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Abstract
The main purpose of this research article is to generalize Kannan-type fixed-point (FP)
theorems for single-valued mappings and Chatterjea-type FP result for fuzzy
mappings (FMs) in the context of complete strong b-metric spaces (MSs). Moreover,
fuzzy FPs are established for Suzuki-type fuzzy contraction in the setting of complete
strong b-MSs. The conclusions are supported by nontrivial examples to enhance the
validity of the results obtained in this study. In addition, previous findings have been
made as corollaries from the relevant literature. The numerous implications that this
technique has across the literature improve and integrate our findings. Applications
of some of the results obtained are also incorporated.
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1 Introduction
In the past few decades, a noteworthy interest in FP theory has been directed to inter-
changing recent metric FP results from the usual MSs to some generalized MSs, like quasi-
MSs usually called b-MSs introduced by Bakhtin [3] and Czerwik [8]. The class of strong
b-MSs lying between the class of b-MSs and the class of MSs was introduced by Kirk and
Shahzad [16]. As compared with b-MSs, strong b-MSs have the advantage that open balls
are open in the induced topology and, hence, they have given many properties that are sim-
ilar to the properties of classic MSs. In 1965, Zadeh [32] introduced the notion of fuzzy
logic. In the theory of traditional logic, some element does or does not belong to the set,
but in fuzzy logic a number from the interval [0, 1] expresses the affiliation of the element
to the set. Zadeh started to research the theory of fuzzy sets (FSs) in order to deal with
the issue of indeterminacy, which is a real problem that is fundamentally characterized by
uncertainty. The concept of the FM was given by Heilpern [13] and for fuzzy contraction
mapping in a metric linear space, a theorem was proved by him that is a fuzzy generaliza-
tion of Banach’s contraction principle. Many authors such as Banach [4], Benavides et al.
[5], Ciric [7], Kirk [17], Meir and Keeler [18], Nadler [23], Subrahmanyam [26], and Suzuki
[27, 28] proved theorems in which every contraction mapping was a continuous function.
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Then, in 1968, Kannan [15] was the first who introduced the contraction mapping that
was not necessarily continuous.

Fuzzy common FPs for generalized mappings were obtained by Abbas et al. [1], fuzzy
FPs and common FPs were established by Azam et al. [2] and fuzzy FPs for FMs were
constructed by Estruch and Vidal [10] and Frigon and O’Regan [11]. Işık et al. [14] and
Mohammadi et al. [19–22] have established valuable fixed-point and common fixed-point
results using various contractive conditions for fuzzy and nonfuzzy mappings in the gen-
eralizations of metric spaces.

Also, some other authors [24, 25, 30, 31] worked on the existence of FPs and common FPs
of FMs satisfying a contractive-type condition. Fuzzy theory has been applied in several
fields, for example quantum physics, nonlinear dynamical systems, population dynam-
ics, computer programming, fuzzy stability problems, statistical convergence, functional
equation, approximation theory, nonlinear equations, and many others.

Theorem 1.1 [15] Suppose (S, d) is a complete MS, and θ : S → S is a mapping. If there
exists xε[0, 1

2 ), satisfying

d(θs, θu) ≤ x
{

d(s, θs) + d(u, θu)
}

,

for all s, uεS, then θ has a unique FP rεS and for any sεS the sequence of iterates {θns}
converges to r.

After Kannan, Chatterjea [6] also proved a theorem with contraction mapping not nec-
essarily continuous.

Theorem 1.2 [15] Suppose (S, d) is a complete MS, and θ : S → S is a mapping. If there
exists xε[0, 1

2 ), satisfying

d(θs, θu) ≤ x
{

d(s, θu) + d(u, θs)
}

,

for all s, uεS, then θ has a unique FP rεS and for any sεS the sequence of iterates {θns}
converges to r.

Further, Gornicki [12] introduced various extensions of the Kannan FP theorem. He
proved the following results:

Assume ζ denotes the class of functions that satisfy the condition ζ = {φ : (0,∞) →
[0, 1

2 ) : φ(tn) → 1
2 implies tn → 0 as n → ∞}.

Theorem 1.3 [12] Suppose (S, d) is a complete MS and θ : S → S is a mapping. Also, as-
sume there exists φεζ such that for each s, uεS with s �= u,

d(θs, θu) ≤ φ
(
d(s, u)

){
d(s, θs) + d(u, θu)

}
.

Then, θ has a unique FP rεS and for any sεS the sequence of iterates {θns} converges to r.

In 2021, Doan [9] extended the results in [12] for a class of contractive mappings in
strong b-MSs. He proved a new version of FP theorems for single-valued and multivalued
mappings by combining the results in [15] and [29].
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Theorem 1.4 [9] Suppose (S,� ,σ ) is a complete strong b-MS with σ ≥ 1 and T : S → S
is a mapping. Assume there exists φεζ such that for each s, uεS with s �= u,

� (θs, θu) ≤ φ
(
� (s, u)

){
� (s, θs) + � (u, θu)

}
.

Then, θ has a unique FP rεS and for any sεS the sequence of iterates {θns} converges
to r.

In this article, we obtained the idea from [9] and extended it to [6, 29]. We prove
FP theorems for single-valued FMs in strong b-MS by combining the results in [6]
and [9].

2 Basic concepts
We recall some results and concepts, which are necessary to understand our results.

Definition 2.1 [16] Suppose S is a nonempty set and σ ≥ 1. A mapping � : S × S →
[0, +∞) is called a strong b-metric on S if

sb1) � (s, u) ≥ 0, ∀s, u ∈ S;
sb2) � (s, u) = 0 iff s = u;
sb3) � (s, u) = � (u, s) ∀s, u ∈ S;
sb4) � (s, u) ≤ � (s, t) + σ� (t, u), ∀s, u, t ∈ S.

Then, (S,� ,σ ) is called strong b-MS.

Theorem 2.2 [29] Suppose (S, d) is a complete MS and T : S → S is a mapping. Define a
nonincreasing function ψ : [0, 1) → ( 1

2 , 1] by

ψ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 ≤ x <
√

5–1
2 ;

(1 – x)x–2,
√

5–1
2 ≤ x < 2– 1

2 ;

(1 + x)x–1, 2– 1
2 ≤ x < 1.

Assume that there exists x ∈ [0, 1) such that ψ(x)d(s, θs) ≤ d(s, u) implies d(θs, θu) ≤
xd(s, u) for all s, u ∈ S. Then, θ has a unique FP r ∈ S and for any s ∈ S, the sequence of
iterates {θns} converges to r.

Definition 2.3 [16] Suppose (S,� ,σ ) is a strong b-MS, {sn} is a sequence in S, and s ∈ S.
Then,

(i) If limn→∞ � (sn, s) = 0, then {sn} is called convergent to s. This means limn→∞ sn = s
or sn → s as n → ∞.

(ii) If limn,m→∞ � (sn, sm) = 0, then {sn} is called a Cauchy sequence (CS) in S.
(iii) If every CS in S converges in S then (S,� ,σ ) is complete.

Proposition 2.4 [16] Suppose (S,� ,σ ) is a strong b-MS and {sn} is a sequence in S. Then,
(i) If {sn} converges to s ∈ S and u ∈ S, then s = u.

(ii) If limn→∞ sn = s ∈ S and limn→∞ un = u ∈ S, then limn,m→∞ � (sn, un) = � (s, u).
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Figure 1 Graph of FS B(x)

Proposition 2.5 [16] Suppose {sn} is a sequence in strong b-MS (S,� ,σ ) and

∞∑

n=1

� (sn, sn+1) < +∞.

Then, {sn} is a CS in S.

Definition 2.6 [32] Suppose S is any arbitrary set and a function A : S → [0, 1] is a FS.
The functional value A(s) is called the grade of membership of s in A. The collection of all
FSs in S is denoted by F(S).

The α-cut of A is denoted by Aα and is defined as follows:

Aα =
{

s; A(s) ≥ α if α ∈ (0, 1]
}

.

Example 2.7 Consider a FS B defined by the following membership function:

B(x) =

⎧
⎨

⎩
1 – |x–4|

2 , when 2 ≤ x ≤ 6;

0, otherwise.

FS B can be seen in Fig. 1.
Here, for any α ∈ (0, 1], the α-cut of B is

Bα =
[
2(1 + α), 2(3 – α)

]
.

Definition 2.8 [13] Suppose (S, d) is any MS and P is an arbitrary set. θ is called FM if
θ : W → F(S) is a function, i.e., θ (p) ∈ F(S) for each p ∈ P.

Example 2.9 Let P = [–9, 9] and S = [–4, 4]. Define T1 : P −→ F(S) by

T1(x)(y) =
x2 + y2

100
.

Then, T1 is a FM. Note that T1(x)(y) ∈ [0, 1], for all x ∈ P and y ∈ S. The graphical repre-
sentation T1(x)(y) showing the possible membership values of y in T1(x) is given in Fig. 2.
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Figure 2 Graph of fuzzy mapping T1

Figure 3 Graph of fuzzy mapping T2

Example 2.10 Let S = [–3, 3]. Define T2 : S −→ F(S) by

T2(x)(y) =
sin2 x cos2 y

3
.

Then, T2 is a fuzzy mapping. Note that T2(x)(y) ∈ [0, 1], for all x, y ∈ S. The graphical
representation v = T2(x)(y) showing the possible membership values of y in T2(x) is shown
in Figure 3.

Definition 2.11 Suppose (S, d) is a MS and CB(S) denotes the collection of all nonempty,
closed, and bounded subsets of S. Consider a map H : CB(S) × CB(S) → R. For C, E ∈
CB(S) define

H(C, E) = max
{

sup
c∈C

d(c, E), sup
e∈E

d(e, C)
}

,

where d(c, E) = {inf d(c, e) : e ∈ E} is the distance of c to meet E. This H is a metric on CB(S)
is called the Hausdorff metric induced by the metric d.
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Definition 2.12 Let (S,� , K) be a strong b-MS. Let θ : S → F(S) be a FM on S:

H
(
[θs]αθs , [θu]αθu

)
= max

{
sup

s∈[θs]αθs

d
(
s, [θu]αθu

)
, sup

u∈[θu]αθu

d
(
[θs]αθs , u

)}
,

where H is the Hausdroff metric on F(S) induced by � , [θs]αθs , [θu]αθu ∈ F(S) and
d(s, [Lu]αLu ) = infu∈[Lu]αLu

� (s, u).

Lemma 2.13 [2] Suppose (S, d, b) is a b-MS. Then, for C, E ∈ CB(S),
(i) d(c, E) ≤ H(C, E), c ∈ C;

(ii) For ε > 0 and c ∈ C, ∃e ∈ E such that

d(c, e) ≤ H(C, E) + ε.

Theorem 2.14 Suppose (S, d) is a complete MS. If θ : S → F(S) is a continuous FM such
that [θs]αθs and [θu]αθu are closed and bounded subsets of S satisfying

H
(
[θs]αθs , [θu]αθu

) ≤ x
{

d
(
s, [θs]αθs

)
+ d

(
u, [θu]αθu

)}
,

∀s, u ∈ S, where 0 ≤ x < 1
2 . Then, θ has at least one FP.

3 Main results
In this section, we establish our main results.

Theorem 3.1 Suppose (S,� ,σ ) is a complete strong b-MS and θ : S → S is a mapping.
Suppose there exists φ ∈ ζ such that for each s, u ∈ S with s �= u,

� (θs, θu) ≤ φ
(
� (s, u)

){
� (s, θu) + � (u, θs)

}
.

Then, θ has a unique FP r ∈ S and for any s ∈ S the sequence of iterates {θns} converges to r.

Proof Fix s0 ∈ S and define a sequence {sn} in S by sn+1 = θsn for all integers n ≥ 0. Assume
that there exists n such that sn+1 = sn, then sn is a FP of θ . Therefore, suppose that sn+1 �= sn

for all n ≥ 0. Set �n = � (sn, sn+1) for all n ≥ 0. By hypothesis, we have

�n+1 = � (sn+1, sn+2)

= � (θsn, θsn+1)

≤ φ
(
� (sn, sn+1)

){
� (sn, θsn+1) + � (sn+1, θsn)

}

<
1

2k
{
� (sn, θsn+1) + � (sn+1, θsn)

}

=
1

2k
{
� (sn, sn+2) + � (sn+1, sn+1)

}

≤ 1
2k

{
� (sn, sn+1) + σ� (sn+1, sn+2)

}

=
1

2k
{
� (sn, θsn) + σ� (sn+1, θsn+1)

}

=
1

2k
{�n + σ�n+1}.
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Hence, �n+1 < �n for all n ≥ 0 and so {�n} is monotonic decreasing and bounded below,
so there exists η ≥ 0 such that

lim
n→∞�n = η.

Let η > 0. Then, by hypothesis,

� (sn+1, sn+2) ≤ φ
(
� (sn, sn+1)

){
� (sn, sn+1) + σ� (sn+1, sn+2)

}
, ∀n ≥ 0,

which deduces

�n+1 ≤ φ(�n){�n + σ�n+1}.

This implies that �n+1
�n+σ�n+1

≤ φ(�n) for all n ≥ 0.
By letting n → ∞, we obtain limn→∞ φ(�n) ≤ 1

2k , and since φ ∈ ζ this in turn gives η = 0.
Hence, limn→∞ �n = 0.

On the other hand, for positive integers m, n with m �= n we obtain

� (sn+1, sm+1) ≤ φ
(
� (sn, sm)

){
� (sn, sn+1) + σ� (sm, sm+1)

}
<

1
2k

{�n + σ�m} → 0,

as n, m → ∞, so {sn} is a CS in S. By the completeness of S, there is r ∈ S such that
limn→∞ sn = r, since

� (θr, r) ≤ � (θsn, θr) + σ� (θsn, r)

≤ φ
(
� (sn, r)

){
� (sn, θr) + � (r, θsn)

}
+ σ� (sn+1, r)

� (θr, r) ≤ φ
(
� (sn, r)

){
� (sn, θr) + � (r, sn+1)

}
+ σ� (sn+1, r)

implies � (θr, r) → 0 as n → ∞.
Hence, θr = r. Assume r̄ is another FP of θ . By hypothesis,

� (r, r̄) = � (θr, θ r̄)

≤ φ
(
� (r, r̄)

){
� (r, θ r̄) + � (r̄, θr)

}

= φ
(
� (r, r̄)

){
� (r, r̄) + � (r̄, r)

}

= 2φ
(
� (r, r̄)

){
� (r, r̄)

}

and hence

(
1 – 2φ

(
� (r, r̄)

))
� (r, r̄) ≤ 0.

Since (1 – 2φ(� (r, r̄))) �= 0, then � (r, r̄) = 0 and so r = r̄. Hence, θ has a unique FP r ∈ S. �

Example 3.2 Suppose S = {1, 2, 3} and let � : S × S → [0, +∞) by

� (1, 1) = � (2, 2) = � (3, 3) = 0,

� (1, 2) = � (2, 1) =
1
5

,
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� (1, 3) = � (3, 1) = 7,

� (2, 3) = � (3, 2) = 2.

Then, (S,� ,σ = 2) is a strong b-MS, but it is not MS, because 7 = � (3, 1) > � (3, 2) +
� (2, 1) = 11

5 . Let θ : S → S by θ1 = 1, θ2 = 1, θ3 = 2, and the function φ ∈ ζ given by
φ(t) = t sin(t), t > 0 and φ(0) ∈ [0, 1

2 ). Then,

� (θ1, θ2) = � (1, 1) = 0 <
1

25
sin

(
1
5

)
= φ

(
� (1, 2)

){
� (1, θ2) + � (2, θ1)

}
,

� (θ2, θ3) = � (1, 2) =
1
5

< 14 sin(2) = φ
(
� (2, 3)

){
� (2, θ3) + � (3, θ2)

}
,

� (θ3, θ1) = � (2, 1) =
1
5

<
252

5
sin(7) = φ

(
� (3, 1)

){
� (3, θ1) + � (1, θ3)

}
.

Therefore, θ satisfies all the conditions of Theorem 3.1. Hence, 0 is a fixed point of θ .

If we take σ = 1 in Theorem 3.1, the strong b-MS is a usual MS, then we obtain the
following corollary.

Corollary 3.3 Suppose (S, d) is a complete MS and θ : S → S is a mapping. Assume there
exists φ ∈ ζ such that for each s, u ∈ S with s �= u,

� (θs, θu) ≤ φ
(
� (s, u)

){
� (s, θu) + � (u, θs)

}
.

Then, θ has a unique FP r ∈ S and for any s ∈ S the sequence of iterates {θns} converges to r.

Theorem 3.4 Suppose (S,� ,σ ) is a complete strong b-MS with σ ≥ 1 and θ : S → F(S) is
a fuzzy map. Suppose [θs]αθs and [θu]αθu are closed and bounded subsets of S such that

H
(
[θs]αθs , [θu]αθu

) ≤ β� (s, u),

for all s, u ∈ S and β ∈ [0, 1). Then, there exists r such that r ∈ [θr]αθr .

Proof Let s1 ∈ [θs0]αθs0
, with [θs1]αθs1

�= φ, where s0 ∈ S, [θs0]αθs0
are closed and bounded

subsets of S. By using Lemma 2.13, ∃s2 ∈ [θs1]αθs1
such that

� (s1, s2) ≤ H
(
[θs0]αθs0

, [θs1]αθs1

)
+ β . (3.1)

Now, ∃ s3 ∈ [θs2]αθs2
for [θs2]αθs2

�= φ are closed and bounded subsets of S such that

� (s2, s3) ≤ H
(
[θs1]αθs1

, [θs2]αθs2

)
+ β2. (3.2)

Given the contracting condition implies:

� (s2, s3) ≤ β� (� (s1, s2) + β2,

� (s3, s4) ≤ H�
(
[θs2]αθs2

, [θs3]αθs3

)
+ β3,

≤ β� (s2, s3) + β3.
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By utilizing (3.2), we obtain

� (s3, s4) ≤ β
[
β� (s1, s2) + β2] + β3,

≤ β2� (s1, s2) + 2β3,

≤ β2[H([θs0]αθs0
, [θs2]αθs2

]
+ 2β3,

≤ β2[β� (s0, s1) + β
]

+ 2β3,

≤ β3� (s0, s1) + β3 + 2β3,

≤ β3� (s0, s1) + 3β3.

Generally,

� (sn, sn+1) = βn� (s0, s1) + nβn.

For convenience, we set � (sn, sn+1) = �n, so it is possible to write the above result as

�n ≤ βn�0 + nβn. (3.3)

Consider positive integers m, n. Without loss of generality we suppose that m ≥ n. Now,

� (sn, sm) ≤ � (sn, sn+1) + σ� (sn+1, sn+2) + σ 2� (sn+2, sn+3) + · · · + σ m–n–1� (sm–1, sm).

By utilizing (3.3), we obtain

� (sn, sm) ≤ � (sn, sn+1) + σ� (sn+1, sn+2) + σ 2� (sn+2, sn+3)

+ · · · + σ m–n–1βm–1� (sm–1, sm) + σ m–n–1(m – 1)βm–1

≤ βn�0
(
1 + βσ + (βσ )2 + (βσ )3 + · · · + σ m–n–1βm–n–1) +

m–i∑

i=n

iσ i–nβ i

and hence

� (sn, sm) ≤ β�0

[
1 + (σβ)m–n–1

1 – σβ

]
+

m–i∑

i=n

iσ i–nβ i.

In the limiting case, m, n → ∞,

� (sn, sm) = 0.

This implies that {sn} is a CS in S. The completeness of S implies that there exists r ∈ S
such that sn → r. We will now demonstrate that r is a FP of θ . By utilizing Lemma 2.13,

�
(
r, [θr]αθr

) ≤ � (r, sn) + σ�
(
sn, [θr]αθr

)

≤ � (r, sn) + σH
(
[θsn–1]αθsn–1

, [θr]αθr

)

≤ � (r, sn) + σβ� (sn–1, r),

when n → ∞, � (r, [θr]αθr ) ≤ 0. Thus, r ∈ [θr]αθr and, hence, r is a FP of θ . �
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Example 3.5 Consider a set S = {3, 4, 5}. A mapping � : S × S → [0,∞) defined by

� (4, 3) = 2 = � (3, 4),

� (3, 5) = 3 = � (5, 3),

� (5, 4) = 6 = � (4, 5),

� (5, 5) = � (3, 3) = � (4, 4) = 0

is a strong b-metric. The triplet (S,� ,σ = 5) is a complete strong b-MS.
For any α ∈ (0, 1], define a mapping θ : S → F(S) and θ (s) : S → [0, 1] by

θ (3)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

α
4 , t = 3;
α
5 , t = 4,

α, t = 5;

θ (4)(t) =

⎧
⎨

⎩

α
2 , t = 3, 4;

α, t = 5,

θ (5)(t) =

⎧
⎨

⎩
α, t = 5;
α
3 , t = 3, 4

and

[θ3]αθ3 =
{

t ∈ S : θ (3)(t) ≥ α
}

= {5},
[θ5]αθ5 =

{
t ∈ S : θ (5)(t) ≥ α

}
= {5},

[θ4]αθ4 =
{

t ∈ S : θ (4)(t) ≥ α
}

= {5}.

Then,

H
(
[θ3]αθ3 , [θ4]αθ4

)
= H

({5}, {5}) = 0,

H
(
[θ4]αθ4 , [θ5αθ5

)
= H

({5}, {5}) = 0,

H
(
[θ3]αθ3 , [θ5]αθ5

)
= H

({5}, {5}) = 0.

We also have,

0 = H
(
[θ3]αθ3 , [θ4]αθ4

) ≤ β� (3, 4) ≤ 2β ,

0 = H
(
[θ3]αθ3 , [θ5]αθ5

) ≤ β� (3, 5) ≤ 3β .

0 = H
(
[θ5]αθ5 , [θ4]αθ4

) ≤ β� (5, 4) ≤ 6β .

Thus, all hypotheses of Theorem 3.4 are satisfied and r = 5 is a unique FP of θ .

Corollary 3.6 Suppose (S,� ) is a complete MS with and θ : S → F(S) is a fuzzy map.
Suppose [θs]αθs and [θu]αθu are closed and bounded subsets of S defined as

H
(
[θs]αθs , [θu]αθu

) ≤ β� (s, u),

for all s, u ∈ S and β ∈ [0, 1). Then, there exist r such that r ∈ [θr]αθr .



Kanwal et al. Journal of Inequalities and Applications         (2024) 2024:22 Page 11 of 19

Theorem 3.7 Suppose (S,� ,σ ) is a complete strong b-MS with σ ≥ 1 and θ : S → F(S) is
a fuzzy map. Suppose [θs]αθs and [θu]αθu are closed and bounded subsets of S defined by

H
(
[θs]αθs , [θu]αθu

) ≤ β
[
�

(
s, [θu]αθu

)
+ �

(
u, [θs]αθs

)]
, (3.4)

for all s, u ∈ S and β ∈ [0, 1). Then, there exist r in S such that r ∈ [θr]αθr .

Proof Suppose {sn : n ∈ N} is a sequence such that sn+1 ∈ [θsn]αθsn . By using Lemma 2.13,
for each s1 ∈ [θs0]αθs0

, ∃s2 ∈ [θs1]αθs1
such that

� (s1, s2) ≤ H
(
[θs0]αθs0

, [θs1]αθs1

)
+ β ,

≤ β
[
�

(
s0, [θs1]αθs1

)
+ �

(
s1, [θs0]αθs0

)]
+ β ,

≤ β
[
� (s0, s2) + � (s1, s1)

]
+ β ,

� (s1, s2) ≤ β� (s0, s2) + β .

By using sb4,

� (s1, s2) ≤ β� (s0, s1) + βσ� (s1, s2) + β ,

(1 – βσ )� (s1, s2) ≤ � (s0, s1) + β ,

� (s1, s2) ≤ β

(1 – βσ )
[� (s0, s1) +

β

(1 – βσ )
, (3.5)

� (s1, s2) ≤ γ� (s0, s1) + γ .

Here, γ = β

(1–βσ ) , where β ∈ (0, 1
2σ

), then γ ∈ (0, 1
σ

). By using Lemma 2.13 again,

� (s2, s3) ≤ H
(
[θs2]αθs2

, [θs1]αθs1

)
+ βγ ,

≤ β
[
�

(
s1, [θs2]αθs2

)
+ �

(
s2, [θs1]αθs1

)]
+ βγ ,

≤ β
[
� (s1, s3) + � (s2, θs2)

]
+ βγ ,

≤ β
[
� (s1, s3)

]
+ βγ .

By using sb4,

� (s2, s3) ≤ β
[
� (s1, s2) + σ� (s2, s3)

]
+ βγ ,

= β� (s1, s2) + βσ� (s2, s3) + βγ ,

(1 – βσ )� (s2, s3) ≤ β� (s1, s2) + βγ ,

⇒ � (s2, s3) =
β

(1 – βσ )
� (s1, s2) +

βγ

(1 – βσ )
,

= γ� (s2, s3) + γ 2.
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By using (3.5),

� (s2, s3) ≤ β
[
� (s0, s1) + γ

]
+ γ 2,

= γ 2� (s0, s1) + 2γ 2,

⇒ � (s2, s3) = γ 2� (s0, s1) + 2γ 2.

Generally,

� (sn, sn+1) ≤ γ n� (s0, s1) + nγ n. (3.6)

To show {sn}∞n=1 is a CS, let m, n ∈ N with m > n � (sn, sm) ≤ � (sn, sn+1) + σ� (sn+1, sn+2) +
σ 2� (sn+2, sn+3) + · · · + σ m–n–1� (sm–1, sm). By using (3.6), we have � (sn, sm) ≤ γ n� (s0, s1) +
nγ n + σγ n+1� (s0, s1) + σ (n + 1)γ n+1 + σ 2γ n+2� (s0, s1) + σ 3(n + 2)γ n+3 + · · · + sm–n–1γ m–1 ×
� (s0, s1) + sm–n–1(m – 1)γ m–1.

� (sn, sm) ≤ γ n� (s0, s1)
[

1 – (σγ )m–n–1

1 – σγ

]
+

m–1∑

i=n

iσ i–nγ i.

Taking m, n → ∞, ⇒ � (sn, sm) = 0. Hence, {sn} is a CS in S. Since S is complete, so ∃r ∈ S
such that sn → r.

�
(
r, [θr]αθr

) ≤ � (r, sn) + σ�
(
sn, [θr]αθr

)
,

≤ � (r, sn) + σH
(
[θsn–1]αθsn–1

, [θr]αθr

)
,

≤ � (r, sn) + σβ
[
�

(
sn–1, [θr]αθr

)
+ �

(
r, [θsn–1]αθsn–1

)]
,

as n → ∞ ⇒ � (r, [θr]αθr ) ≤ 0. Hence, r ∈ [θr]αθr , i.e., r is the FP of θ . �

Corollary 3.8 Suppose (S,� ) is a complete MS and θ : S → F(S) is a fuzzy map. Suppose
[θs]αθs and [θu]αθu are closed and bounded subsets of S defined as

H
(
[θs]αθs , [θu]αθu

) ≤ β
[
�

(
s, [θu]αθu

)
+ �

(
u, [θs]αθs

)]
,

for all s, u ∈ S and β ∈ [0, 1
2 ). Then, there exists r in S such that r ∈ [θr]αθr .

Lemma 3.9 Let (S,� ,σ ) be a strong b-MS and [C]αC , [E]αE ∈ F(S). If H([C]αC , [E]αE ) > 0
then for each g > 1 and c ∈ [C]αC there exists e ∈ [E]αE such that

� (c, e) < gH
(
[C]αC , [E]αE

)
.

Proof Using the characteristics of infimum, with ε = (g – 1)H([C]αC , [E]αE ) > 0 there exists
e ∈ [E]αE such that

� (c, e) < �
(
c, [E]αE

)
+ ε.
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On the other hand, by the definition of H([C]αC , [E]αE ),

�
(
c, [E]αE

) ≤ H
(
[C]αC , [E]αE

)
.

This deduces

� (c, e) < g.H
(
[C]αC , [E]αE

)
. �

Theorem 3.10 Suppose (S,� ,σ ) is a complete strong b-MS and θ : S → F(S) is a FM. Sup-
pose [θs]αθs and [θu]αθu are closed and bounded subsets of S and there exists x ∈ (0, k) with
0 < k < 1

2 and α ∈ (0, 1] satisfying 1
σ+1� (s, [θs]αθs ) ≤ � (s, u) implies H([θs]αθs , [θu]αθu ) ≤

x{� (s, [θs]αθs ) + � (u, [θu]αθu )}, for all s, u ∈ S. Then, θ has a unique FP r ∈ S. Moreover, for
each s ∈ S the sequence of iterates {θns} converges to r.

Proof Assume s0 ∈ S and choose s1 ∈ [θs0]αθs0
.

Step 1. If H([θs0]αθs0
, [θs1]αθs1

) = 0 then [θs0]αθs0
= [θs1]αθs1

. θ . Thus, s1 is a FP of θ . If
H([θs0]αθs0

, [θs1]αθs1
) > 0, by Lemma 3.9 then for each g1 > 1, there exists s2 ∈ [θs1]αθs1

such
that

� (s1, s2) < g1H
(
[θs0]αθs0

, [θs1]αθs1

)
.

Step 2. Similarly, if H([θs1]αθs1
, [θs2]αθs2

) = 0 then [θs1]αθs1
= [θs2]αθs2

. Thus, s2 is a FP of θ .
If H([θs1]αθs1

, [θs2]αθs2
) > 0, by Lemma 3.9 then for each g2 > 1, there exists s3 ∈ [θs2]αθs2

such that

� (s2, s3) < g2H
(
[θs1]αθs1

, [θs2]αθs2

)
.

Step n. Continuing in this manner, if H([θsn–1]αθsn–1
, [θsn]αθsn ) = 0. Thus, sn is a FP of θ . If

H([θsn–1]αθsn–1
, [θsn]αθsn ) > 0, by Lemma 3.9 then for each gn > 1, there exists sn+1 ∈ [θsn]αθsn

such that

� (sn, sn+1) < gnH
(
[θsn–1]αθsn–1

, [θsn]αθsn

)
.

The above process continues, if at step k satisfying H([θsk–1]αθsk–1
, [θsk]αθsk

) = 0, then sk is
a FP of θ . If not, we obtain two sequences {sn} and {gn} such that sn ∈ [θsn–1]αθsn–1

, gn > 1
and

� (sn, sn+1) < gnH
(
[θsn–1]αθsn–1

, [θsn]αθsn

)
, ∀n ≥ 1. (3.7)

Since 1
σ+1 d(sn–1, [θsn–1]αθsn–1

) ≤ 1
σ+1 d(sn–1, sn) ≤ � (sn–1, sn) and by hypothesis, we obtain

H
(
[θsn–1]αθsn–1

, [θsn]αθsn

) ≤ x
{

d
(
sn–1, [θsn–1]αθsn–1

)
+ d

(
sn, [θsn]αθsn

)}

≤ x
{

d(sn–1, sn) + d(sn, sn+1)
}

. (3.8)

From (3.7) and (3.8), we have

� (sn, sn+1) < gnx
{
� (sn–1, sn) + � (sn, sn+1)

}
.
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We can choose gn = k
x > 1 with x ∈ (0, k) and 0 < k < 1

2 . Then, we obtain �n < k
1–k �n–1,

where k
1–k < 1 and �n = � (sn, sn+1). Thus, �n < ( k

1–k )n�0 for all n ≥ 1. Hence,

∞∑

n=1

�n ≤ �0

∞∑

n=1

(
k

1 – k

)n

< +∞.

By Proposition 2.5, {sn} is a CS in S. Since S is complete, ∃ r ∈ S such that limn→∞ sn = r.
Now, we show that for any n ≥ 0, either

1
σ + 1

�
(
sn, [θsn]αθsn

) ≤ � (sn, r) or
1

σ + 1
�

(
sn+1, [θsn+1]αθsn+1

) ≤ � (sn+1, r). (3.9)

Arguing by contradiction, we suppose that for some n ≥ 0,

� (sn, r) <
1

σ + 1
d
(
sn, [θsn]αθsn

)
or � (sn+1, r) <

1
σ + 1

d
(
sn+1, [θsn+1]αθsn+1

)
.

Then, by the triangular inequality, we obtain

�n = � (sn, sn+1) ≤ � (sn, r) + σ� (sn+1, r)

<
1

σ + 1
d
(
sn, [θsn]αθsn

)
+

σ

σ + 1
d
(
sn+1, [θsn+1]αθsn+1

)

≤ 1
σ + 1

� (sn, sn+1) +
σ

σ + 1
� (sn+1, sn+2)

≤ �n.

This is a contradiction. Hence, by hypothesis for each n ≥ 0 and from (3.9), either

H
(
[θsn]αθsn , [θr]αθr

) ≤ x
{

d
(
sn, [θsn]αθsn

)
+ d

(
r, [θr]αθr

)}
, (3.10)

or

H
(
[θsn+1]αθsn+1

, [θr]αθr

) ≤ x
{

d
(
sn+1, [θsn+1]αθsn+1

)
+ d

(
r, [θr]αθr

)}
. (3.11)

Then, either (3.10) holds for infinity natural numbers n or (3.11) holds for infinity natural
numbers n. Suppose (3.10) holds for infinity natural numbers n. We can choose that in
that infinity set the sequence {nk} is a monotone strictly increasing sequence of natural
numbers. Therefore, sequence {snk } is a subsequence of {sn} and

d
(
r, [θr]αθr

) ≤ d
(
[θsnk ]αθsnk

, r
)

+ σH
(
[θsnk ]αθsnk

, [θr]αθr

)

≤ � (snk +1, r) + Kx
{

d
(
snk +1, [θsnk +1]αθsnk +1

)
+ d

(
r, [θr]αθr

)}
,

which is equivalent to

d
(
r, [θr]αθr

) ≤ 1 + σx
1 – σx

� (snk +1, r) +
σ 2x

1 – σx
� (snk +2, r).

By taking limits on both sides of the above inequality, we obtain d(r, [θr]αθr ) = 0. This
means that r ∈ [θr]αθr . If (3.11) holds for infinity natural numbers n, by using an argument
similar to that of above we have r is a FP of θ . Suppose r̄ is another FP of θ , then 0 =
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1
σ+1 d(r, [θr]αθr ) ≤ � (r, r̄) and by hypothesis,

H
(
[θr]αθr , [θ r̄]αθ r̄

) ≤ x
{

d
(
r, [θr]αθr

)
+ d

(
r̄, [θ r̄]αθ r̄

)}

≤ x
{

d(r, r) + d(r̄, r̄
}

= 0

and so H([θr]αθr , [θ r̄]αθ r̄ ) = 0 implies [θr]αθr = [θ r̄]αθ r̄ means r = r̄. Hence, θ has a unique
FP r ∈ S. �

Example 3.11 Consider a set S = {2, 3, 4}. A mapping � : S × S → [0,∞) defined by

� (2, 3) = 1 = � (3, 2),

� (2, 4) = 4 = � (4, 2),

� (3, 4) = 1 = � (4, 3),

� (2, 2) = � (3, 3) = � (4, 4) = 0

is a strong b-metric. The triplet (S,� ,σ = 4) is a complete strong b-MS.
For any α ∈ (0, 1], define a mapping θ : S → F(S) and θ (s) : S → [0, 1] by

θ (2)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

α
3 , t = 2;

α, t = 3;
α
4 , t = 4,

θ (3)(t) =

⎧
⎨

⎩

α
2 , t = 2, 4;

α, t = 3,

θ (4)(t) =

⎧
⎨

⎩
α, t = 3;
α
3 , t = 2, 4

and

[θ2]αθ2 =
{

t ∈ S : θ (2)(t) ≥ α
}

= {3},
[θ3]αθ3 =

{
t ∈ S : θ (3)(t) ≥ α

}
= {3},

[θ4]αθ4 =
{

t ∈ S : θ (4)(t) ≥ α
}

= {3}.

Then,

H
(
[θ2]αθ2 , [θ3]αθ3

)
= H

({3}, {3}) = 0,

H
(
[θ3]αθ3 , [θ4]αθ4

)
= H

({3}, {3}) = 0,

H
(
[θ2]αθ2 , [θ4]αθ4

)
= H

({3}, {3}) = 0.

On the other hand, since

1
σ + 1

�
(
s, [θs]αθs

) ≤ � (s, u),

1
5

=
1
5
�

(
2, [θ2]αθ2

) ≤ � (2, u),
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for any u ∈ S and

0 = H
(
[θ2]αθ2 , [θ3]αθ3

) ≤ x
{
�

(
2, [θ2]αθ2

)
+ �

(
3, [θ3]αθ3

)}
= x,

0 = H
(
[θ2]αθ2 , [θ4]αθ4

) ≤ x
{
�

(
2, [θ2]αθ2

)
+ �

(
4, [θ4]αθ4

)}
= 2x,

then 1
5� (2, [θ2]αθ2 ) ≤ � (2, u) implies H([θ2]αθ2 , [θu]αθu ) ≤ x{� (2, [θ2]αθ2 ) +

� (u, [θu]αθu )}, for all u ∈ S. Again, since 0 = 1
5� (3, [θ3]αθ3 ) ≤ � (3, u) holds for all u ∈ S

and

0 = H
(
[θ3]αθ3 , [θ2]αθ2

) ≤ x
{
�

(
3, [θ3]αθ3

)
+ �

(
2, [θ2]αθ2

)}
= x,

0 = H
(
[θ3]αθ3 , [θ4]αθ4

) ≤ x
{
�

(
3, [θ3]αθ3

)
+ �

(
4, [θ4]αθ4

)}
= x,

then 1
5� (3, [θ3]αθ3 ) ≤ � (3, u) implies H([θ3]αθ3 , [θu]αθu ) ≤ x{� (3, [θ3]αθ3 ) +

� (u, [θu]αθu )}, for all u ∈ S. Finally, by 1
5 = 1

5� (4, [θ4]αθ4 ) ≤ � (4, u) for all u ∈ S and

0 = H
(
[θ4]αθ4 , [θ3]αθ3

) ≤ x
{
�

(
4, [θ4]αθ4

)
+ �

(
3, [θ3]αθ3

)}
= x,

0 = H
(
[θ4]αθ4 , [θ2]αθ2

) ≤ x
{
�

(
4, [θ4]αθ4

)
+ �

(
2, [θ2]αθ2

)}
= 2x,

then 1
5� (4, [θ4]αθ4 ) ≤ � (4, u) implies H([θ4]αθ4 , [θu]αθu ) ≤ x{� (4, [θ4]αθ4 ) +

� (u, [θu]αθu )}, for all u ∈ S. Thus, all hypotheses of Theorem 3.10 are satisfied and r = 3
is a unique FP of θ .

4 Applications
Here, we find FPs for multivalued mappings with the help of our results obtained in The-
orems 3.4, 3.7, and 3.10.

In the following, CB(S) denotes the collection of all closed and bounded subsets of S.

Theorem 4.1 Suppose (S,� ,σ ) is a complete strong b-MS with σ ≥ 1 and A : S → CB(S)
is a multivalued mapping such that

H
(
A(s), A(u)

) ≤ β� (s, u),

for all s, u ∈ S and β ∈ [0, 1). Then, there exists r such that r ∈ A(r).

Proof Consider an arbitrary mapping B : S → (0, 1]. Define a FM θ : S → F(S) as follows:

θ (s)(g) =

⎧
⎨

⎩
B(s), if g ∈ A(s)

0, if g /∈ A(s).

Then, for s ∈ S,

[
θ (s)

]
αθ (s)

=
{

g ∈ S : θ (s)(g) ≥ αθ (s) = B(s)
}

= A(s).

Now, since H([θ (s)]αθ (s) , [θ (u)]αθ (u) ) = H(A(s), A(u)), Theorem 3.4 can be applied to obtain
required FP of A in S. �
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Theorem 4.2 Suppose (S,� ,σ ) is a complete strong b-MS with σ ≥ 1 and P : S → CB(S)
is a multivalued mapping such that

H
(
P(s), P(u)

) ≤ β�
(
s, P(u)

)
+ �

(
u, P(s)

)
, (4.1)

for all s, u ∈ S and β ∈ [0, 1). Then, there exist r in S such that r ∈ P(r).

Proof Consider an arbitrary mapping Q : S → (0, 1]. Define a FM θ : S → F(S) as follows:

θ (s)(g) =

⎧
⎨

⎩
Q(s), if g ∈ P(s)

0, if g /∈ P(s).

Then, for s ∈ S,

[
θ (s)

]
αθ (s)

=
{

g ∈ S : θ (s)(g) ≥ αθ (s) = Q(s)
}

= P(s).

Now, since H([θ (s)]αθ (s) , [θ (u)]αθ (u) ) = H(P(s), P(u)), Theorem 3.7 can be applied to obtain
the required FP of P in S. �

Theorem 4.3 Suppose (S,� ,σ ) is a complete strong b-MS and A : S → CB(S) is a multi-
valued mapping. Suppose x ∈ (0, k) with 0 < k < 1

2 satisfying 1
σ+1� (s, As) ≤ � (s, u) implies

H(A(s), A(u)) ≤ x{� (s, A(s)) + � (u, A(u))}, for all s, u ∈ S. Then, A has a unique FP r ∈ S.
Moreover, for each s ∈ S the sequence of iterates {Ans} converges to r.

Proof Consider an arbitrary mapping P : S → (0, 1]. Define a FM θ : S → F(S) as follows:

θ (s)(g) =

⎧
⎨

⎩
P(s), if g ∈ A(s)

0, if g /∈ A(s).

Then, for s ∈ S,

[
θ (s)

]
αθ (s)

=
{

g ∈ S : θ (s)(g) ≥ αθ (s) = P(s)
}

= A(s).

Now, since H([θ (s)]αθ (s) , [θ (u)]αθ (u) ) = H(A(s), A(u)), Theorem 3.10 can be applied to ob-
tain the required FP of A in S. �

5 Conclusion
FP theory is a useful theoretical tool in diverse fields, such as logic programming, func-
tional analysis, artificial intelligence, and many others. In 2021, Doan [9] extended the re-
sults in [12] for a class of contractive mappings in strong b-MSs. He proved new versions
of FP theorems for single-valued and multivalued mappings by combining the results in
[15] and [29]. In this article, we obtained the idea from [9] and extended it to [6] and [29].
We have established FP theorems for fuzzy and nonfuzzy mappings in complete strong
b-MS by combining results [6] and [9] and the obtained results are furnished with in-
teresting and nontrivial examples. Moreover, some other contractions are also applied to
find fuzzy and nonfuzzy fixed points. Some results for FMs and multivalued mappings are
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incorporated as corollaries and as applications. Moreover, other direct consequences are
obtained as well. We hope these existence results will provide an appropriate environment
to approximate further operator equations in applied science.
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