4) that

lim
k→∞

�

((
τ1

2k , . . . ,
τn

2k ,
x1

2k , . . . ,
xn

2k ,
y1

2k , . . . ,
yn

2k

)
,

ζ

4k℘

)
= 1,

∀τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn ∈ K.

Let � : � → � be the mapping defined by

�μ(x) = 4μ

(
x
2

)
, ∀μ ∈ �, x ∈ K.

It follows from (3.7) that ∇(ϒ ,�ϒ) ≤ 1. Therefore, by Theorem 2.4, the sequence {�kϒ}
converges to a fixed point � of �. This implies

�(x) = lim
k→∞

4kϒ

(
x
2k

)

and �(2x) = 4�(x) for all x ∈ K. Also

∇(ϒ ,�) ≤ 1
1 – L

∇(ϒ ,�ϒ) ≤ 1
1 – L

.

Thus (3.5) holds.
Now we use (3.1), (3.6), and (3.14) to prove that � is a quadratic function. Note that

Z̃
(
D1�(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn), ζ

)
= lim

k→∞
Z̃
(
D1ϒ

(
2kτ1, . . . , 2kτn, 2kx1, . . . , 2kxn, 2ky1, . . . , 2kyn

)
, 4k℘ζ

)

� lim
k→∞

�
((

2kτ1, . . . , 2kτn, 2kx1, . . . , 2kxn, 2ky1, . . . , 2kyn
)
, 4k℘ζ

)
= 1,

that is,

�

( n∑
i=1

τi –
n∑

i=1

xi

)
+ �

( n∑
i=1

τi –
n∑

i=1

yi

)
=

1
2
�

( n∑
i=1

xi –
n∑

i=1

yi

)

+ 2�

( n∑
i=1

τi –
∑n

i=1 xi +
∑n

i=1 yi

2

)

for all τi, xi, yi ∈ K and i = 1, . . . , n. From Lemma 2.5, � is a quadratic function. Now we
show that � is unique. Assume that there exists a quadratic function T : K → H which
satisfies (3.3). Since ∇(ϒ , T) ≤ L

1–L and T is a quadratic function, we get T ∈ �∗ and T is
a fixed point of �. Thus T = �, because both of them are fixed points and the fixed point
of � in �∗ is unique.

In addition, assume ϒ(tx) is continuous with respect to t ∈R for every fixed x ∈ K, then
� is an R-quadratic function. Now, we show that � is a C-quadratic function. Putting
τ1 = · · · = τn = x1 = · · · = xn = x and y1 = · · · = yn = 0 in (3.1), we get

Z̃
(

1
2
ϒ(nbx) – 2b2ϒ

(
nx
2

)
, ζ
)

� �
(
(x, . . . , x︸ ︷︷ ︸

2n

, 0, . . . , 0︸ ︷︷ ︸
n

), ζ
)

(3.16)
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for all x ∈ K and all b ∈ C1. From the definition of �, (3.6), and (3.16), we obtain

Z̃
(

1
2
�(nbx) – 2b2�

(
nx
2

)
, ζ
)

= lim
k→∞

1
2

Z̃
(
ϒ
(
2knbx

)
– 2b2ϒ

(
2k–1nx

)
, 4k℘ζ

)

� lim
k→∞

�
((

2kx, . . . , 2kx︸ ︷︷ ︸
2n

, 0, . . . , 0︸ ︷︷ ︸
n

)
, 4k℘ζ

)
= 1

for all x ∈ K and all b ∈ C1. So �(nbx) = 4b2�( nx
2 ) for all x ∈ K and all b ∈ C1. Since � is

an R-quadratic function, we get �(bx) = b2�(x) for all x ∈ K and all b ∈ C1 ∪ {0}. Now, let
a ∈C\{0}. Since � is an R-quadratic function,

�(ax) = �

(
|a| · a

|a|x
)

= |a|2�
(

a
|a|x

)
= |a|2 ·

(
a
|a|
)2

�(x) = a2�(x)

for all x ∈ K and all a ∈C. This proves that � is a C-quadratic function. �

In the following, we consider the result in Theorem 3.1. The first result is for the case
when r ∈ (0, 2), σ ∈R

+, and ϒ : K → H is a mapping with ϒ(0) = 0 such that

Z̃
(
Dbϒ(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn), ζ

)

� diag
( ζ

σ

ζ

σ
+
∑n

i=1(‖xi‖r
℘ + ‖yi‖r

℘ + ‖τi‖r
℘)

, e
–
∑n

i=1(‖xi‖r
℘ +‖yi‖r

℘ +‖τi‖r
℘ )

ζ
σ ,

ζ

σ

ζ

σ
+
∑n

i=1(‖xi‖r
℘ + ‖yi‖r

℘ + ‖τi‖r
℘)

� e
–
∑n

i=1(‖xi‖r
℘ +‖yi‖r

℘ +‖τi‖r
℘ )

ζ
σ

)

for all τi, xi, yi ∈ K and b ∈ C1, and i = 1, . . . , n, then for all x ∈ K, there exists a unique
generalized quadratic mapping of Apollonius-type � : K → H satisfying

Z̃
(
ϒ(x) – �(x), ζ

)

� diag
( n℘r(4℘–2℘r)ζ

2℘(r+1)·2nσ

n℘r(4℘–2℘r)ζ
2℘(r+1)·2nσ

+ ‖x‖r
℘

, e
–

‖x‖r
℘

n℘r (4℘ –2℘r )ζ
2℘(r+1) ·2nσ ,

n℘r(4℘–2℘r)ζ
2℘(r+1)·2nσ

n℘r(4℘–2℘r)ζ
2℘(r+1)·2nσ

+ ‖x‖r
℘

� e
–

‖x‖r
℘

n℘r (4℘ –2℘r )ζ
2℘(r+1) ·2nσ

)
.

The second result is for the case of r, s, t ∈ R
+ such that γ := r + s + t < 2 and δ,σ ∈ R

+,
and when ϒ : K → H with ϒ(0) = 0 is such that

Z̃
(
Dbϒ(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn), ζ

)

� diag
( ζ

σ

ζ

σ
+
∑n

i=1[‖xi‖r
℘‖yi‖s

℘‖τi‖t
℘ + (‖xi‖γ

℘ + ‖yi‖γ
℘ + ‖τi‖γ

℘)]
,

e
–
∑n

i=1[‖xi‖r
℘‖yi‖s

℘‖τi‖t
℘ +(‖xi‖γ℘ +‖yi‖γ℘ +‖τi‖γ℘ )]
ζ
σ ,

ζ

σ

ζ

σ
+
∑n

i=1[‖xi‖r
℘‖yi‖s

℘‖τi‖t
℘ + (‖xi‖γ

℘ + ‖yi‖γ
℘ + ‖τi‖γ

℘)]

� e
–
∑n

i=1[‖xi‖r
℘‖yi‖s

℘‖τi‖t
℘ +(‖xi‖γ℘ +‖yi‖γ℘ +‖τi‖γ℘ )]
ζ
σ

)
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for all τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn ∈ K and b ∈ C1. Then there exists a unique generalized
quadratic mapping of Apollonius-type � : K → H satisfying

Z̃
(
ϒ(x) – �(x), ζ

)

� diag
( n℘γ (4℘–2℘γ )ζ

2℘(γ +1)·2nσ

n℘γ (4℘–2℘γ )ζ
2℘(γ +1)·2nσ

+ ‖x‖γ
℘

, e
–

‖x‖γ℘
n℘γ (4℘ –2℘γ )ζ

2℘(γ +1) ·2nσ ,
n℘γ (4℘–2℘γ )ζ

2℘(γ +1)·2nσ

n℘γ (4℘–2℘γ )ζ
2℘(γ +1)·2nσ

+ ‖x‖γ
℘

� e
–

‖x‖γ℘
n℘γ (4℘ –2℘γ )ζ

2℘(γ +1) ·2nσ

)

for all x ∈ K.
Using Theorem 3.1(i), we get that ϒ : K → H is a mapping for which there exists a func-

tion � : K3n → [0,∞) satisfying (3.1) and (3.4), and then �(0, . . . , 0) = 0. It follows from
(3.1) that ϒ(0) = 0.

If r > 2, σ ∈R+, and ϒ : K → H is a mapping such that

Z̃
(
Dbϒ(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn), ζ

)

� diag
( ζ

σ

ζ

σ
+
∑n

i=1(‖xi‖r
℘ + ‖yi‖r

℘ + ‖τi‖r
℘)

, e
–
∑n

i=1(‖xi‖r
℘ +‖yi‖r

℘ +‖τi‖r
℘ )

ζ
σ ,

ζ

σ

ζ

σ
+
∑n

i=1(‖xi‖r
℘ + ‖yi‖r

℘ + ‖τi‖r
℘)

� e
–
∑n

i=1(‖xi‖r
℘ +‖yi‖r

℘ +‖τi‖r
℘ )

ζ
σ

)

for all τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn ∈ K and b ∈ C1, then Theorem 3.1(ii) implies that there
exists a unique generalized quadratic mapping of Apollonius-type � : K → H satisfying

Z̃
(
ϒ(x) – �(x), ζ

)

� diag
( n℘r(2℘r–4℘ )ζ

2℘(r+1)·2nσ

n℘r(2℘r–4℘ )ζ
2℘(r+1)·2nσ

+ ‖x‖r
℘

, e
–

‖x‖r
℘

n℘r (2℘r–4℘ )ζ
2℘(r+1) ·2nσ ,

n℘r(2℘r–4℘ )ζ
2℘(r+1)·2nσ

n℘r(2℘r–4℘ )ζ
2℘(r+1)·2nσ

+ ‖x‖r
℘

� e
–

‖x‖r
℘

n℘r (2℘r–4℘ )ζ
2℘(r+1) ·2nσ

)

for all x ∈ K.
Let r, s, t ∈R+, γ := r + s + t > 2, σ ∈R+ and let ϒ : K → H be such that

Z̃
(
Dbϒ(τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn), ζ

)

� diag
( ζ

σ

ζ

σ
+
∑n

i=1[‖xi‖r
℘‖yi‖s

℘‖τi‖t
℘ + (‖xi‖γ

℘ + ‖yi‖γ
℘ + ‖τi‖γ

℘)]
,

e
–
∑n

i=1[‖xi‖r
℘‖yi‖s

℘‖τi‖t
℘ +(‖xi‖γ℘ +‖yi‖γ℘ +‖τi‖γ℘ )]
ζ
σ ,

ζ

σ

ζ

σ
+
∑n

i=1[‖xi‖r
℘‖yi‖s

℘‖τi‖t
℘ + (‖xi‖γ

℘ + ‖yi‖γ
℘ + ‖τi‖γ

℘)]

� e
–
∑n

i=1[‖xi‖r
℘‖yi‖s

℘‖τi‖t
℘ +(‖xi‖γ℘ +‖yi‖γ℘ +‖τi‖γ℘ )]
ζ
σ

)
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for all τ1, . . . , τn, x1, . . . , xn, y1, . . . , yn ∈ K and b ∈ C1. Theorem 3.1(ii) implies that there ex-
ists a unique generalized quadratic mapping of Apollonius-type � : K → H satisfying

Z̃
(
ϒ(x) – �(x), ζ

)

� diag
( n℘γ (2℘γ –4℘ )ζ

2℘(γ +1)·2nσ

n℘γ (2℘γ –4℘ )ζ
2℘(γ +1)·2nσ

+ ‖x‖γ
℘

, e
–

‖x‖γ℘
n℘γ (2℘γ –4℘ )ζ

2℘(γ +1) ·2nσ ,
n℘γ (2℘γ –4℘ )ζ

2℘(γ +1)·2nσ

n℘γ (2℘γ –4℘ )ζ
2℘(γ +1)·2nσ

+ ‖x‖γ
℘

� e
–

‖x‖γ℘
n℘γ (2℘γ –4℘ )ζ

2℘(γ +1) ·2nσ

)

for all x ∈ K.
Also, in all the above results, for the continuous mapping ϒ(tx) for each fixed x ∈ K and

t ∈C, � is a C-quadratic function.

4 Conclusion
Using the concept of GZ-N, we measured the quality and certainty of approximation of the
solution of an Apollonius-type quadratic functional equation. Our method and technique
can be applied to a wide range of functional equations to measure the quality and certainty
of approximation of the solution.
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