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Abstract
The purpose of this paper is to introduce and study the structure of p-tuple of
(n,m)-D-normal operators. This is a generalization of the class of p-tuple of n-normal
operators. We consider a generalization of these single variable n-D-normal and
(n,m)-D-normal operators and explore some of their basic properties.

Keywords: D-normal; n-D-normal operators; (n,m)-D-normal; Joint normal
operators; Joint n-normal tuples

1 Introduction
Let K be a complex Hilbert space, B[K] be the algebra of all bounded linear operators
defined in K. For every N in B[K], denote ker(N) as the null space and N∗ as the adjoint
of R, respectively.

The Drazin inverse of bounded linear operators on complex Banach spaces was intro-
duced by Caradus [14] and King [26]. For more detailed study and applications of the
concepts of Drazin invertibility, we invite the interested readers to refer to ([11, 12, 32]).
It is well known that the Drazin inverse of the operator N ∈ B[K] is the unique operator
ND ∈ B[K] if it exists and satisfies the following conditions

⎧
⎪⎪⎨

⎪⎪⎩

NDN = NND ,

(ND)2N = ND ,

Nν+1ND = Nν for some integer ν ≥ 0.

We denote by Bd[K] the set of all Drazin invertible elements of B[K].
For N ∈ Bd[K], it was observed that the Drazin inverse ND of N satisfies the following

conditions

⎧
⎨

⎩

(N∗)D = (ND)∗

(Nk)D = (ND)k , ∀k ∈N.

Moreover, it was observed that if N ∈ Bd[K] and T ∈ B[K] is an invertible operator, then
T–1NT ∈ Bd[K] and (T–1NT)D = T–1NDT .
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Lemma 1.1 ([14, 34]) Let N , T ∈ Bd[K]. Then the following properties hold.
(1) NT is Drazin invertible if and only if TN is Drazin invertible. Moreover

(NT)D = N
[
(TN)D

]DT and ind(NT) ≤ ind(TN) + 1

(2) If NT = TN , then (NT)D = TDND = NDTD , NDT = TND and NTD = TDN .
(3) If NT = TN = 0, then (N + T)D = ND + TD .

The success of the theory of normal operators on Hilbert spaces has led to several at-
tempts to generalize it to large classes of operators, including normal operators.

For N , T ∈ B[K], we set [N , T] = NT – TN . An operator N ∈ B[K] is called
(i) normal if [N , N∗] = 0 ([17, 22, 30]),
(ii) n-normal if [Nn, N∗] = 0 ([2, 24, 25]),
(iii) (n, m)-normal if [Nn, (Nm)∗] = 0, where n, m are two nonnegative integers ([1, 3, 4]).
These concepts of normality, studied for N ∈ B[K], have been extended to the class of

Drazin inverse of bounded linear operators on K as follows: For R ∈ Bd[K], R is said to be
(i) D-normal if [ND , N∗] = 0 ([19]),
(ii) n-power D-normal if [(ND)n, N∗] = 0 ([19]),
(iii) (n, m)-power D-normal if [(ND)n, (N∗)m] = 0 for some positive integers n and m

([28]),
The study of p-tuples of operators has received great interest from many authors in

recent years. Some developments in this field have been presented in [7, 9, 10, 13, 15, 16,
23, 27, 29], and further references can be found therein.

Given a p-tuple N := (N1, . . . , Np) ∈ B[K]p, we define [N∗, N] ∈ B[K ⊕ · · · ⊕ K] as the
self-commutator of N, which is given by

[
N∗, N

]

k,l :=
[
N∗

l , Nk
] ∀(k, l) ∈ {1, . . . , p}2,

where N∗ := (N∗
1 , . . . , N∗

p ).
We shall say, following ([7, 18]), that N is jointly hyponormal if

[
N∗, N

]
=

⎛

⎜
⎜
⎜
⎜
⎝

[N∗
1 , N1] [N∗

2 , N1] · · · [N∗
p , N1]

[N∗
1 , N2] [N∗

2 , N2] · · · [N∗
p , N2]

...
...

...
...

[N∗
1 , Np] [N∗

2 , Np] · · · [N∗
p , Np]

⎞

⎟
⎟
⎟
⎟
⎠

is a positive operator on K ⊕ · · · ⊕ K, or equivalently

∑

1≤i,k≤p

〈[
N∗

i Nk
]
x
∣
∣x

〉 ≥ 0 ∀x ∈ K.

N is said to be jointly normal if N ([8]) satisfying

⎧
⎨

⎩

[Nk , Nl] = 0, k, l ∈ {1, . . . , p}
[N∗

k , Nk] = 0, k = 1, . . . , p



AlShammari Journal of Inequalities and Applications         (2024) 2024:18 Page 3 of 13

Recently, in [5], the author has introduced the concept of jointly n-normal tuple as fol-
lows: N = (N1, . . . , Np) ∈ B[K]p is said to be joint n-normal operators if R satisfying

⎧
⎨

⎩

[Nk , Nl] = 0, k, l ∈ {1, . . . , p}
[Nn

k , N∗
k ] = 0, k = 1, . . . , p,

for some positive integer n.
Let N = (N1, . . . , Np) ∈ Bd[K]p. We set ND := (ND

1 , . . . , ND
p ).

The present paper proposes and studies the concept of p-tuples of (n, m)-D-normal op-
erators. These are natural generalizations of D-normal, n-power D-normal, and (n, m)-
power D-normal single operators as done in [19, 28]. For more details on some classes of
Drazin inverse operators, the reader is invited to consult [20, 21, 33].

This paper has been organized into two sections. In section two, we introduce the class
of p-tuples of (n, m)-D-normal operators associated with Drazin invertible operators us-
ing their Drazin inverses. Some properties of this class are studied along with examples.
In the third section, the tensor product of some members of this class is discussed.

2 p-tuple of (n, m)-Drazin normal oreators
In this section, we introduce and study the class of jointly (n, m)-power D-normal multi-
operators.

Definition 2.1 Let N := (N1, . . . , Np) ∈ Bd[K]p. We said that N is p-tuple of (n, m)-Drazin
normal operators for some positive integers n and m if N satisfies the following conditions

⎧
⎨

⎩

[Nk , Nl] = 0; ∀(k, l) ∈ {1, . . . , p}2

[(ND
k )n, N∗m

k ] = 0 ∀k = 1, . . . , p.

When n = m = 1, we said that N is p-tuple of D-normal operators and if m = 1, N is p-tuple
of n-D-normal operators.

Example 2.1 Let N ∈ Bd[K] be an (n, m)-D-normal operator, then N = (N , . . . , N) ∈
Bd[K]p is p-tuple of (n, m)-D-normal operators.

Example 2.2 Let N := (N1, . . . , Np) ∈ Bd[K]p be commuting operators. If each Nk is
(n, m)-D-normal single operator, then N is p-tuple of (n, m)-D-normal operators.

The following example shows that there exists a p-tuple of operators N = (N1, . . . , Np) ∈
Bd(K)p such that each Nk is (n, m)-D-normal for k = 1, . . . , p, however N is not p-tuple of
(n, m)-D-normal operators. This means that the study of these concepts is not trivial.

Example 2.3 Let N = (N1, N2) ∈ B[C4] where

N1 =

⎛

⎜
⎜
⎜
⎝

1 0 0 0
1 0 0 0
0 0 0 1
0 1 1 0

⎞

⎟
⎟
⎟
⎠

and N2 =

⎛

⎜
⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎟
⎠

.
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It was observed in [19] that N1 and N2 are in Bd[C4] and

ND
1 =

⎛

⎜
⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎠

and ND
2 =

⎛

⎜
⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎟
⎠

.

It is easy to check that [N1, N2] �= 0 and [(ND
j )n, N∗m

j ] = 0 for j = 1, 2. This means that, each
Nj is (n, m)-power D-normal, while that N is not p-tuple of (n, m)-D-normal operators.

In the the following theorem we collect some properties of p-tuple of (n, m)-D-normal
operators.

Theorem 2.1 Let N = (N1, . . . , Np) ∈ Bd[K]p be p-tuple of (n, m)-D-normal operators, then
the following properties hold.

(1) N is p-tuple of (rn, sm)-D-normal operators for some positive integers r and s.
(2) Nq := (Nq1

1 , . . . , Nqp
p ) is p-tuple of (n, m)-D-normal operators for q = (q1, . . . , qp) ∈N

p.
(3) N∗ = (N∗

1 , . . . , N∗
p ) is p-tuple of (n, m)-D-normal operators.

(4) If V is an unitary operator, then V ∗NV := (V ∗N1V , . . . , V ∗NpV ) is p-tuple of (n, m)-D-
normal operators.

Proof (1) Since N is a p-tuple of (n, m)-D-normal operators, it follows that [Nk , Nl] = 0 for
k, l = 1, . . . , p. However,

[(
ND

k
)rn, N∗(sm)

k
]

=
(
ND

k
)rnN∗(sm)

k – N∗(sm)
k ND

k )rn

=
(
ND

k
)n · · · (ND

k
)n

︸ ︷︷ ︸
r–times

. N∗m
k · · ·N∗m

k︸ ︷︷ ︸
s–times

– N∗m
k · · ·N∗m

k︸ ︷︷ ︸
s–times

(
ND

k
)n · · · (ND

k
)n

︸ ︷︷ ︸
r–times

= N∗m
k · · ·N∗m

k︸ ︷︷ ︸
s–times

(
ND

k
)n · · · (ND

k
)n

︸ ︷︷ ︸
r–times

– N∗m
k · · ·N∗m

k︸ ︷︷ ︸
s–times

(
ND

k
)n · · · (ND

k
)n

︸ ︷︷ ︸
r–times

= 0.

(2) If qk = 1 for all k ∈ {1, . . . , q}, then [Nqk
k , Nql

l ] = 0.
If qk > 1 for all k ∈ {1, . . . , p}, by taking into account [29, Lemma 2.1], we have

[
Nqk

k , Nql
l

]
=

∑

α+α′=qk –1
β+β ′=ql–1

Nα
k Nβ

l [Nk , Nl]Nα′
l Nβ ′

k .

Now, under the assumption that N is a p-tuple of (n, m)-D-normal operators, it follows
that

[
Nqk

k , Nql
l

]
=

∑

α+α′=qk –1
β+β ′=ql–1

Nα
k Nβ

l [Nk , Nl]Nα′
l Nβ ′

k = 0, ∀(k, l) ∈ {1, . . . , p}2.

By looking that Nk is an (n, m)-D-normal, then from [28, Proposition 2.10], we obtain that
Nqk

k is an (n, m)-D-normal for all k ∈ {1, . . . , q}. This means that (Nq1
1 , . . . , Nqp

p ) is a p-tuple
of (n, m)-D-normal operators.
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(3) From Definition 2.1, we have under the condition that N is a p-tuple of (n, m)-power
D-normal operators that is

⎧
⎨

⎩

[Nk , Nl] = 0 for all (k, l) ∈ {1, . . . , p}2

[(ND
k )n, N∗m

k ] = 0 for k = 1, . . . , p.

and therefore,
⎧
⎨

⎩

[N∗
k , N∗

l ] = 0 for all (k, l) ∈ {1, . . . , p}2

[(ND
k )∗n, Nm

k ] = 0 for k = 1, . . . , q.

Hence, N∗ is a p-tuple of (n, m)-D-normal operators.
(4) We observe that

[
V ∗NkV , V ∗NlV

]
=

(
V ∗NkV

)(
V ∗NlV

)
–

(
V ∗NlV

)(
V ∗NkV

)

= V ∗NkNlV – V ∗NlNkV

= V ∗[Nk , Nl]V

= 0.

Moreover,

[(
V ∗NkV

)Dn,
(
V ∗NkV

)∗m]
= V ∗(ND

k
)nVV ∗N∗m

k V – V ∗N∗m
k VV ∗(ND

k
)nV

= V ∗(ND
k

)nN∗m
k V – V ∗N∗m

k
(
ND

k
)nV

= V ∗[(ND
k

)n, N∗m
k

]
V

= 0.

Hence, V ∗NV is a p-tuple of (n, m)-D-normal operators. �

Proposition 2.1 Let N = (N1, . . . , Np) ∈ Bd[K]p. The following statements are true.
(1) If N is a p-tuple of (n, n)-D-normal operators then (ND)n := ((ND

1 )n, . . . , (ND
p )n) is a

p-tuple of normal operators.
(2) If (ND)n is a p-tuple of normal operators and NkNl – NlNk = 0 for all k, l = 1, . . . , p,

then N is a p-tuple of (n, m)-D-normal operators.

Proof (1) If N is a p-tuple of (n, n)-D-normal operators. Then we get

[Nk , Nl] = 0 
⇒ [
ND

k , ND
l

]
= 0 ∀k, l = 1, . . . , p.

However,

[(
ND

k
)n, N∗n

k
]

= 0 
⇒ [(
ND

k
)n,

(
ND

k
)∗n] = 0, ∀k ∈ 1, . . . , p.

Therefore (ND)n is a p-tuple of normal operators.
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(2) Since (ND)n is a p-tuple of normal operators, we have that

[(
ND

k
)n,

(
ND

k
)∗n] = 0, for each k = 1, . . . , p.

Moreover, it is well known that [ND
k , Nk] = 0 for each k = 1, . . . , p and hence

[(
ND

k
)n, Nk

]
= 0, k = 1, . . . , p.

By taking into account the Fugled–Putnam theorem ([31]), it follows that [(ND
k )n, N∗m

k ] = 0
for each k = 1, . . . , p. Therefore N is a p-tuple of (n, m)-D-normal operators. �

Proposition 2.2 Let N = (N1, . . . , Np) ∈ Bd[K]p. The following assertions hold.
(1) If N is a p-tuple of (n, m)-D-normal and a p-tuple of (n + 1, m)-D-normal operators,

then N is a p-tuple of (n + 2, m)-D-normal operators.
(2) If N is a p-tuple of (n, m)-D-normal and a p-tuple of (n, m + 1)-D-normal operators,

then N is a p-tuple of (n, m + 2)-D-normal operators.

Proof Since N is a p-tuple of (n, m)-D-normal and a p-tuple of (n + 1, m)-D-normal oper-
ators, we have

⎧
⎪⎪⎨

⎪⎪⎩

[Nk , Nl] = 0 ∀k, l = 1, . . . , p

[(ND
k )n, N∗m

k ] = 0 k = 1, . . . , p

[(ND
k )n+1, N∗m

k ] = 0, k = 1, . . . , p.

This implies that
⎧
⎨

⎩

[Nk , Nl] = 0, ∀k, l = 1, . . . , p

(ND
k )n[ND

k N∗m
k – N∗m

k ND
k ] = 0, k = 1, . . . , p,

and therefore,
⎧
⎨

⎩

[Nk , Nl] = 0 ∀k, l = 1, . . . , p

[(ND
k )n+2, N∗m

k ] = 0, k = 1, . . . , p.

So, N is a p-tuple of (n + 2, m)-D-normal operators.
(2) The proof of the statement (2) is similar to the proof of statement (1), so we omit

it. �

Proposition 2.3 Let N = (N1, . . . , Np) ∈ Bd[K]p, the following statements hold:
(1) If N is a p-tuple of (n1, m)-D-normal and a p-tuple of (n2, m)-D-normal operators,

then N is a p-tuple of (n1 + n2, m)-D-normal operators.
(2) If N is a p-tuple of (n, m1)-D-normal operators and a p-tuple of (n, m2)-D-normal

operators, then N is a p-tuple of (n, m1 + m2, )-D-normal operators.
(3) If N is a p-tuple of (n1, m)-D-normal and a p-tuple of (n2, m)-D-normal operators,

then N is a p-tuple of (rn1 + sn2, m)-D-normal operators for r, s ∈ N.
(4) If N is a p-tuple of (n, m1)-D-normal and a p-tuple of (n, m2)-D-normal operators,

then N is a p-tuple of (n, rm1 + sm2, )-D-normal operators for r, s ∈N.
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Proof (1) We have [Nk , Nl] = 0 for k, l = 1, . . . , p and moreover for k = 1, . . . , p,

[(
ND

k
)n1+n2 , N∗m

k
]

=
(
ND

k
)n1+n2 N∗m

k – N∗m
k

(
ND

k
)n1+n2

=
(
ND

k
)n1[(ND

k
)n2 , N∗m

k
]

= 0.

(2) We have [Nk , Nl] = 0 for k, l = 1, . . . , p and moreover for k = 1, . . . , p,

[(
ND

k
)n, N∗(m1+m2)

k
]

=
(
ND

k
)nN∗(m1+m2)

k – N∗(m1+m2)
k

(
ND

k
)n1+n2

=
[(

ND
k

)n, N∗m1
k

]
N∗m2

k

= 0.

Therefore, the required results are satisfied. �

Theorem 2.2 Let N = (N1, . . . , Np) ∈ Bd[K]p such that

ker
(
ND)

:=
⋂

1≤k≤p

ker ND
k = {0}.

If N is a p-tuple of (n1, m)-D-normal and a p-tuple of (n2, m)-D-normal operators for some
positive integer n1, n2 and m, then, N is a p-tuple of (max{n1, n2} – min{n1, n2}, m)-D-
normal operators. In particular, if N is jointly (n, 1)-D-normal and a p-tuple of (n+1, 1)-D-
normal operators, then N is p-tuple of D-normal operators.

Proof We have [Nk , Nl] = 0 for all (k, l) ∈ {1, . . . , p}2. Moreover, for each k = 1, . . . , p, we
have

⎧
⎨

⎩

[(ND
k )n1 N∗m

k ] = 0

[(ND
k )n2 , N∗m

k ] = 0

Considering the case where n1 ≥ n2, we get

[(
ND

k
)n1 , N∗m

k
]

= 0 
⇒ (
ND

k
)n2[(Nk)D)n1–n2 , N∗m

k
]

= 0


⇒ [(
ND

k
)n1–n2 , N∗m

k
]

= 0,

and hence N is a p-tuple of (n1 – n2, m)-D-normal operators. �

Proposition 2.4 Let N = (N1, . . . , Np) ∈ B[K]p be commuting tuple of Drazin invertible
operators. For n, m ∈N, set

N′ =
(
N ′

1, . . . , N ′
p
)

=
((

ND
1

)n + N1∗m, . . . ,
(
ND

p
)n + N∗m

p
)

and

N′′ =
(
N ′

1, . . . , N ′′
p
)

=
((

ND
1

)n – N∗m
1 , . . . ,

(
ND

p
)n – N∗m

p
)
.

Then the following axioms hold.
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(1) N is a p-tuple of n-D-normal operators if and only if [N ′
k , N ′′

k ] = 0 for each k = 1, . . . , p.
(2) If N is a p-tuple of (n, m)-D-normal operators, then Z = ((ND

1 )nN∗m
1 , . . . , (ND

p )nN∗m
p )

commutes with N′ and N′′.
(3) N is a p-tuple of (n, m)-D-normal operators, if and only if (ND)n commutes with N′.
(4) N is a p-tuple of (n, m)-D-normal operators if and only if (ND)n commutes with N′′.

Proof Obviously, [Nk , Nl] = 0∀(k, l) ∈ {1, . . . , p}2. On the other hand,

[
N ′

k , N ′′
k
]

= 0

⇐⇒ N ′
kN ′′

k – N ′′
k N ′

k = 0

⇐⇒ ((
ND

k
)n + N∗m

k
)((

ND
k

)n – N∗m
k

)
–

((
ND

k
)n – N∗m

k
)((

ND
k

)n + N∗m
k

)
= 0

⇐⇒ (
ND

k
)2n –

(
ND

k
)nN∗m

k + N∗m
k

(
ND

k
)n – N∗2m

k

–
((

ND
k

)2n +
(
ND

k
)nN∗m

k – N∗m
k

(
ND

k
)n – N∗2m

k
)

= 0

⇐⇒ (
ND

k
)nN∗m

k – N∗m
k

(
ND

k
)n = 0, ∀k ∈ {1, . . . , p}.

This completes the proof. �

Theorem 2.3 Let N = (N1, . . . , Np) ∈ Bd[K]p be p-tuple of (n, m)-D-normal operators for
n ≥ m. If each Nm

k is a partial isometry for k = 1, . . . , m, then N is a p-tuple of (n + m, m)-D-
normal operators.

Proof Suppose N is p-tuple of (n, m)-D-normal operators for n ≥ m. It is easy to see
that each Nk is (n, m)-D-normal for 1 ≤ k ≤ d. Under the hypothesis that Nm

k is a par-
tial isometry, it follows from [28, Theorem 2.4] that Nk is (n + m, m)-D-normal operator
for k = 1, . . . , p. Consequently, N is a p-tuple of (n + m, m)-D-normal operators. �

The following proposition shows that the class of p-tuple of (n, m)-D-normal operators
is closed subset of Bd[K]p.

Proposition 2.5 The class of p-tuple of (n, m)-D-normal operators is a closed subset of
Bd[K]p.

Proof Suppose that (Nk = (N1(k), . . . , Np(k)))k ∈ Bd[K]p is a sequence of p-tuple of (n, m)-
power D-normal operators for which

‖Nk – N‖ = sup
1≤j≤p

(∥
∥Nj(k) – Nj

∥
∥
) −→ 0, as k −→ ∞,

where N = (N1, . . . , Np) ∈ Bd[K]p. Obviously, for each j ∈ {1, . . . , p}, we have

lim
k→+∞

∥
∥Nj(k) – Nj

∥
∥ = 0. (2.1)

Since (Nj(k)D)nNj(k)∗m = Nj(k)∗m(Nj(k)D)n for each j = 1, . . . , p, it follows from [28, The-
orem 2.4] that

(
ND

j
)nN∗m

j = N∗m
j

(
ND

j
)n, ∀j ∈ {1, . . . , p}.
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Moreover, for all i, j ∈ {1, . . . , p} and k ∈ N, we can see that

∥
∥Ni(k)Nj(k) – NiNj

∥
∥ =

∥
∥Ni(k)

(
Nj(k) – Nj

)
+

(
Ni(k) – Ni

)
Nj

∥
∥

≤ ∥
∥Ni(k)

∥
∥
∥
∥Nj(k) – Nj

∥
∥ +

∥
∥Ni(k) – Ni

∥
∥‖Nj‖

≤ (∥
∥Ni(k) – Ni

∥
∥ + ‖Ni‖

)∥
∥Nj(k) – Nj

∥
∥ +

∥
∥Ni(k) – Ni

∥
∥‖Nj‖.

Hence, in view of (2.1), we obtain

∥
∥Ni(k)Nj(k) – NiNj

∥
∥ −→ 0, as k → +∞,∀(i, j) ∈ {1, . . . , q}2.

On the other hand, since {Nk}k = {(N1(k), . . . , Np(k))}k is a sequence of p-tuple of (n, m)-D-
normal operators, then

[
Ni(k), Nj(k)

]
= 0 ∀(i, j) ∈ {1, . . . , p}2; and k ∈ N.

Therefore, we immediately get

[Ni, Nj] = 0 ∀(i, j) ∈ {1, 2, . . . , p}2.

Therefore, N is a p-tuple of (n, m)-D-normal operators. �

Proposition 2.6 Let N = (N1, . . . , Np) ∈ Bd[K]p and S = (S1, . . . , Sp) ∈ Bd[K]p be two p-
tuple of (n, m)-D-normal operators. The following statements hold.

(1) If [Nk , Sl] = 0,∀k, l ∈ {1, . . . , p}2 and [Nk , S∗
k ] = 0 for all k ∈ {1, . . . , p}, then NS =

(N1S1, . . . , NpSp) and SN = (S1N1, . . . , SpNp) are p-tuple of (n, m)-D-normal operators.
(2) If [Ni, Sj] = 0,∀i, j ∈ {1, . . . , p} and NkSk = NkS∗

k = 0 for all k ∈ {1, . . . , p}, then N + S =
(N1 + S1, . . . , Np + Sp) is a p-tuple of (n, m)-D-normal operators.

Proof For the statement (1), we have for all k, l ∈ {1, . . . , q},

[NkSk , NlSl] = NkSkNlSl – NlSlNkSk

= NkNlSkSl – NlNkSlSk

= NkNlSkSl – NkNlSlSk

= NkNl(SkSl – SlSk)

= NkNl[Sk , Sl] = 0.

On the other hand, let k ∈ {1, . . . , p}, we have

(NkSk)∗(NkSk)Dn = S∗
k N∗

k
(
ND

k
)n(SD

k
)n

= S∗
k
(
ND

k
)nN∗

k
(
SD

k
)n = S∗

k
(
ND

k
)nSn

k N∗
k

=
(
ND

k
)n(SD

k
)nS∗

k N∗
k

= (NkSk)nD(NkSk)∗.
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This implies that NS is a p-tuple of (n, m)-D-normal operators. In same way, we show that
SN is a p-tuple of (n.m)-D-normal operators.

(2) For all (i, j) ∈ {1, . . . , p}2, we have

[Nk + Sk , Nl + Sl] = (Nk + Sk)(Nl + Sl) – (Nl + Sl)(Nk + Sk)

= [Nk , Nl] + [Sk , Sl] + [Nk , Sl] + [Sk , Nl] = 0.

Besides, for k ∈ {1, 2, . . . , p}, we get

(Nk + Sk)∗m(
(Nk + Sk)D

)n

= (Nk + Sk)∗m(
ND

k + SD
k

)n

=

( m∑

j=0

(
m
j

)

N∗j
k S∗m–j

k

)( n∑

j=0

(
n
k

)
(
ND

k
)j(SD

k
)n–j

)

=
(
N∗m

k + S∗m
k

)((
ND

k
)n +

(
SD

k
)n)

= (N∗m
k

(
ND

k
)n + N∗m

k
(
SD

k
)n + S∗m

k
(
ND

k
)n + S∗m

k
(
SD

k
)n

=
(
ND

k
)nN∗m

k +
(
SD

k
)nS∗m

k

=
((

ND
k

)n +
(
SD

k
)n)(Nk + Sk)∗m

=

( n∑

j=0

(
n
k

)
(
ND

k
)j(SD

k
)n–j

)

(Nk + Sk)∗m

=
(
(Nk + Sk)D

)n(Nk + Sk)∗m.

So, N + S is a p-tuple of (n, m)-D-normal operators. �

3 Tensor product
Let N = (N1, . . . , Np) ∈ B[K]p and S = (S1, . . . , Sp) ∈ B[K]p. We denote by

N ⊗ S = (N1 ⊗ S1, . . . , Np ⊗ Sp)

If N , S ∈ B[K], then N ⊗ S is n-normal if and only if N and S are n-normal (see [6]) How-
ever, If N , S ∈ Bd[K] such that N and S are (n, m)-D-normal operators, then N ⊗ S is
(n, m)-D-normal (see in [28]). The following theorem studied the tensor product of two
p-tuples of (n, m)-D-normal operators.

Theorem 3.1 Let N = (N1, . . . , Np) ∈ Bd[K]p and S = (S1, . . . , Sp) ∈ Bd[K]p are two p-tuples
of (n, m)-D-normal operators, then N ⊗ S is a p-tuple of (n, m)-D-normal operators.

Proof Since N = (N1, . . . , Np) and S = (S1, . . . , Sp) are p-tuples of (n, m)-D-normal opera-
tors, we have all (k, l) ∈ {1, . . . , p}2

[
(Nk ⊗ Sk), (Nl ⊗ Sl)

]

=
[
(Nk ⊗ Sk)(Nl ⊗ Sl) – (Nl ⊗ Sl)(Nk ⊗ Sk)

]
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= NkNl ⊗ SkSl – NlNk ⊗ SlSk

= NlNk ⊗ SlSk – NlNk ⊗ SlSk

= 0.

Moreover, for all k ∈ {1, . . . , p}, we have

(
(Nk ⊗ Sk)D

)n(Nk ⊗ Sk)∗m =
(
ND

k
)nN∗m

k ⊗ (
SD

k
)nS∗m

k

= N∗m
k

(
ND

k
)n ⊗ S∗m

k
(
SD

k
)n

= (Nk ⊗ Sk)∗m(
(Nk ⊗ Sk)D

)n.

So, N ⊗ S is p-tuple of (n, m)-D-normal operators. �

The converse of the above theorem need not hold in general, as shown in the following
example.

Example 3.1 Let N1 =
( –1 0 0

0 1 0
0 0 1

)
∈ B[C3] and N2 =

( 0 0 1
0 1 0
1 0 0

)
∈ B[C3]. A direct calculation

shows that

N1 ⊗ N1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 –1 0 0 0 0 0 0 0
0 0 –1 0 0 0 0 0 0
0 0 0 –1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 –1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

N2 ⊗ N2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let N = (N1, N2) and N ⊗ N = (N1 ⊗ N1, N2 ⊗ N2)). We observe that N is not 2-tuple of
(2, 3)-D-normal operators since N1N2 �= N2N1. However

(N1 ⊗ N1)D = N1 ⊗ N1, (N2 ⊗ N2)D = N2 ⊗ N2 and

(Nk ⊗ Nk)∗3((Nk ⊗ Nk)D
)2 =

(
(Nk ⊗ Nk)D

)2(Nk ⊗ Nk)∗3, k ∈ {1, 2}.

Hence, N ⊗ N is 2-tuple of (2, 3)-D-normal pairs.
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In the following theorem we give the conditions under which the converse of Theo-
rem 3.1 is true.

Theorem 3.2 Let N = (N1, . . . , Np) ∈ Bd[K]p and S = (S1, . . . , Sp) ∈ Bd[K]p be a commuting
p-tuple of operators. Then, if N⊗S is a p-tuple of (n, n)-D-normal operators, then and only
then N and S are p-tuples of (n, n)-D-normal operators.

Proof Assume that N⊗S is a p-tuple of (n, n)-D-normal operators. By taking into account
the statement (1) of Proposition 2.1 it follows that

(
(N ⊗ S)D

)n =
((

(N1 ⊗ S1)D
)n, . . . ,

(
(Np ⊗ Sp)D

)n)

=
((

ND
1

)n ⊗ (
SD

1
)n, . . .

(
ND

p
)n ⊗ (

SD
p

)n)

is a p-tuple of normal operators. From which we deduce that

(
(Nk ⊗ Sk)D

)n =
(
RD

k
)n ⊗ (

SD
k

)n,

is normal for each k = 1, . . . , p. By [19, Propositon 3.2] it is well known that

(
ND

k
)n ⊗ (

SD
k
)n is normal if and only if

(
ND

k
)n and

(
SD

k
)n are normal operators.

However, According to [19, Propositon 3.2] it is well known that (ND
k )n is normal if and

only if that Nk is n-power D-normal and similarly, (SD
k )n is normal if and only if that Sk is

n-D-normal. Therefore, N and S are p-tuple of (n, n)-D-normal operators.
The converse follows from Theorem 3.1. �
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15. Chō, M., Beiba, E.M., Mahmoud Sid Ahmed, O.A.: (n1, . . . ,np)-quasi-m-isomtric tuple of operators. Ann. Funct. Anal.

(2020). https://doi.org/10.1007/s43034-020-00093-7
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32. Rakoc̆ević, V.: Continuity of Drazin inverse. J. Oper. Theory 41, 55–68 (1999)
33. Sid Ahmed, O.B., Mahmoud Sid Ahmed, O.A.: On the class of n-power D-m-quasinormal operator on Hilbert spaces.

Oper. Matrices 14(1), 159–174 (2020). https://doi.org/10.7153/oam-2020-14-13
34. Wang, G., Wei, Y., Qiao, S.: Generalized Inverses: Theory and Computations. Grad. Ser. Math. Science Press, Beijing

(2004)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11785-020-01013-2
https://doi.org/10.1080/03081087.2019.1593925
https://doi.org/10.1007/s43034-020-00093-7
https://doi.org/10.1007/s11785-019-00916-z
https://doi.org/10.1007/s43034-021-00130-z
https://doi.org/10.7153/oam-2020-14-13

	Higher order (n,m)-Drazin normal operators
	Abstract
	Keywords

	Introduction
	p-tuple of (n,m)-Drazin normal oreators
	Tensor product
	Funding
	Data Availability
	Declarations
	Competing interests
	Author contributions
	References
	Publisher's Note


