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Abstract
In this work, we study the following Schrödinger-Poisson system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–�Hu +μφu = λu–γ , in �,

–�Hφ = u2, in �,

u > 0, in �,

u = φ = 0, on ∂�,

where �H is the Kohn-Laplacian on the first Heisenberg groupH
1, and � ⊂ H

1 is a
smooth bounded domain, μ =±1, 0 < γ < 1, and λ > 0 are some real parameters. For
the above system, we prove the existence and uniqueness of positive solution for
μ = 1 and each λ > 0. Multiple solutions of the system are also considered for μ = –1
and λ > 0 small enough using the critical point theory for nonsmooth functional.

Mathematics Subject Classification: 35A15; 35R03
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1 Introduction and main results
This paper consider the following singular Schrödinger-Poisson system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�Hu + μφu = λu–γ , in �,

–�Hφ = u2, in �,

u > 0, in �,

u = φ = 0, on ∂�,

(1.1)

where �H is the Kohn-Laplacian on the first Heisenberg group H
1, � is a smooth bounded

domain of H1, μ = ±1, 0 < γ < 1, and λ > 0 are some real parameters.
Over the years, many scholars have been widely studied the Heisenberg group due to

its crucial role in several branches of mathematics, such as quantum mechanics, com-
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plex variables, and harmonic analysis, so one can refer to [9, 12, 19] and the references
therein.

In 2022, Liu et al. [15] investigated the following Schrödinger-Poisson system on the
Heisenberg group

⎧
⎪⎪⎨

⎪⎪⎩

–(a – b
∫

�
|∇H u|2 dξ )�Hu + μφu = λ|u|q–2u + |u|2u, in �,

–�Hφ = u2, in �,

u = φ = 0, on ∂�,

(1.2)

where � ⊂H
1 is a smooth bounded domain, a, b > 0, 1 < q < 2 or 2 < q < 4, λ > 0, and μ ∈R

are some real parameters. They obtained the existence and multiplicity of solutions. In
particular, when a = 1, b = 0, An and Liu in [1] established the existence and multiplicity
of solutions of problem (1.2). Using the Green representation formula, the concentration
compactness, and the critical point theory, they proved that the above system has at least
two positive solutions for μ < S × meas(�)– 1

2 and λ small enough. In addition, they also
established that there is a positive ground-state solution for (1.2).

Lei and Liao [13] considered the following system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–�u + λφu = λ

|x|β uγ + |u|4u, in �,

–�φ = u2, in �,

u > 0, in �,

u = φ = 0, on ∂�,

where 0 < γ < 1, 0 ≤ β < 5+γ

2 and λ > 0 is parameter, they obtained two positive solutions
using the variational method and the Nehari manifold method.

In [20], Pucci and Ye studied the logarithmic and critical nonlinearities for the Kirchhoff-
Poisson system

⎧
⎪⎪⎨

⎪⎪⎩

–M(
∫

�
|∇Hu|2 dξ )�Hu + μφu = |u|2u + λ|u|q–2u ln |u|2, in �,

–�Hφ = u2, in �,

u = φ = 0, on ∂�,

where � is a smooth bounded domain of H1, q ∈ (2θ , 4), μ ∈ R, and λ > 0 are some real
parameters. Under suitable assumptions on the Kirchhoff function M, covering the de-
generate case, they proved the existence of nontrivial solutions for the above system when
λ > 0 is sufficiently large. For more on the results of the Heisenberg group, we refer the
reader to [2, 8, 10, 14, 16–18, 21] and the references therein.

Furthermore, for the system (1.1) in the Heisenberg group, there is no result that this
paper answers positively. Before giving the theorem, we define the solutions of (1.1) if u
satisfies

∫

�

∇Hu∇H v dξ + μ

∫

�

φuuv dξ – λ

∫

�

v
uγ

dξ = 0, ∀v ∈ S1
0(�),

we say that u is a solution of problem (1.1).
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Theorem 1.1 Assume that 0 < γ < 1, μ = 1 and λ > 0, then system (1.1) has a unique
solution.

Theorem 1.2 Assume that 0 < γ < 1 and μ = –1, then there exists �0 > 0 such that for
every λ ∈ (0,�0), system (1.1) has at least two positive solutions.

Remark 1.3 Our approach is novel, unlike the Euclidean case, since the presence of sin-
gular terms gives us great difficulties; the critical point theory for nonsmooth functional
is used to overcome the difficulties, generalizing the results of literature [22].

2 Some preliminary results
In this section, we review the Heisenberg group. For more results, see [7, 11]. Let H1 be
the Heisenberg group of topological dimension 3, that is, the Lie group where underlying
manifold is R3, endowed with the non-Abelian law

τ : H1 →H
1, τξ

(
ξ ′) = ξ ◦ ξ ′,

where

ξ ◦ ξ ′ =
(
x + x′, y + y′, t + t′ + 2

(
x′y – xy′)),

for ∀ξ , ξ ′ ∈ H
1, with ξ = (x, y, t) and ξ ′ = (x′, y′, t′), satisfy the inverse operation. Consider

the family of dilations on H
1 defined by

δs(ξ ) =
(
sx, sy, s2t

)
, ∀ξ ∈H

1,

so δs(ξ ◦ ξ ′) = δs(ξ ) ◦ δs(ξ ′) (see [19]). The number Q = 4 is the homogeneous dimension of
H

1, definition

∣
∣BH(ξ0, r)

∣
∣ = ωQrQ,

where BH (ξ0, r) is the Heisenberg ball of radius r centered at ξ0, i.e.,

BH (ξ0, r) =
{
ξ ∈H

1 : dH (ξ0, ξ ) < r
}

,

dH (ξ0, ξ ) = |ξ–1 ◦ ξ0|H and ωQ = |BH (0, 1)|.
The Kohn-Laplacian �H on H

1 is defined as

�H u = divH (∇Hu),

where ∇Hu = (Xu, Yu). Indeed, the vector fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
– 2x

∂

∂t
, and T =

∂

∂t
,

are a basis of the Lie algebra of H1 thus constituting a set of left invariant vector fields
on H

1. Widely known that �H is a degenerate elliptic operator, and the Bony maximum
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principle is satisfied (see [4]). In the present section, the existence and multiplicity of so-
lutions of system (1.1), when μ = –1, are studied. We prove that system (1.1) has two posi-
tive solutions using the critical point theory for nonsmooth functional and the variational
method for λ > 0 small enough.

Let us review critical points of nonsmooth functions related concepts. Let (X, d) be a
complete metric space with metric d and f : X → R be a continuous functional in X. De-
note by |df |(u) the supremum of δ in [0,∞) such that there exist r > 0 and a continuous
map σ : U × [0, r] → X, satisfying

⎧
⎨

⎩

f (σ (v, t)) ≤ f (v) – δt, (v, t) ∈ U × [0, r],

d(σ (v, t), v) ≤ t, (v, t) ∈ U × [0, r].
(2.1)

The number |df |(u) is called the weak slope of f at u. Thus, u ∈ X is a critical point of f if
|df |(u) = 0, and c ∈ R is a critical value of f if there exists a critical point u ∈ X of f with
f (u) = c.

Since we are solving for the positive solution of system (1.1), so consider the functional
Iλ defined on the closed positive cone U+ of S1

0(�), which is defined as

U+ =
{

u ∈ S1
0(�), u(x) ≥ 0, a.e. x ∈ �

}
.

The Hilbert space S1
0(�) is defined as the closure of C∞

0 (�) under the inner product
〈u, v〉 =

∫

�
∇Hu∇H v dξ . Accordingly, the norm is denoted by ‖u‖ = ‖u‖S1

0(�) =

(
∫

�
|∇Hu|2 dξ ) 1

2 . The norm in Lp(�) is denoted by ‖u‖p = (
∫

�
|u|p dξ )

1
p . The embedding

S1
0(�) ↪→ Lp(�) is continuous for p ∈ [1, Q∗], where Q∗ = 2Q

Q–2 = 4 is the critical exponent
in H

1. Let us denote by Bρ and Sρ a closed ball and a sphere, respectively, of a center of
zero and radius ρ . Let S be the best Sobolev constant, namely

S = inf
u∈S1

0(H1)\{0}

∫

H1 |∇Hu|2 dξ

(
∫

H1 |u|4 dξ ) 1
2

. (2.2)

First, using the Lax-Milgram theorem, for each u ∈ S1
0(�), there exists a unique solu-

tion φu ∈ S1
0(�), which satisfies the second equation of system (1.1). Then, system (1.1) is

transformed into the following problem

⎧
⎪⎪⎨

⎪⎪⎩

–�Hu + μφuu = λu–γ , in �,

u > 0, in �,

u = 0, on ∂�.

(2.3)

For problem (2.3), we define the functional

Iλ(u) =
1
2
‖u‖2 +

μ

4

∫

�

φuu2 dξ –
λ

1 – γ

∫

�

|u|1–γ dξ . (2.4)

We know that the functional Iλ is well defined and Iλ ∈ C1(S1
0(�),R). Besides, we say that

u is a weak solution of problem (2.3) if u satisfies

〈
I ′
λ(u), v

〉
=

∫

�

∇H u∇Hv dξ + μ

∫

�

φuu vdξ – λ

∫

�

v
uγ

dξ = 0, ∀v ∈ S1
0(�). (2.5)
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By the Hölder inequality and (2.2), we obtain

∫

�

|u|1–γ dξ ≤ S– 1–γ
2 |�| 3+γ

4 ‖u‖1–γ . (2.6)

Lemma 2.1 (See [1]) For all u ∈ S1
0(�), there exists a unique solution φu ∈ S1

0(�) of

⎧
⎨

⎩

–�Hφ = u2, in �,

φ = 0, on ∂�,

and
(1) φu ≥ 0 and φtu = t2φu for each t > 0;
(2) If un ⇀ u in S1

0(�), then φun → φu in S1
0(�) and

lim
n→∞

∫

�

φun unv dξ =
∫

�

φuuv dξ , ∀v ∈ S1
0(�);

(3) For all u ∈ S1
0(�), there holds that

∫

�

|∇Hφu|2 dξ =
∫

�

φuu2 dξ ≤ S–1‖u‖4
8/3 ≤ S–3|�| 1

2 ‖u‖4;

(4) For u, v ∈ S1
0(�),

∫

�
(φuu – φvv)(u – v) dξ ≥ 1

2‖φu – φv‖2.

Lemma 2.2 Assume that u ∈ U+ and |dIλ|(u) < +∞. Then, for all v ∈ U+, one obtains

λ

∫

�

v – u
uγ

dξ ≤
∫

�

∇Hu∇H (v – u) dξ –
∫

�

φuu(v – u) dξ + |dIλ|(u)‖v – u‖. (2.7)

Proof Let u �= v ∈ U+ and ‖v – u‖ > 2δ. Define σ : U × [0, δ] → U+ by

σ (z, t) = z + t
v – z

‖v – z‖ ,

where U is a neighborhood of u, then ‖σ (z, t)–z‖ = t. By (2.1), there exists (z, t) ∈ U × [0, δ]
such that Iλ(σ (z, t)) > Iλ(z) – ct. Hence, we assume that there exist sequences {un} ⊂ U+

and {tn} ⊂ [0, +∞), such that un → u, tn → 0+, and

Iλ
(

un + tn
v – un

‖v – un‖
)

≥ Iλ(un) – ctn.

That is say

Iλ
(
un + sn(v – un)

) ≥ Iλ(un) – csn‖v – un‖, (2.8)
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where sn = tn
‖v–un‖ → 0+ as n → ∞. Dividing (2.8) by sn, we deduce that

λ

1 – γ

∫

�

[un + sn(v – un)]1–γ – u1–γ
n

sn
dξ

≤ 1
2

‖un + sn(v – un)‖2 – ‖un‖2

sn

–
1
4

∫

�

φun+sn(v–un)(un + sn(v – un))2 – φun u2
n

sn
dξ + c‖v – un‖.

(2.9)

Further, we can infer that

∫

�

[un + sn(v – un)]1–γ – u1–γ
n

sn(1 – γ )
dξ =

∫

�

[un + sn(v – un)]1–γ – [(1 – sn)un]1–γ

sn(1 – γ )
dξ

+
∫

�

[(1 – sn)un]1–γ – u1–γ
n

sn(1 – γ )
dξ

=
∫

�

[un + sn(v – un)]1–γ – [(1 – sn)un]1–γ

sn(1 – γ )
dξ

+
(1 – sn)1–γ – 1

sn(1 – γ )

∫

�

|un|1–γ dξ

=I1n + I2n.

(2.10)

By mean value theorem, one has

I1n =
∫

�

ζ
–γ
n snv

sn
dξ =

∫

�

v
ζ

γ
n

dξ ,

where ζn ∈ (un – snun, un + sn(v – un)), that is ζn → u(un → u) as sn → 0+, since I1n ≥ 0 for
all n. Applying Fatou’s Lemma to I1n, one gets

lim inf
n→∞ I1n ≥

∫

�

v
uγ

dξ , ∀v ∈ U+.

For I2n, by the dominated convergence theorem, it holds that

lim
n→∞ I2n = –

∫

�

|u|1–γ dξ .

For every v ∈ U+, and the above information, we have

λ

∫

�

v – u
uγ

dξ ≤ lim inf
n→∞ (I1n + I2n)

≤
∫

�

∇Hu∇H (v – u) dξ –
∫

�

φuu(v – u) dξ + c‖v – u‖,

where |dIλ|(u) < c is arbitrary. �

Lemma 2.3 Iλ satisfies the (P.S.) condition.
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Proof Let {un} ⊂ U+ be (P.S.) sequence of Iλ, that is

|dIλ|(un) → 0, Iλ(un) → c ∈R as n → ∞.

By Lemma 2.2, ∀v ∈ U+, we can infer that

λ

∫

�

v – un

uγ
n

dξ ≤
∫

�

∇Hun∇H (v – un) dξ –
∫

�

φun un(v – un) dξ + o(1)‖v – un‖, (2.11)

taking v = 2un ∈ U+ in (2.11), we have that

λ

∫

�

|un|1–γ dξ ≤
∫

�

|∇Hun|2 dξ –
∫

�

φun u2
n dξ + o(1)‖un‖. (2.12)

Since Iλ(un) → c,

1
2

∫

�

|∇Hun|2 dξ –
1
4

∫

�

φun u2
n dξ –

λ

1 – γ

∫

�

|un|1–γ dξ = c + o(1). (2.13)

From (2.12) and (2.13), we have

1
4

∫

�

|∇Hun|2 dξ ≤ λ

(
1

1 – γ
–

1
4

)∫

�

|un|1–γ dξ + c + o(1) + o(1)‖un‖

≤ λ
3 + γ

4(1 – γ )
‖un‖1–γ + C + o(1)‖un‖,

(2.14)

which implies that {un} is bounded in S1
0(�). Thus, there exists a subsequence, still denoted

by itself, and a function u ∈ S1
0(�), such that un ⇀ u in S1

0(�), un(x) → u(x) a.e. in � as
n → ∞. Choosing v = um as the test function in (2.11), we have

λ

∫

�

um – un

uγ
n

dξ ≤
∫

�

∇H un∇H (um – un) dξ –
∫

�

φun un(um – un) dξ + o(1)‖um – un‖.

Exchanging um and un gives a similar inequality, and adding two inequalities together and
Lemma 2.1(4), it holds that

‖un – um‖2 ≤ λ

∫

�

(un – um)
(

1
uγ

n
–

1
uγ

m

)

dξ

–
∫

�

(φum um – φun un)(un – um) dξ + o(1)‖um – un‖

≤ –
∫

�

(φum um – φun un)(um – un) dξ + o(1)‖um – un‖

≤ –
1
2
‖φum – φun‖2 + o(1)‖um – un‖

≤ o(1)‖um – un‖.

We have limn→∞ ‖un – um‖ = 0. Therefore, un → u in S1
0(�) as n → ∞. �
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Lemma 2.4 Suppose that |dIλ|(u) = 0, then u is a weak solution of the problem (2.3).
Namely, u–γ ϕ ∈ L1(�) for all ϕ ∈ S1

0(�), there holds

∫

�

∇Hu∇Hϕ dξ –
∫

�

φuuϕ dξ = λ

∫

�

ϕ

uγ
dξ . (2.15)

Proof By Lemma 2.2, we deduce that

λ

∫

�

v – u
uγ

dξ ≤
∫

�

∇Hu∇H (v – u) dξ –
∫

�

φuu(v – u) dξ ,

for every v ∈ U+. Letting s ∈R, ϕ ∈ S1
0(�), taking v = (u + sϕ)+ and v ∈ U+ as a test function

in (2.7), one gets

0 ≤
∫

�

∇H u∇H
(
(u + sϕ)+ – u

)
dξ –

∫

�

φuu
(
(u + sϕ)+ – u

)
dξ – λ

∫

�

(u + sϕ)+ – u
uγ

dξ

= s
(∫

�

∇H u∇Hϕ dξ –
∫

�

φuuϕ dξ – λ

∫

�

ϕ

uγ
dξ

)

–
∫

{u+sϕ<0}
∇Hu∇H (u + sϕ) dξ

+
∫

{u+sϕ<0}
φuu(u + sϕ) dξ +

∫

{u+sϕ<0}
u + sϕ

uγ
dξ

≤ s
(∫

�

∇H u∇Hϕ dξ –
∫

�

φuuϕ dξ – λ

∫

�

ϕ

uγ
dξ

)

– s
∫

{u+sϕ<0}
(∇H u∇Hϕ – φuuϕ) dξ ,

since ∇Hu(x) = 0 for a.e. x ∈ � with u(x) = 0, and Meas{x ∈ � : u(x) + sϕ(x) < 0, u(x) > 0} →
0 as s → 0, one obtains

∫

{u+sϕ<0}
(∇Hu∇Hϕ – φuuϕ) dξ =

∫

{u+sϕ<0,u>0}
(∇H u∇Hϕ – φuuϕ) dξ → 0.

Therefore

0 ≤ s
(∫

�

∇H u∇Hϕ dξ –
∫

�

φuuϕ dξ – λ

∫

�

ϕ

uγ
dξ

)

+ o(s),

as s → 0, we obtain that

∫

�

∇Hu∇Hϕ dξ –
∫

�

φuuϕ dξ – λ

∫

�

ϕ

uγ
dξ ≥ 0.

By the arbitrariness of ϕ, also holds for –ϕ

∫

�

∇Hu∇Hϕ dξ –
∫

�

φuuϕ dξ – λ

∫

�

ϕ

uγ
dξ = 0.

Hence, we can deduce that (2.15) holds. �

Lemma 2.5 Given 0 < γ < 1, there exist constants r,ρ,�0 > 0, such that the functional Iλ
satisfies the following conditions for 0 < λ < �0:
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(i) Iλ(u)|u∈Sρ ≥ r > 0, infu∈Bρ Iλ(u) < 0;
(ii) There exists e ∈ S1

0(�) with ‖e‖ > ρ such that Iλ(e) < 0.

Proof (i) It follows from (2.6) and Lemma 2.1(3) that

Iλ(u) =
1
2
‖u‖2 –

1
4

∫

�

φuu2 dξ –
λ

1 – γ

∫

�

|u|1–γ dξ

≥ 1
2
‖u‖2 –

1
4

S–3|�| 1
2 ‖u‖4 –

λ

1 – γ
S– 1–γ

2 |�| 3+γ
4 ‖u‖1–γ ,

which implies that there exist constants r,ρ,�0 > 0, such that Iλ|u∈Sρ ≥ r > 0 for every
λ ∈ (0,�0). Moreover, for u ∈ S1

0(�)\{0}, it holds that

lim
t→0+

Iλ(tu)
t1–γ

= –
λ

1 – γ

∫

�

|u|1–γ dξ < 0.

So, we obtain that Iλ(tu) < 0 for all u �= 0 and t small enough. Therefore, for ‖u‖ small
enough, one has

m = inf
u∈Bρ

Iλ(u) < 0.

(ii) For every u+ ∈ S1
0(�), u+ �= 0 and t > 0, we get

Iλ(tu) =
t2

2
‖u‖2 –

t4

4

∫

�

φuu2 dξ –
λt1–γ

1 – γ

∫

�

|u|1–γ dξ → –∞,

as t → +∞. Therefore, we can find e ∈ S1
0(�) such that ‖e‖ > ρ and Iλ(e) < 0. �

3 Proof of main results
In this section, we show that for each λ > 0, the functional Iλ attains the global minimizer
in S1

0(�), which is the unique solution of system (1.1) for μ = 1 and multiple solutions of
the system for μ = –1, λ > 0 small enough.

Proof of Theorem 1.1 We prove Theorem 1.1 in three steps.
Step 1. For every λ > 0 and μ = 1, the functional Iλ attains the global minimizer in S1

0(�),
in other words, there exists u∗ ∈ S1

0(�) such that

Iλ(u∗) = mλ = inf
S1

0(�)
Iλ < 0.

In fact, for all u ∈ S1
0(�), combining with Lemma 2.1(1) and (2.6), we infer that

Iλ(u) =
1
2
‖u‖2 +

1
4

∫

�

φuu2 dξ –
λ

1 – γ

∫

�

|u|1–γ dξ

≥ 1
2
‖u‖2 –

λ

1 – γ
S– 1–γ

2 |�| 3+γ
4 ‖u‖1–γ ,

(3.1)
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this implies that Iλ is coercive and bounded from below on S1
0(�) for each λ > 0. Thus,

mλ = infS1
0(�) Iλ. For t > 0 and given u ∈ S1

0(�)\{0},

Iλ(tu) =
t2

2
‖u‖2 +

t4

4

∫

�

φuu2 dξ –
λt1–γ

1 – γ

∫

�

|u|1–γ dξ .

We deduce from that for t > 0 small enough, Iλ(tu) < 0. Therefore, mλ = infS1
0(�) Iλ < 0.

From the definition of mλ, existence of minimizing sequence {un} ⊂ S1
0(�) such that

limn→∞ Iλ(un) = mλ < 0. Since Iλ(un) = Iλ(|un|), we can assume that un ≥ 0. By (3.1), we
know that {un} is bounded in S1

0(�). Suppose there exists a subsequence, still denoted by
{un}, and u∗ ∈ S1

0(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u∗, weakly in S1
0(�),

un → u∗, strongly in Lp(�) (1 ≤ p < 4),

un(x) → u∗(x), a.e. in �.

Then, combining with the weakly lower semi-continuity of the norm and Lemma 2.1 (2),
one has

Iλ(u∗) =
1
2
‖u∗‖2 +

1
4

∫

�

φu∗u2
∗ dξ –

λ

1 – γ

∫

�

|u∗|1–γ dξ

≤ lim inf
n→∞ Iλ(un) = mλ.

Furthermore, Iλ(u∗) ≥ mλ, thus Iλ(u∗) = mλ < 0.
In addition, we show u∗ > 0 in �. From the information above, u∗ ≥ 0 and u∗ �= 0. Fix

η ∈ S1
0(�), η > 0 and t ≥ 0, we obtain that

0 ≤ lim inf
t→0

Iλ(u∗ + tη) – Iλ(u∗)
t

=
∫

�

(∇Hu∗∇Hη + φu∗u∗η) dξ –
λ

1 – γ
lim sup

t→0

∫

�

(u∗ + tη)1–γ – u1–γ
∗

t
dξ ,

that is

λ

1 – γ
lim sup

t→0

∫

�

(u∗ + tη)1–γ – u1–γ
∗

t
dξ ≤

∫

�

[∇Hu∗∇Hη + φu∗u∗η] dξ . (3.2)

Notice that

∫

�

(u∗ + tη)1–γ – u1–γ
∗

t
dξ = (1 – γ )

∫

�

(u∗ + tηζ )–γ η dξ ,

where ζ (x) ∈ (0, 1) and

(
u∗(x) + tη(x)ζ (x)

)–γ
η(x) → u∗(x)–γ η(x), a.e. x ∈ �, t → 0.

Since (u∗(x) + tη(x)ζ (x))–γ η(x) ≥ 0, using Fatou’s Lemma, from (3.2), it holds

λ

1 – γ

∫

�

u–γ
∗ η dξ ≤

∫

�

[∇Hu∗∇Hη + φu∗u∗η] dξ .
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Using a similar approach, the above equation also holds for 0 ≤ η ∈ S1
0(�), that is

∫

�

(∇Hu∗∇Hη + φu∗u∗η) dξ –
λ

1 – γ

∫

�

u–γ
∗ η dξ ≥ 0, η ∈ S1

0(�),η ≥ 0. (3.3)

Thus,

–�H u∗ + φu∗u∗ ≥ 0.

Note that φu∗ (ξ ) > 0 for any ξ ∈ �, u∗ ≥ 0 and u∗ �= 0. According to the maximum principle
(see [3, 4]), u∗ > 0 in �.

Step 2. We prove that u∗ satisfies (2.5) for μ = 1. Let δ > 0 and define h : [–δ, δ] → R by
h(t) = Iλ(u∗ + tu∗), then h attains its minimum at t = 0, and it holds that

h′(0) = ‖u∗‖2 +
∫

�

φu∗u2
∗ dξ – λ

∫

�

|u∗|1–γ dξ = 0. (3.4)

We take η ∈ S1
0(�)\{0}, ε > 0 and define � = (u∗ + εη)+. Let

�1 =
{

x ∈ � : u∗(x) + εη(x) > 0
}

, �2 =
{

x ∈ � : u∗(x) + εη(x) ≤ 0
}

.

Then, �|�1 = u∗ + εη, �|�2 = 0. Inserting � into (3.3) and using (3.4), we can get

0 ≤
∫

�

(∇Hu∗∇H� + φu∗u∗� – λu–γ
∗ �

)
dξ

=
∫

�1

[∇Hu∗∇H (u∗ + εη) + φu∗u∗(u∗ + εη) – λu–γ
∗ (u∗ + εη)

]
dξ

=
∫

�\�2

[∇H u∗∇H (u∗ + εη) + φu∗u∗(u∗ + εφ) – λu–γ
∗ (u∗ + εη)

]
dξ

= ε

∫

�

(∇H u∗∇Hη + φu∗u∗η – λu–γ
∗ η

)
dξ –

∫

�2

[∇Hu∗∇H (u∗ + εη)

+ φu∗u∗(u∗ + εη) – λu–γ
∗ (u∗ + εη)

]
dξ

≤ ε

∫

�

(∇H u∗∇Hη + φu∗u∗η – λu–γ
∗ η

)
dξ – ε

∫

�2

(∇Hu∗∇Hη + φu∗u∗η) dξ .

(3.5)

Due to u∗ > 0 and the measure of the domain �2 = {x ∈ � : u∗(x) + εη(x) ≤ 0} tends to zero
as ε → 0, there holds

∫

�2

(∇Hu∗∇Hη + φu∗u∗η) dξ → 0.

Then, dividing by ε > 0 and letting ε → 0 in (3.5), we have

∫

�

(∇H u∗∇Hη + φu∗u∗η – λu–γ
∗ η

)
dξ ≥ 0, η ∈ S1

0(�).
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The above inequality also holds for –η, and we can get

∫

�

(∇H u∗∇Hη + φu∗u∗η – λu–γ
∗ η

)
dξ = 0, η ∈ S1

0(�).

Then, u∗ ∈ S1
0(�) is a solution of system (1.1) for λ > 0 and μ = 1.

Step 3. We prove that u∗ is the unique solution of (1.1) for μ = 1. We may assume that
v� ∈ S1

0(�) is also a solution of system (1.1), and from (2.5), we get

∫

�

[∇Hu∗∇H (u∗ – v�) + φu∗u∗(u∗ – v�)
]

dξ – λ

∫

�

u–γ
∗ (u∗ – v�) dξ = 0, (3.6)

and
∫

�

[∇Hv�∇H (u∗ – v�) + φv�v�(u∗ – v�)
]

dξ – λ

∫

�

v–γ
� (u∗ – v�) dξ = 0. (3.7)

Combining with (3.6) and (3.7), it holds that

‖u∗ – v�‖2 +
∫

�

(φu∗u∗ – φv�v�)(u∗ – v�) dξ = λ

∫

�

(
u–γ

∗ – v–γ
�

)
(u∗ – v�) dξ . (3.8)

For γ ∈ (0, 1), u∗, v� > 0 in �, and

∫

�

(
u–γ

∗ – v–γ
�

)
(u∗ – v�) dξ ≤ 0.

Hence, by (3.8) and Lemma 2.1(4), we get

‖u∗ – v�‖2 ≤ 0,

that is say

‖u∗ – v�‖2 = 0,

that is u∗ = v�. Hence, u∗ ∈ S1
0(�) is the unique solution of system (1.1). �

Proof of Theorem 1.2 We prove Theorem 1.2 in two steps.
Step 1. Suppose that 0 < λ < �0, then system (1.1) admits a positive solution u∗ such that

Iλ(uλ) = m < 0.
In fact, we claim that there exists uλ ∈ Bρ , such that Iλ(uλ) = m < 0. By the defini-

tion of m, we know that there exists a minimizing sequence {un} ⊂ Bρ ⊂ U+ such that
limn→∞ Iλ(un) = m < 0. Since {un} is bounded in Bρ , we may assume that, up to a subse-
quence still denoted by itself, there exists uλ ∈ S1

0(�), such that

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ uλ, weakly in S1
0(�),

un → uλ, strongly in Lp(�) (1 ≤ p < 4),

un(x) → uλ(x), a.e. in �,



Tian et al. Journal of Inequalities and Applications         (2024) 2024:19 Page 13 of 16

as n → ∞. Set wn = un – uλ, and using Brézis-Lieb’s Lemma (see [5]), one has

‖un‖2 = ‖wn‖2 + ‖uλ‖2 + o(1). (3.9)

Hence, by Lemma 2.3, we can infer that

m = lim
n→∞ Iλ(un) = Iλ(uλ) + lim

n→∞
1
2
‖wn‖2 ≥ Iλ(uλ), (3.10)

which implies that m ≥ Iλ(uλ). Since Bρ is closed and convex, one has that uλ ∈ Bρ . Thus,
we obtain Iλ(uλ) = m < 0 and uλ �≡ 0 in �. From the above arguments, we know that uλ is
a local minimizer of Iλ.

Now, we prove that uλ is a critical point of Iλ. Note that uλ ≥ 0 and uλ �≡ 0. Then, for
any ψ ∈ U+ ⊂ S1

0(�), let t > 0 such that uλ + tψ ∈ S1
0(�), and one has

0 ≤ Iλ(uλ + tψ) – Iλ(u)

=
1
2
‖uλ + tψ‖2 –

1
4

∫

�

φuλ+tψ (uλ + tψ)2 dξ –
λ

1 – γ

∫

�

|uλ + tψ |1–γ dξ

–
1
2
‖uλ‖2 +

1
4

∫

�

φuλ
u2

λ dξ +
λ

1 – γ

∫

�

|uλ|1–γ dξ .

(3.11)

Actually, from (3.11), we can see that

λ

1 – γ

∫

�

[
(uλ + tψ)1–γ – u1–γ

λ

]
dξ

≤ 1
2
(‖uλ + tψ‖2 – ‖uλ‖2) –

1
4

∫

�

[
φuλ+tψ (uλ + tψ)2 – φuλ

u2
λ

]
dξ .

Dividing by t > 0 and passing to the limit as t → 0+, it holds that

λ

1 – γ
lim inf

t→0+

∫

�

(uλ + tψ)1–γ – u1–γ

λ

t
dξ ≤

∫

�

∇H uλ∇Hψ dξ –
∫

�

φuλ
uλψ dξ . (3.12)

Notice that

λ

1 – γ

∫

�

(uλ + tψ)1–γ – u1–γ

λ

t
dξ = λ

∫

�

(uλ + ζ tψ)–γ ψ dξ .

Where ζ → 0+ and (uλ + ζ tψ)–γ ψ → u–γ

λ ψ a.e. x ∈ � as t → 0+, since (uλ + ζ tψ)–γ ψ ≥ 0.
By Fatou’s Lemma, one has

λ

∫

�

u–γ

λ ψ dξ ≤ λ

1 – γ
lim inf

t→0+

∫

�

(uλ + tψ)1–γ – u1–γ

λ

t
dξ .

Therefore, we deduce from (3.12) and the above estimate that

∫

�

∇Huλ∇Hψ dξ –
∫

�

φuλ
uλψ dξ – λ

∫

�

u–γ

λ ψ dξ ≥ 0, ψ ≥ 0. (3.13)
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Since Iλ(uλ) < 0, this, together with Lemma 2.5, implies that uλ /∈ Sρ ; therefore, we obtain
‖uλ‖ < ρ . For uλ, there is δ1 ∈ (0, 1) such that (1 + t)uλ ∈ Bρ for |t| ≤ δ1. Define k : [–δ1, δ1]
by k(t) = Iλ((1 + t)uλ). Clearly, k(t) achieves its minimum at t = 0, namely

k′(t)|t=0 = ‖uλ‖2 –
∫

�

φuλ
u2

λ dξ – λ

∫

�

u1–γ

λ dξ = 0. (3.14)

Suppose that for any v ∈ S1
0(�), ε > 0. Define � ∈ U+ by

� = (uλ + εv)+.

Combining with (3.13) and (3.14), we get

0 ≤
∫

�

(∇Huλ∇H� – φuλ
uλ� – λu–γ

λ �
)

dξ

=
∫

{uλ+εv>0}

[∇Huλ∇H (uλ + εv) – φuλ
uλ(uλ + εv) – λu–γ

λ (uλ + εv)
]

dξ

=
(∫

�

–
∫

{uλ+εv≤0}

)
[∇Huλ∇H (uλ + εv) – φuλ

uλ(uλ + εv) – λu–γ

λ (uλ + εv)
]

dξ

= ‖uλ‖2 –
∫

�

φuλ
u2

λ dξ – λ

∫

�

|uλ|1–γ dξ

+ ε

∫

�

(∇H uλ∇H v – φuλ
uλv – λu–γ

λ v
)

dξ

–
∫

{uλ+εv≤0}

[∇Huλ∇H (uλ + εv) – φuλ
uλ(uλ + εv) – λu–γ

λ (uλ + εv)
]

dξ

≤ ε

∫

�

(∇Huλ∇Hv – φuλ
uλv – λu–γ

λ v
)

dξ

– ε

∫

{uλ+εv≤0}
(∇Huλ∇Hv – φuλ

uλv) dξ .

(3.15)

Since the measure of the domain of integration {uλ + εv ≤ 0} → 0 as ε → 0, it follows that

lim
ε→0

∫

uλ+εv≤0
(∇Huλ∇Hv – φuλ

uλv) dξ = 0.

Therefore, dividing by ε and setting ε → 0 in (3.15), one gets

∫

�

∇Huλ∇Hv dξ –
∫

�

φuλ
uλv dξ – λ

∫

�

u–γ

λ v dξ ≥ 0. (3.16)

By the arbitrariness of v, the inequality also holds for –v

∫

�

∇Huλ∇Hv dξ –
∫

�

φuλ
uλv dξ – λ

∫

�

u–γ

λ v dξ = 0. (3.17)

Since uλ ≥ 0 and uλ �≡ 0, from (3.17), there holds

–�H uλ ≥ φuλ
uλ ≥ 0.
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Note that uλ ≥ 0 and uλ �= 0, then by the maximum principle (see [3, 4]), it suggests that
uλ > 0 in �. From the above arguments, we obtain that uλ is a positive solution of system
(1.1) with Iλ(uλ) = m < 0.

Step 2. Assume that 0 < λ < �0, then system (1.1) has a positive solution v∗ such that
Iλ(v∗) > 0.

In fact, by Lemma 2.5, Iλ satisfies the geometric structure of the mountain pass Lemma.
By Lemma 2.3, there exists a sequence {vn} such that

|dIλ|(vn) → 0, Iλ(vn) → c, as n → ∞.

We know that {vn} ⊂ S1
0(�) has a convergent subsequence, still denoted by {vn}, we may

assume that vn → v∗ in S1
0(�), and

Iλ(v∗) = lim
n→∞ Iλ(vn) = c, |dIλ|(vn) → 0.

Applying Theorem 1.3.1 in [6], similar to step 1, v∗ satisfies problem (2.3) with Iλ(v∗) = c >
0. Thus, v∗ is the second positive solution of system (1.1). �
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