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Abstract
In this article, we propose a viscosity extragradient algorithm together with an inertial
extrapolation method for approximating the solution of pseudomonotone
equilibrium and fixed point problem of a nonexpansive mapping in the setting of a
Hadamard manifold. We prove that the sequence generated by our iterative method
converges to a solution of the above problems under some mild conditions. Finally,
we outline some implications of our results and present several numerical examples
showing the implementability of our algorithm. The results of this article extend and
complement many related results in linear spaces.

Mathematics Subject Classification: 65K15; 47J25; 65J15; 90C33

Keywords: Equilibrium problem; Nonexpansive mapping; Fixed point problems;
Viscosity; Hadamard manifold and extragradient algorithm

1 Introduction
The Equilibrium Problem (EP) is well known because it has wide application in spatial
price equilibrium models, computer and electric networks, market behavior, and eco-
nomic and financial networks models. For instance, the spatial price equilibrium mod-
els arising from EPs have provided a framework for analyzing competitive systems over
space and time and have formulated contributions that have stimulated the development
of new methodologies and opened up prospects for their applications in the energy sector,
minerals economics, finance, and agriculture (see, for example, [1]). It is well known that
many interesting and challenging problems in nonlinear analysis, such as complementar-
ity, fixed point, Nash equilibrium, optimization, saddle point and variational inequalities,
can be reformulated as EP (see [2]). The EP for a bifunction g : C × C → R, satisfying the
condition g(x, x) = 0 for every x ∈ C is defined as follows:

Find u ∈ C such that g(u, v) ≥ 0,∀v ∈ C, (1.1)

where C is a non-empty subset of a topological space X. We denote by EP(g) the solution
set of (1.1). Several iterative methods have been designed to approximate the solution of
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EP (1.1) if the bifunction g is monotone (see, for example, [3–5] and reference therein).
One of the crucial methods for solving EP when g is pseudomonotone is the extragradi-
ent Method (EM), which involves solving two strongly convex optimization problems at
each iteration. In 1997, Korpelevich [6] and Antipin [7] employed the EM for solving the
saddle point problems. Later, in 2008, Quoc et al. [8] extended this idea to solve the pseu-
domonotone EP. Since then, many authors have employed EM and other methods to solve
EP of pseudomonotone type in Hilbert and Banach spaces (see, for example, [9–11]). It is
important for us to consider EP in a more general space, such as a Riemannian manifold.
This idea of extending optimization methods from Euclidean space to Riemannian man-
ifolds has some remarkable advantages. From the point of view of the Riemannian mani-
fold, it is possible to convert nonconvex problems to convex ones by endowing the space
with an appropriate Riemannian manifold metric (see, for example, [12–14]). Moreover,
a constrained problem can be viewed as unconstrained due to the Riemannian geometry.
Recently, some results on Hilbert spaces have been generalized to more general settings,
such as the Riemannian manifold, to solve nonconvex cases (see, for example, [15–18]).
Most extended methods from linear settings, such as Hilbert space to Riemannian mani-
folds, require the Riemannian manifold to have nonpositive sectional curvature. This is an
essential property shared by a large class of Riemannian manifolds, and it is strong enough
to imply tough topology restrictions and rigidity phenomena. The algorithm for solving
equilibrium (EP) on Hadamard manifolds has received great concentration (see, for ex-
ample [19–21]). Lately, Cruz Neto et al. [22] extended the work by Van Nguyen et al. [23]
and acquired an extragradient method for solving the equilibrium problem on a complete
simple connected sectional curvature. They employed the following algorithm:

⎧
⎨

⎩

yn = arg min{g(xn, z) + 1
2λn

d2(xn, z)}
xn+1 = arg min{g(yn, z) + 1

2λn
d2(xn, z)}

(1.2)

where 0 < λn < β < min{α–1
1 ,α–1

2 } and α1, α2 are Lipschitz constants of the bifunction g .
It should be known that Lipschitz-type constants are laborious to approximate even in
complex nonlinear problems, and they are generally unknown. In 2020, Junfeng et al. [24]
introduced a new extragradient-like method for (EP) on the Hadamard manifold. Their
algorithm performed without prior knowledge of the Lipschitz-type constants.

Let C be a non-empty closed and convex subset of a complete Riemannian manifold M.
A fixed point set of T is represented by

F(T) =
{

y ∈ C : T(y) = y
}

, (1.3)

and a mapping T : C → C is said to be
(i) a contraction if there exist α ∈ [0, 1], such that

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ C,

(ii) nonexpansive if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ C.
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Several researchers use different methods for the approximation of a fixed point of non-
expansive mapping. Approximation methods have received so much attention in fixed
point theory because they are very compelling and important tools of nonlinear science.
Moreover, the viscosity-type algorithm converges faster than the Halpern-type algorithm
(see, for example, [16, 17, 25–33]). In 2000, Moudafi [25] initiated the viscosity for ap-
proximation method for nonexpansive mapping in the Hilbert space, he obtained strong
convergence results of both implicit and explicit schemes in Hilbert spaces. In 2004, Xu
[26] extended Moudafi’s results [25] to Banach space. Now, the concept of viscosity was
recently extended to more general space such as Riemannian manifold. In 2016, Jeong J.U.
[34] demonstrated some results using generalized viscosity approximation methods for
mixed equilibrium problems and fixed point. Motivated by the work of Daun and He [27],
Renu Chugh and Mandeep Kumari [35] extended the work of Duan and He [27] in the
framework of Riemannian manifold as follows.

Theorem 1.1 Let C be a closed convex subset of Hadamard manifold M, and let T : C →
C be a nonexpansive mappings such that F(T) �= ∅. Let ψn : C → C be ρn– contraction
with 0 ≤ pi = limn→∞ infρn ≤ limn→∞ supρn = ρu ≤ 1 suppose that {ψn(x)} is uniformly
convergence for any x ∈ A, where A is any bounded subset of C if the sequence {λn} ⊂ (0, 1)
satisfies the following conditions:

(i) limn→∞ λn = 0,
∑∞

n=1 λn = ∞,
(ii)

∑∞
n=1 |λn+1 – λn| ≤ ∞ and

(iii) limn→∞ λn–λn–1
λn

= 0.
Then, the sequence {xn} generated by the algorithm

xn+1 = expψn(xn)(1 – λn) exp–1 ψn(xn)Txn.

An inertial term is necessary to improve the iterative sequence to accomplish the de-
sired solution. These methods of inertial term are basically used to accelerate the iterative
sequence towards the required solution by speeding up the convergence rate of the iter-
ative scheme. Several analyzes have shown that inertial effects improve the performance
of the algorithm in terms of the number of iterations and time of execution. Due to these
two advantages, inertial term have attracted more attention in solving different problems.
An algorithm with an inertial term was first initiated by Polyak [36], who proposed in-
ertial extrapolation for solving a smooth convex minimization problem (MP). Since then,
authors introduced algorithms with inertial term in different spaces (see, [37, 38]). Khama-
hawong et al. [39] introduced an inertial Mann algorithm for approximating a fixed point
of a nonexpansive mapping on a Hadamard manifold. Under suitable assumptions, they
proved that their method was also dedicated to solving inclusion and equilibrium prob-
lems. They defined their algorithm as follows.

Let M be a Hadamard manifold, and F : M → M is a mapping. Choose x0, x1,∈ M. Define
a sequence {xn} by the following iterative scheme:

⎧
⎨

⎩

yn = expxn (–λn) exp–1
xn xn

xn+1 = expyn (1 – γn) expyn F(yn),
(1.4)

where {λn} ⊂ [0,∞) and {γn} ⊂ (0, 1) satisfying the following conditions
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(C1) 0 ≤ λn < λ < 1∀n ≥ 1,
(C2)

∑∞
n=1 λnd2(xn, xn–1) ≤ ∞,

(C3) 0 < γ1 ≤ γn ≤ γ2, n ≥ 1,
(C4)

∑∞
n=1 γn < ∞.

They proved that the sequence generated by their algorithm converges faster and
strongly to an element in the solution set. Motivated and inspired by the following works
[22, 35, 38–42], we study the viscosity extragradient with a modified inertial algorithm for
solving equilibrium and fixed point problems in the Hadamard manifold. The advantages
of our results over existing ones are the following:

(i) Our algorithm converges faster than the existing results due to the inertial term we
added to the algorithm.

(ii) Our results is obtained in the more general space Hadamard manifold, in contrast to
the results in Hilbert and Banach spaces (see, for example, [43, 44]).

The remain sections of the paper are organized as follows: We first give some basic con-
cepts and useful tools in Sect. 2. In Sect. 3, we provide our proposed method and states
its convergence analysis. In Sect. 4, we provide some numerical examples. In Sect. 5, we
show the outcomes of a computational trial that demonstrate the effectiveness of our ap-
proaches.

2 Preliminaries
In this section, we present some basic concepts, definitions, and preliminary results that
will be useful in what follows.

Suppose that M is a simply connected n-dimensional manifold. The tangent space of M
at x is denoted by TxM, which is a vector space of the same dimension as M. A tangent
bundle of M is given by TM =

⋃
x∈M TxM. A smooth mapping 〈·, ·〉 → R is called a Rie-

mannian metric on M if 〈·, ·〉x : TxM ×TxM →R is an inner product for t ∈ M. We denote
the norm by ‖ · ‖x related to the inner product 〈·, ·〉 on TxM . The length of a piecewise
smooth curve c : [a, b] → M joining x to r defined using the metric L(c) =

∫ b
a ‖c′(t)‖dt

where c(a) = x and c(b) = r. Then, the Riemannian distance denoted by d(x, r) is defined
to be the minimal length over the set of all such curves joining x to r, which induces the
topology on M. A geodesic in M joining x → r is said to be minimal geodesic if its length
is equal to d(x, r). A geodesic triangle �(x1, x2, x3) of a Riemannian manifold is defined
to be a set consisting of points x1, x2, x3 and three minimal geodesic γi joining xi to xi+1

with i = 1, 2, 3 mod 3. A Riemannian manifold is said to be complete if for any x ∈ M all
geodesic emerging from x are defined for all t ∈ (–∞,∞). Let M be a complete Rieman-
nian manifold, any pair in M can be joined by minimizing geodesic (Hopf-Rinow Theorem
[45]). Thus, (M, d) is a complete metric space, and closed bounded subset is compact. The
exponential map expx : TxM → M at x ∈ M such that expx v = γv(1, x) for each v ∈ TxM,
where γ (i) = γv(1, x) is geodesic starting at x with velocity v. Then, expx tv = γv(t, x) for each
real number t, and expx 0 = γv(0, x) = x. It should be noted that the mapping expx exhibits
differentiability on TxM for each x within M. For any x and y belonging to M, the expo-
nential map expx possesses an inverse denoted as exp–1 M → TxM. Given any x, y ∈ M,
we can observe the quantity d(x, y) = ‖ exp–1

y x‖ = ‖ exp–1
x y‖ (refer to [46] for additional

examples).

Definition 2.1 A complete simple connected Riemannian manifold of nonpositive sec-
tional curvature is called a Hadamard manifold.
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Lemma 2.2 [47] Let k, p ∈ R and λ ∈ [0, 1]. Then, the following holds:
(i) ‖λk + (1 – λ)p‖2 = λ‖k‖2 + (1 – λ)‖p‖2 – λ(1 – λ)‖k – p‖2,

(ii) ‖k ± p‖2 = ‖k‖2 ± 2〈k, p〉 + ‖p‖2,
(iii) ‖k + p‖2 ≤ ‖k‖2 + 2|〈p, k + p〉|.

Lemma 2.3 Let ρ be a lower semi-continuous, proper, and convex function on Hadamard
manifold M, and z, t ∈ M, λ > 0. If t = proxλρ(z)∀y ∈ M, then

〈
exp–1

t y, exp–1
t z

〉 ≤ λ
(
ρ(y) – ρ(t)

)
.

Proposition 2.4 [48] Assume that M is a Hadamard manifold, and let d : M × M →
R represent a metric function. Then, d is a convex function with respect to the product
Riemannian metric, which is, given any two of geodesic γ1 : [0, 1] → M and γ : [0, 1] → M
the following inequality holds for all t ∈ [0, 1]

d
(
γ1(t),γ2(t)

) ≤ (1 – t)d
(
γ1(0),γ2(0)

)
+ td

(
γ1(1),γ2(1)

)
.

In fact, for each y ∈ M, the function d(.·, y) : M →R is convex function.

Definition 2.5 [49] Let C be a non-empty, closed and convex subset of M.
A bifunction f : M × M →R is said to be

(i) monotone if f (x, y) + f (y, x) ≤ 0∀x, y ∈ C;
(ii) pseudomonotone if

f (x, y) ≥ 0 �⇒ f (y, x) ≤ 0 ∀x, y ∈ C;

(iii) Lipschitz-type continuous if there exist constants c1 > 0 and c2 > 0, such that

f (x, y) + f (y, x) ≥ f (x, z) – c1d2(x, y) – c2d2(y, z) ∀x, y, z ∈ C.

Lemma 2.6 [48] Let x ∈ M, {xk} ⊂ M and xk → x, then for all y ∈ M

expxk
y → expx0 y and expy xk → exp–1

y x0.

Proposition 2.7 [48] For any point x ∈ MPN x is a singleton, and the following inequality
holds for all r ∈ N

〈expN x, expN r〉 ≤ 0,

where N ⊂ M.

Proposition 2.8 [50] (Comparison theorem for triangle) Let �(x,x2, x3) be a geodesic tri-
angle. Denote each i = 1, 2, 3 ( mod 3) by γi : [0, li] → M the geodesic joining xi to xi+1, and
set αi = ∠(γ ′

i ,γi–1(li–1)), the angle between the vector γ ′
i (0) and –γi–1(li–1) and li = L(γi),

then

α1 + α2 + α3 ≤ π , l2
i + l2

i+1 – 2lili+1 cosαi+1 ≤ l2
i+1. (2.1)
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Using the distance and the exponential map, (2.1) can be indicated as

d2(xi, xi+1) + d2(xi+1, xi+2) – 2
〈
exp–1

xi+1
xi, expi+2

〉 ≤ d2(xi–1, xi). (2.2)

Since

〈
exp–1

xi+1
xi, exp–1

xi+1
xi+2

〉
= d(xi, xi+1)d(xi+1, xi+2) cosαi+1. (2.3)

Let xi+2 = xi, then in association with (2.3), we get

∥
∥exp–1

xi+1
xi

∥
∥2 =

〈
exp–1

xi+1
xi, exp–1

xi+1
xi+1

〉
= d2(xi, xi+1).

Proposition 2.9 [48] Let K be a non-empty convex subset of a Hadamard manifold M and
g : K → R be a convex subdifferentiable and lower semi-continuous function on K . Then,
p is a solution to the following convex problem

min
{

g(x) : x ∈ K
}

.

if and only if 0 ∈ ∂g(p) + Nk(p).

Proposition 2.10 [48] Let p ∈ M. The exponential mapping expp : TpM → M is a dif-
feomorphism, and for any two points p, q ∈ M, there exists a unique normalized geodesic
joining p to q, which can be expressed by the formula

ω(t) = expp t exp–1
p q ∀t ∈ [0, 1]. (2.4)

A geodesic triangle �(p1, p2, p3) of a Riemannian manifold M is a set consisting of three
points p1, p2, and p3 and three minimizing geodesic joining these points.

Proposition 2.11 [48] Let �(p1, p2, p3) be a geodesic triangle in M. Then,

d2(p1, p2) + d2(p2, p3) – 2
〈
exp–1

p2 p1, exp–1
p2 p3

〉 ≤ d2(p3, p1),

and

d2(p1, p2) ≤ 〈
exp–1

p1 p3, exp–1
p1 p2

〉
+

〈
exp–1

p2 p3, exp–1
p2 p1

〉
.

Furthermore, if α is the angle at p1, then we have

〈
exp–1

p1 p2, exp–1
p1 p3

〉
= d(p2, p1)d(p1, p3) cosα.

The connection between geodesic triangle in Riemannian manifolds and triangles in R
2 has

been established in [51].

Lemma 2.12 [51] Let �(p1, p2, p3) be a geodesic triangle in M. Then, there exits a compar-
ison triangle �(p̄1, p̄2, p̄3) for �(p1, p2, p3) such that d(pi, pi+1) = ‖p̄i, ¯pi+1‖, with the indices
taken modulo 3, it is unique up to an isometry of R2.
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Lemma 2.13 [51] Let �(p1, p2, p3) be a geodesic triangle and �(p̄1, p̄2, p̄3) be a comparison
triangle.

(i) Let α1, α2, α3 be the angle of �(p1, p2, p3), respectively, and let (ᾱ1, ᾱ2, ᾱ3) be the
angles of �(p̄1, p̄2, p̄3), respectively. Then,

α1 ≤ ᾱ1, α2 ≤ ᾱ2 and α3 ≤ ᾱ3.

(ii) Let q be a point on geodesic joining p1 to p2 and q̄ its comparison point in interval
[p̄1, p̄2]. If d(p1, q) = ‖p̄1 – q̄‖ and d(p2, q) = ‖p̄2 – q̄‖ then,

d(p3, q) ≤ ‖p̄3 – q̄‖.

Proposition 2.14 [51] Let x ∈ M. Then expx : TxM → M is diffeomorphism. For any two
points x, r ∈ M, there exists a unique normalized geodesic joining x to r, which is, in fact, a
minimal geodesic. This result shows that M has the topology and differential structure simi-
lar to Rn. Thus, Hadamard manifolds and Euclidean spaces have some similar geometrical
properties.

Definition 2.15 [51] A subset K ⊂ M is said to be convex if for any p, q ∈ K , the geodesic
connecting p and q is in K .

Proposition 2.16 Let M be Hadamard manifold and x ∈ M. The map ψx(y) = d2(x, y)
satisfying the following:
(i) ψx is convex. Indeed, for any geodesic, γ : [0, 1] → M. The following inequality holds for
t ∈ [0, 1]:

d2(x,γ (t)
) ≤ (1 – t)d2(x,γ (0)

)
+ td2(x,γ (1)

)
– t(1 – t)d2(γ (0),γ (1)

)

(ii) ψx is smooth. Further, ∂ψx(y) = –2 exp–1
y x

Lemma 2.17 [45] Let {an} be a sequence of nonnegative real numbers such that

ak+1 ≤ (1 – αk)an + αnbn, n ≥ 0.

If limk→∞ sup bnk ≤ 0 for every subsequence {ank } of {ak} satisfying the condition

lim
k→∞

inf(annk +1 – ank ) ≥ 0,

then limn→∞ an = 0.

3 Main results
Let C be a non-empty, closed convex subset of a Hadamard manifold M and S : C → C
be a nonexpansive mapping. Let � = F(S) ∩ EP(f , C) be a non-empty solution set. Let
φ : C → C be a ρ-contraction with the bifunction f satisfying the following conditions:

(D1) For each z ∈ C, f is pseudomonotone;
(D2) f satisfies the Lipschitz-type condition on C;
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(D3) f (x, ·) is convex and subdifferentiable on C, ∀ fixed x ∈ C;
(D4) f (·, y) is upper semi-continuous ∀ ∈ C.
Moreover, we assume that the sequence {βn}, {αn} ⊂ (0, 1) satisfies
(C1) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,
(C2) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(C3) limn→∞ εn
αn

= 0.

Algorithm 3.1 Initialization algorithm: choose x0 ∈ C and a parameter λ satisfying 0 ≤
λ < min{ 1

2θ1
, 1

2θ2
}, where θ1 and θ2 are positive constants.

Iterative steps: Given xn–1, xn, choose μ ∈ [0, μ̄n], where

μ̄n =

⎧
⎨

⎩

min{μ, εn
d(xn ,xn–1) }, if xn �= xn–1

μ otherwise.

Step 1: Compute

⎧
⎨

⎩

wn = expxn (μn exp–1 xn–1)

un = arg min{λf (wn, v) + 1
2 d2(wn, v), v ∈ C}.

If un = wn, then stop. Otherwise, go to the next step.
Step 2: Compute

yn = arg min

{

λf (un, v) +
1
2

d2(wn, v) : v ∈ Tm

}

,

where the half-space Tm is defined by

Tm =
{

v ∈ M :
〈
exp–1

un wn – λzn, exp–1
un v

〉 ≤ 0
}

. and

zn ∈ ∂2f (wn, un).

Step 3: Compute

tn = expyn (1 – βn) exp–1
yn S(yn).

Step 4 Calculate

xn+1 = expφ(xn)
(1 – αn) exp–1

φ(xn) tn.

Set n = n + 1 and return to step 1.

To prove our main results, we first prove the following Lemma.

Lemma 3.2 For any t ∈ C and λ > 0:
(i) λ[f (wn, t) – f (wn, un)] ≥ 〈exp–1

un wn, exp–1 unt〉,
(ii) λ[f (un, t) – f (un, yn)] ≥ 〈exp–1

yn wn, exp–1 ynt〉.
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Proof From the definition of un in Algorithm 3.1 and Proposition 2.9, we have

0 ∈ ∂2

[

λf (wn, t) +
1
2

d2(wn, t)
]

un + NC(un).

Hence, there is z̄ ∈ NC(un) and z ∈ ∂2f (wn, un) such that

λz – exp–1
un wn + z̄ = 0.

Thus, for any t ∈ C,

〈
exp–1

un wn, exp–1
un t

〉
= λ

〈
z, exp–1

un t
〉
+

〈
z̄, exp–1

un t
〉
. (3.1)

Now, as z̄ ∈ Nk(un), 〈z̄, exp–1
un t〉 ≤ 0 for any t ∈ M. Thus, we have

〈
exp–1

un wn, exp–1
un t

〉 ≤ λ
〈
z, exp–1

un t
〉
. (3.2)

Furthermore, from the fact that z ∈ ∂2f (wn, un) and the definition of subdifferential, we
obtain

f (wn, t) – f (wn, un) ≥ 〈
z, exp–1

un t
〉 ∀t ∈ M. (3.3)

Multiplying the both sides of inequality (3.3) by λ > 0 and using (3.2), we get

λ
[
f (wn, t) – f (wn, un)

] ≥ 〈
exp–1

un wn, exp–1
un t

〉 ∀t ∈ C. (3.4)

Similarly, we can prove (ii) using the same idea as in part (i). �

Lemma 3.3 Suppose that {yn}, {wn}, {un} are generated by Algorithm 3.1, p ∈ � and λ > 0,

d2(yn, p) ≤ d2(wn, p) – (1 – 2λα1)d2(un, wn) – (1 – 2λα2)d2(yn, un).

Proof From the fact that yn ∈ Tm and by definition of Tm, it follows that

〈
exp–1

un wn – λzn, exp–1
un yn

〉 ≤ 0,

for some zn ∈ ∂2f (wn, un). Hence,

λ
〈
zn, exp–1

un yn
〉 ≥ 〈

exp–1
un wn, exp–1

un yn
〉
. (3.5)

Subsequently, by the definition of subdifferential, we obtain zn ∈ ∂2f (wn, un).

f (wn, y) – f (wn, un) ≥ 〈
zn, exp–1

un y
〉 ∀y ∈ M. (3.6)

Letting y = yn into (3.6), we deduce

f (wn, yn) – f (wn, un) ≥ 〈
vn, exp–1

un yn
〉
. (3.7)
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It follows from the last inequality and from (3.5) that

λ
[
f (wn, yn) – f (wn, un)

] ≥ 〈
exp–1

un wn, exp–1
un yn

〉
(3.8)

Moreover, by Proposition 2.9 and the definition of yn in Algorithm 3.1, we have

0 ∈ ∂2

[

λf (un, y) +
1
2

d2(wn, y)
]

(yn) + NTm (yn).

Thus, there exists z ∈ ∂2f (unyn) and z̄ ∈ NTm (yn) such that

λz – exp–1
yn wn + z̄ = 0. (3.9)

Note that z̄ ∈ NTm (yn) and the definition of the normal cone implies that

〈
z̄, exp–1

yn y
〉 ≤ 0, (3.10)

for any y ∈ Tm. Hence, thus from (3.10), it follows that

〈
λz – exp–1

yn wn, exp–1
yn y

〉 ≥ 0 ∀y ∈ Tm. (3.11)

Equivalently,

λ
〈
z, exp–1

yn y
〉 ≥ 〈

exp–1
yn wn, exp–1

yn y
〉 ∀y ∈ Tm. (3.12)

Now, using the definition of subdifferential for z ∈ ∂2f (un, yn), we have

f (un, y) – f (un, yn) ≥ 〈
z, exp–1

yn y
〉 ∀y ∈ M (3.13)

This together with (3.13) gets

λ
[
f (un, y) – f (un, yn)

] ≥ 〈
exp–1

yn wn, exp–1
yn y

〉 ∀y ∈ Tm. (3.14)

Furthermore, letting y = p in relation (3.14), we obtain

λ
[
f (un, p) – f (un, yn)

] ≥ 〈
exp–1

yn wn, exp–1
yn p

〉
. (3.15)

Now, as p ∈ �, f (p, un) ≥ 0. So, by pseudomonotonicity of f , f (un, p) ≤ 0, and since λ > 0,
we have

–λ
(
f (un, yn)

) ≥ 〈
exp–1

yn wn, expyn p
〉
. (3.16)

Applying the Lipschitz-type continuity of f , we have

f (un, yn) ≥ f (wn, yn) – f (wn, un) – α1d2(wn, un) – α2d2(un, yn). (3.17)
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Multiplying both sides of (3.17) by λ > 0 and merging (3.8) and (3.16), respectively, we
obtain

–
〈
exp–1

yn wn, exp–1
yn p

〉 ≥ λf (un, yn)

≥ λ
[
f (wn, yn) – f (wn, un)

]
– λα1d(wn, un) – λα2d2(un, yn)

≥ 〈
exp–1

un wn, exp–1
un yn

〉
– λα1d2(wn, un) – λα2d2(un, yn).

Thus, applying Proposition 2.8, we obtain

d2(p, wn) – d2(wn, yn) – d2(p, yn)

≥ –2
〈
exp–1

yn wn, exp–1
yn p

〉

≥ 2〈expun wn, expun yn〉 – 2λα1d2(wn, un) – 2λα2d2(un, yn)

≥ –d2(wn, yn) + d2(wn, un) + d2(yn, un) – 2λα1d2(wn, un) – 2λα2d2(un, yn).

Thus, we have

d2(yn, p) ≤ d2(wn, p) – (1 – 2λα1)d2(un, wn) – (1 – 2λα2)d2(yn, un), (3.18)

which implies that

d(yn, p) ≤ d(wn, p). (3.19)
�

Lemma 3.4 Let {xn} be a sequence generated by Algorithm 3.1. Then, {xn}, {yn}, {un}, and
{tn} are bounded.

Proof Let p ∈ �, then consider the geodesic triangle �(wn, xn, p) and �(xn, xn–1, p) with
their comparison triangle �(w′

n, x′
n, p′) and �(x′

n, x′
n–1, p′), respectively, in R

2 and where
p ∈ �. We have d(wn, p) = ‖w′

n – p′‖, d(xn, p) = ‖x′
n – p′‖ and d(xn, xn–1) = ‖x′

n – x′
n–1‖. Since

wn = expxn μn exp–1
xn xn–1, then the comparison point of wn is w′

n = x′
n + μn(x′

n–1 – x′
n). Thus,

we have

d(wn, p) =
∥
∥w′

n – p′∥∥

=
∥
∥x′

n + μn
(
x′

n–1 – x′
n
)

– p′∥∥

=
∥
∥x′

n + μnx′
n–1 – μnx′

n – p′∥∥

≤ ∥
∥x′

n – p′∥∥ + μn
∥
∥x′

n – x′
n–1

∥
∥

=
∥
∥x′

n – p′∥∥ + αn
μn

αn

∥
∥x′

n – x′
n–1

∥
∥. (3.20)

Since μn
αn

‖x′
n – x′

n–1‖ = μn
αn

d(xn, xn–1) → 0 as n → ∞, there exists a constant M1 > 0 such
that μn

αn
d(xn, xn–1) ≤ M1 ∀n ≥ 1. Thus, we obtain

d(wn, p) ≤ d(xn, p) + αnM1. (3.21)
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It is obvious from simple computation that

d(wn, p) ≤ d2(xn, p) + 2μnd(xn, p)d(xn, xn–1) + μ2d2(xn, xn–1)). (3.22)

Besides, by the convexity of Remannian manifold tn = γ 1
n (1 – βn), where γ 1

n : [0, 1] → M
is a sequence of geodesic joining yn to S(yn), we obtain

d(tn, p) = d
(
γ 1

n (1 – βn), p
)

≤ βnd
(
γ 1

n (0), p
)

+ (1 – βn)d
(
γ 1

n (1), p
)

= βnd(yn, p) + (1 – βn)d
(
S(yn), p

)

≤ βnd(yn, p) + (1 – βn)d(yn, p)

= d(yn, p). (3.23)

Furthermore, by the convexity of Remannian manifold xn+1 = γ 2
n (1 – βn), where γ 2

n :
[0, 1] → M is a sequence of geodesic joining φ(xn) to tn, and from 3.1, (3.19), and (3.21),
we obtain

d(xn+1, p) ≤ d
(
γ 2

n (1 – αn), p
)

≤ αnd
(
γ 2

n (0), p
)

+ (1 – αn)d
(
γ 2

n (1), p
)
)

= αnd
(
φ(xn), p

)
+ (1 – αn)d(tn, p)

≤ αnd
(
φ(xn), p

)
+ (1 – αn)d(yn, p)

≤ αnd
(
φ(xn), p

)
+ (1 – αn)d(wn, p)

≤ αn
[
d
(
φ(xn),φ(p)

)
+ d

(
φ(p), p

)]
+ (1 – αn)d(wn, p)

≤ αnρd(xn, p) + (1 – αn)
[
d(xn, p) + αnM1

]
+ αnd

(
φ(p), p

)

≤ (
1 – αn(1 – ρ)

)
d(xn, p) + (1 – αn)αnαn(1 – ρ)

d(φ(p), p)
1 – ρ

+ M1

≤ max

{

d(xn, p),
M1 + d(φ(p), p)

(1 – ρ)

}

. (3.24)

Using mathematical induction, we get

d(xn+1, p) ≤ max

{

d(x0, p),
M1 + d(φ(p), p)

(1 – ρ)
+ M1

}

.

Thus, the sequence {xn} is bounded. Consequently, the sequence {wn}, {un}, {tn} and
{φ(xn)} are also bounded. �

Lemma 3.5 Let {xnk } be the sequence generated by the Algorithm 3.1. Then, the following
conclusion holds:

(i) limk→∞ d(unk , wnk ) = 0,
(ii) limk→∞ d(ynk , unk ) = 0,

(iii) limk→∞ d(ynk , S(ynk )) = 0,
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(iv) limk→∞ d(wnk , xnk ) = 0,
(v) limk→∞ d(tnk , ynk ) = 0.

Proof Let p ∈ � and satisfy p ∈ P�f (p). Observe that this fixed point equation has a unique
solution by Boyd-Wong fixed point theorem. Now, fix n ≥ 1, and let q = φ(xn), r = tn and
s = φ(p). We consider the following geodesic triangle with their respective comparison
triangle in R

2 �(q, r, s) and �(q′, r′, s′), �(s, r, q) and �(s′, r′, q′); �(s, r, p) and �(s, r, p) and
�(s′, r′, p′). By Lemma 2.12, we get

d(q, r) =
∥
∥q′ – r′∥∥, d(q, s) =

∥
∥q′ – s′∥∥ and d(q, p) =

∥
∥q′ – p′∥∥. (3.25)

Now, using the definition in Algorithm 3.1, we get

xn+1 = exp–1
q (1 – αn) exp–1

q r.

The comparison point of xn+1 in R
2 is x′

n+1 = αnq′ +(1–αn)r′. Let a and a′ denote the angles
at p and p′ in the triangle �(s, xn+1, p) and �(s′, x′

n+1, p′), respectively. Then, we obtain a′ ≤
a and cos a′ ≤ cos a. By applying Lemma 2.2, we have

d(xn+1, p) =
∥
∥x′

n+1 – p′∥∥2

=
∥
∥αn

(
q′ – s′) + (1 – αn)

(
r′ – s′)∥∥2

≤ ∥
∥αn

(
q′ – s′) + (1 – αn)

(
r′ – p′)∥∥2 + 2αn

〈
x′

n+1 – p′, s′ – p′〉

≤ (1 – αn)
∥
∥r′ – p′∥∥2 + αn

∥
∥q′ – s′∥∥2 + 2αn

∥
∥x′

n+1 – p′∥∥∥
∥s′ – p′∥∥ cos a′

≤ (1 – αn)d2(r, p) + αnd2(q, s) + 2αd(xn+1, p)d(s, p)

= (1 – αn)d2(tn, p) + αnd2(φ(xn),φ(p)
)

+ 2αnd(xn+1, p)d
(
φ(p), p

)
cos a. (3.26)

Now, since d(xn+1, p)d(φ(p), p) cos a = 〈exp–1
p φ(p), exp–1

p xn+1〉.
Then, we can rewrite (3.26) as

d2(xn+1, p) ≤ (1 – αn)d2(tn, p) + αnρd2(xn, p) + 2αn
〈
exp–1

p φ(p), exp–1
p xn+1

〉
. (3.27)

However, from Lemma 2.16, we obtain

d2(tn, p) = d2(γ ′
n(1 – βn), p

)

≤ βnd2(γ ′
n(0), p′) + (1 – βn)d2(γ ′

n(1), p
)

– βn(1 – βn)d2(γ ′
n(0),γ ′

n(1)
)

≤ βnd2(yn, p) + (1 – βn)d2(yn, p) – βn(1 – βn)d2(yn, S(yn)
)

≤ βnd2(yn, p) + (1 – βn)d2(yn, p) – βn(1 – βn)d2(yn, S(yn)
)

= d2(yn, p) – βn(1 – βn)d2(yn, S(yn)
)
. (3.28)

By substituting Lemma 3.3 and (3.22) into (3.28), we get

d2(tn, p) ≤ d2(wn, p) – (1 – 2λα1)d2(un, wn) – (1 – 2λα2)d2(yn, un)
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– βn(1 – βn)d2(yn, S(yn)
)

≤ d2(xn, p) + 2μnd(xn, p)d(xn, xn–1) + μ2
nd2(xn, xn–1) – (1 – 2λα1)d2(un, wn)

– (1 – 2λα2)d2(yn, un) – βn(1 – βn)d2(yn, S(yn)
)
.

By substituting (3.29) into (3.28), we have

d2(xn+1, p) ≤ (1 – αn)d2(xn, p) + (1 – αn)
[
2μnd(xn, p)d(xn, xn–1)

+ μ2
nd2(xn, xn–1) – (1 – 2λα1)d2(un, wn)

– (1 – 2λα2)d2(yn, un) – βn(1 – βn)d2(yn, S(yn)
]

+ αnρd(xn, p) + 2αn
〈
exp–1

p φ(p), exp–1
p xn+1

〉

=
[
1 – αn(1 – ρ)

]
d2(xn, p) + αn(1 – ρ)Hn – (1 – αn)

[
(1 – 2λα1)d2(un, wn)

+ (1 – 2λα2)d2(yn, un) – βn(1 – βn)d2(yn, S(yn)
)]

, (3.29)

where

Hn =
1

1 – ρ

[

2
〈
exp–1

p φ(p), exp–1
p xn+1

〉
+

2μn

αn
d(xn, p)d(xn, xn–1) +

μ2
n

αn
d(xn, xn–1)

]

. (3.30)

equation (3.29) can be rewritten as

[
1 – αn(1 – ρ)

]
d2(xn, p) + αn(1 – ρ)M2, (3.31)

where

M2 = sup
n∈N

Hn. (3.32)

Thus, it is not difficult to see from (3.32) that if we let hn = αn(1 – ρ), then the sequence
{an} satisfies

an+1 ≤ (1 – hn)αn + hnHn, (3.33)

where

an+1 = d2(xn, p).

Next, we claim that lim supk→∞ Hnk ≤ 0. Suppose that there exists a subsequence {ank } of
{an}, which satisfies lim infk→∞(ank – ank ) ≥ 0. Now, from (3.29), we have

lim sup
k→∞

(1 – αnk )
[
(1 – 2λα1)d2(unk , wnk ) + (1 – 2λα2)d2(ynk , unk )

– βnk (1 – βnk )d2(ynk , S(ynk )
)]

≤ lim sup
k→∞

[
(1 – αnk )ank – ank +1

]

+ (1 – ρ)M2 lim sup
k→∞

αnk
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= – lim
k→∞

(ank+1–ank
)

≤ 0. (3.34)

Thus, using (C1) and the fact that (1 – 2λαi) > 0, for i = 1, 2, we obtain

lim
k→∞

d(unk , wnk ) = 0, and lim
k→∞

d(ynk , unk ) = 0, lim
k→∞

d
(
ynk , S(ynk )

)
= 0. (3.35)

Also, from (3.35), we have that limk→∞ d(ynk , wnk ) = 0. Furthermore, from (3.20) and (C2),
we have that

lim
k→∞

d(wnk , xnk ) ≤ lim
k→∞

αnk

μnk

αnk

d(xnk , xnk–1 )

= 0. (3.36)

Using step 2 of Algorithm 3.1 and (3.34), we get

lim
k→∞

d(tnk , ynk ) ≤ lim
k→∞

(1 – βnk )d
(
ynk , S(ynk )

)

= 0.

From step 4 of Algorithm 3.1 and (C2), we get

d(xnk+1 , tnk ) ≤ αnd
(
φ(xn), tnk

)
+ (1 – αnk )d(tnk , tnk )

= 0. (3.37)

Finally, from (3.33), (3.36), and (3.37), we get

lim
k→∞

d(ynk , xnk ) = 0, lim
k→∞

d(tnk , xnk ) = 0, lim
k→∞

d(unk , xnk ) = 0, (3.38)
�

Theorem 3.6 Suppose that (D1) – (D4) holds and EP(f , E) �= ∅, then the sequence {xn} gen-
erated by algorithm (3.1) converges to a solution of �. Let {xnki

} be a subsequence of {xnk }
that converges to x∗ ∈ C.

Proof Let p be in a limit point of the sequence {xnk }. There exists subsequence {xnki
} that

converges to x∗. So, let t ∈ M be an arbitrary element. From Lemma 3.2 (ii), we obtain

λf (unki
, t) ≥ λf (unki

, ynki
) +

〈
exp–1

ynki
wnki

, exp–1
ynki

t
〉
. (3.39)

Using Lipschitz-type continuity of f , we have

f (unki
, ynki

) ≥ f (wnki
, ynki

) – f (wnki
, unki

) – α1d2(wnki
, unki

) – α2d2(unki
, ynki

). (3.40)

When we let t = ynki
in Lemma 3.2 (i), we obtain the following

λ
[
f (wnki

, ynki
) – f (wnki

, unki
)
] ≥ 〈

exp–1
unki

wnki
, exp–1

unki
ynki

〉
. (3.41)
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Thus, we obtain the following from (3.41) and (3.40)

λf (unki
, ynki

) ≥ 〈
exp–1

unki
wnki

, exp–1
unki

ynki

〉
– λα1d2(wnki

, unki
) – λα2d2(unki

, ynk ) (3.42)

Merging (3.42) and (3.39), we obtain

λf (unki
, t) ≥ 〈

exp–1
unki

wnki
, exp–1

unki
ynki

〉
+

〈
exp–1

ynki
wnki

, exp–1
ynk

t
〉

– λα1d2(wnk , unki
) – λα2d2(unki

, ynki
). (3.43)

Thus, from the boundedness of {xnk }, we obtain

f
(
x∗, t

) ≥ 0, ∀t ∈ C. (3.44)

Thus, x∗ ∈ EP(f , C). Furthermore, using (3.35), we obtain that x∗ ∈ F(S). Hence, we con-
clude that x∗ ∈ � �

Next, we show that {xn} converges to x∗ ∈ �. To estimate that, we claim that
lim limk→∞ sup Hnk ≤ 0. To prove this, we only need to show that

lim
k→∞

〈
exp–1

p φ(p), exp–1
p xnk+1

〉 ≤ 0. (3.45)

Since {xnk } is bounded, there exists a subsequence {xnki
} of {xnk } that converges to x∗ such

that

lim
k→∞

〈
exp–1

p φ(p), exp–1
p xnki

〉
= lim

k→∞
〈
exp–1

p φ(p), exp–1
p xnk

〉

=
〈
exp–1

p φ(p), expp x∗〉

≤ 0. (3.46)

Hence, by substituting (3.46) into (3.33) and applying Lemma 2.17, we conclude that {xn}
converges to x∗ ∈ �. Thus, we complete the proof.

If we change the mapping S in Algorithm 3.1 to a contraction mapping, we obtain the
following.

Corollary 3.7 Let C be a non-empty, closed convex subset of a Hadamard manifold M and
S : C → C be a contraction mapping. Let � = F(S)∩EP(f , C) be the solution set. Let φ : C →
C be a ρ-contraction with the bifunction f satisfying the following conditions (D1 → D4).
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Algorithm 3.8 Initialization algorithm: choose x0 ∈ C and a parameter λ which satisfies
0 ≤ λ < min{ 1

2θ1
, 1

2θ2
} iterative steps: Given xn–1, xn, choose μ ∈ [0, μ̄n], where

μ̄n =

⎧
⎨

⎩

min{μ, εn
d(xn ,xn–1) }, if xn �= xn–1

μ otherwise.

Step 1: Compute

⎧
⎨

⎩

wn = expxn (μn exp–1 xn–1)

un = arg min{λf (wn, v) + 1
2 d2(wn, v), v ∈ C}.

If un = wn, then stop. Otherwise, go to the next step.
Step 2: Compute

yn = arg min

{

λf (un, v) +
1
2

d2(wn, v) : v ∈ Tm

}

.

where the half-space Tm is defined by

Tm =
{

v ∈ M :
〈
exp–1

un wn – λzn, exp–1
un v

〉 ≤ 0
}

and

zn ∈ ∂2f (wn, un)

Step 3: Compute

tn = expyn (1 – βn) exp–1
yn S(yn)

Step 4 Calculate

xn+1 = expφ(xn)
(1 – αn) exp–1

φ(xn) tn

Set n = n + 1 and return to step 1.

Then our sequence converges strongly to an element in the p ∈ �.

4 Applications
4.1 An application to solving Variational inequality problems
.

Suppose

f (x, y) =

⎧
⎨

⎩

〈Gx, exp–1
x y〉, if x, y ∈ C,

+∞, otherwise,
(4.1)

where G : C → M is a mapping. Subsequently, the equilibrium problem aligns with the
subsequent variational inequality (VIP) (see [52]):

Find x ∈ C such that
〈
Gx, exp–1

x y
〉 ≥ 0,∀y ∈ C. (4.2)
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Now, the set of solutions of (4.2) is denoted by VIP(G, C). The mapping G : C → M is said
to be pseudomonotone if

〈
Gx, exp–1

x y
〉 ≥ 0 �⇒ 〈

Gy, exp–1 y
〉 ≥ 0, x, y ∈ C. (4.3)

Let us suppose that the function G is pseudomonotone and fulfills the following condi-
tions:

(V1) The function G is pseudomonotone on C with VIP(G, C) �= ∅
(V2) G is L-Lipschitz continuous, which is,

‖Py,xGx – Gy‖ ≤ ‖x – y‖, x, y ∈ C, (4.4)

where Py,x is a parallel transport (see [50, 53]).
(V3) limn→∞〈Gxn, exp–1

xn y〉 ≤ 〈Gp, exp–1
p y〉 for every y ∈ C and {xn} ⊂ C such that

xn → p.
By substituting the proximal term arg min{f (x, y) + 1

2λ
d(x, y) y ∈ M} with

PC(expx(–λnG(x))), where PC is metric projection of M onto C in Algorithm 3.1,
we have the following method for approximating a point in VIP(G, C).

In this context, we can establish the subsequent convergence theorem for the approxi-
mation of a solution to the VIP (4.2)

Theorem 4.1 Let g : C → C be a contraction and G : C → M be a pseudomonotone opera-
tor satisfying condition V1-V3. If 0 < k = sup{ψd(xn ,q)

d(xn ,q) : xn �= q, n ≥ 0, q ∈ VIP(G, C)} < 1, then
the sequence {xn} generated by Algorithm 2 converges to an element p ∈ VIP(G, K) which
satisfies p = PVIP(G,C))g(p)

Algorithm 4.2 Initialization algorithm: choose x0 ∈ C and a parameter λ which satisfies
0 ≤ λ < min{ 1

2θ1
, 1

2θ2
} iterative steps: Given xn–1, xn, choose μ ∈ [0, μ̄n], where

μ̄n =

⎧
⎨

⎩

min{μ, εn
d(xn ,xn–1) }, if xn �= xn–1

μ otherwise.

Step 1: Compute

⎧
⎨

⎩

wn = expxn (μn exp–1 xn–1)

un = PC(expwn –λn)G(wn).

If un = wn, then stop. Otherwise, go to the next step.
Step 2: Compute

yn = PTm (expwn

(
–λnG(wn)

)
.

where the half-space Tm is defined by

Tm =
{

v ∈ M :
〈
exp–1

un wn – λzn, exp–1
un v

〉 ≤ 0
}

. and

zn ∈ ∂2g(wn, un).
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Step 3: Compute

tn = expyn (1 – βn) exp–1
yn S(yn).

Step 4: Calculate

xn+1 = expφ(xn)
(1 – αn) exp–1

φ(xn) tn.

Set n = n + 1 and return to step 1.

5 Numerical example
In this section, we provide a numerical example to show the performance of our iterative
scheme and compare it with results existing in the literature. We use MATLAB program-
ming for our numerical experiment.

Example 5.1 Let M = R
2 be a Hadamard manifold, and let G : C → M be defined by

G(x) =

[
(x2

1 + (x2 – 1)2)(1 + x2)
–x3

1 – x1(x2 – 1)2

]

where C = {x ∈ R
2 : –10 ≤ xi < 10, i = 1, 2} and x = (x1, x2). By employing the Monte-

Carlo approach, it can be shown that G is pseudomonotone on C (see [54]). Define
f (x, y) : 〈G(x), exp–1

x y〉 for all y ∈ C. It is easy to see that f satisfies conditions (D1)-(D4). To
implement our algorithm, we choose αn = 1

n+1 , εn = 1
(n+1)2 , βn = 2n

5n+8 , μ = 0.8 and λ = 0.01.
We use ‖xn+1 – xn‖ < 10–6 as stopping criterion. We use the following as starting point in
our implementation:

Case I: x0 = [–1, 4] and x1 = [2, 5]
Case II: x0 = [8, 9] and x1 = [–3, –6]
Case III: x0 = [1/4, 1/8] and x1 = [0, 4]
Case IV: x0 = [6, 1] and x1 = [–1, –5].
We test the algorithm with the non-inertial version of the proposed Algorithm 3.1 by

setting μn = 0 in the algorithm. The numerical results are shown in Table 1 and Fig. 1.

Example 5.2 Consider the Nash equilibrium model initiated in [55]. Let f : C × C →R be
a bifunction given by

f (x, y) = 〈Kx + Ry + t, y – x〉.

Table 1 Computation result for Example 5.1

Algorithm 3.1 Non-inertial algorithm

Iter CPU time Iter CPU time

Case I 9 1.76E–4 23 3.10E–4
Case II 9 1.78E–4 24 4.27E–4
Case III 9 1.96E–4 24 2.37E–4
Case IV 10 1.48E–4 25 4.07E–4
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Figure 1 Example 5.1, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV

Table 2 Computation result for Example 5.1

Algorithm 3.1 Non-inertial algorithm

Iter CPU time Iter CPU time

Case I 17 6.54E-3 31 9.46E-3
Case II 14 6.19E-4 26 1.6E-3
Case III 15 6.05E-4 27 5.46E-3
Case IV 16 9.0E-4 30 5.67E-3

Where C = {x = (x1, x2, . . . xm) : 1 ≤ xi ≤ 100, i = 1, 2, . . . , m}. Let x, y ∈ C, and let t =
(t1, t2 . . . tm) ∈ R be chosen randomly. Besides, K and R are matrices of order m × m
such that R is symmetric positive semidefinete and R – K is negative semidefinite. It was
shown in [55] that f is pseudomonotone and satisfies conditions (D1)-(D4) with Lip-
schitz constants c1 = c2 = 1

2‖R – K‖. We choose the following parameters: αn = 1
2n+14 ,

βn = 4n
9n+4 , εn = 1

n1.7 , μ1 = 0.5 and λ = 10–2. Furthermore, we choose our stopping crite-
rion to ‖xn+1 – xn‖2 = 10–6. The starting points x0 and x1 are generated randomly in R

m

and consider the following values of m

Case I : m = 100, Case II : m = 500, Case III : m = 1000, and

Case IV : m = 2000.

The numerical results are shown in Table 2 and Fig. 2.
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Figure 2 Example 5.2, Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV

6 Conclusion
In this paper, we proposed a viscosity extragradient with a modified inertial method for
solving the equilibrium problem and fixed point problem within the Hadamard manifold.
A strong convergence result was obtained using viscosity technique and inertial method
with conditions on the parameters required for generating the sequence of approximation.
Moreover, we provide a numerical example to demonstrate the convergence behavior of
the proposed algorithm.
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