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Abstract
In recent years, many subclasses of univalent functions, directly or not directly related
to the exponential functions, have been introduced and studied. In this paper, we
consider the class of S∗

e for which zf ′(z)/f (z) is subordinate to ez in the open unit disk.
The classic concept of Hankel determinant is generalized by replacing the inverse
logarithmic coefficient of functions belonging to certain subclasses of univalent
functions. In particular, we obtain the best possible bounds for the second Hankel
determinant of logarithmic coefficients of inverse starlike functions subordinated to
exponential functions. This work may inspire to pay more attention to the coefficient
properties with respect to the inverse functions of various classes of univalent
functions.
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1 Introduction and definitions
Let H(D) represent the family of analytic functions defined in the region of unit disc D :=
{z ∈ C : |z| < 1}. For f ∈H(D), the normalized functions taking the form of

f (z) = z +
∞∑

s=2

bszs, z ∈D, (1)

are belonging to the class A. Assuming also that S ⊂A be the set of all univalent functions
in D. In the theory of univalent functions, the Carathéodory function [1] is well studied.
It is holomorphic in D with positive real part, i.e., �(p(z)) > 0 and taking the series repre-
sentation of

p(z) = 1 +
∞∑

s=1

μszs, z ∈D. (2)

We denote by P the set of these functions.
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A basic relationship in geometry function theory is subordination. We write g ≺ g̃ to
illustrate that g is subordinate to g̃ . It is explained that for given two functions g, g̃ ∈H(D),
a Schwarz function ω is existing such that g(z) = g̃(ω(z)) for z ∈ D. Once g̃ is univalent in
D, then this relation is equivalent to saying that

g(z) ≺ g̃(z), (z ∈D) ⇐⇒ g(0) = g̃(0) and g(D) ⊂ g̃(D).

The three classic classes of univalent functions are S∗, C and R, which are known as star-
like functions, convex functions and the bounded turning functions. These classes are
characterized as

C
(
q∗) =

{
f ∈A :

(zf ′(z))′

f ′(z)
≺ q∗(z)

}
,

S∗(q∗) =
{

f ∈A :
zf ′(z)
f (z)

≺ q∗(z)
}

,

R
(
q∗) =

{
f ∈A : f ′(z) ≺ q∗(z)

}
,

with q∗(z) = 1+z
1–z , which mapsD to the right half plane. By choosing q∗ as some other special

functions, various interesting subfamilies of C , S∗, and R were studied, the interested
readers can refer to [2].

Define

Ce :=
{

f ∈A :
(zf ′(z))′

f ′(z)
≺ ez

}
,

S∗
e :=

{
f ∈A :

zf ′(z)
f (z)

≺ ez
}

,

Re :=
{

f ∈A : f ′(z) ≺ ez}.

The class S∗
e was introduced and studied by Mendiratta et al. [3]. Later, many interesting

classes of univalent functions associated the exponential functions were intensively inves-
tigated. Cho et al. [4] introduced a class of starlike functions connected with sin function
by letting that q∗ = 1 + sin z. In [5], the authors considered a subclass of starlike function
given by choosing q∗ = cos z. Kumar et al. [6] defined a new class of starlike function by
taking q∗ = 1 + zez . For univalent functions defined by modified sigmoid functions [7], it
uses the functions q∗ = 2

1+e–z . As it can be seen, all these specially chosen functions are
closely related with the exponential function.

Let ι, n ∈ N = {1, 2, . . .}. Then, the Hankel determinant Hι,n(f ), introduced by Pom-
merenke [8, 9], for f ∈ S in the form of

Hι,n(f ) :=

∣∣∣∣∣∣∣∣∣∣

bn bn+1 . . . bn+ι–1

bn+1 bn+2 . . . bn+ι

...
... . . .

...
bn+ι–1 bn+q . . . bn+2ι–2

∣∣∣∣∣∣∣∣∣∣

. (3)

When investigating power series with integral coefficients and singularities, this method
has proven to be effective by considering Hankel determinant, see [10]. In recent years, the
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bounds of Hι,n(f ) for various types of univalent functions has been studied. For example,
the absolute bounds of the second Hankel determinant H2,2(f ) = b2b4 – b2

3 were calcu-
lated in [11, 12] for various subsets of univalent functions. However, there are still many
unsolved problems in the exact estimation of this determinant, like the family of close-
to-convex functions [13]. For the third Hankel determinant, the sharp bound of |H3,1(f )|
for convex functions C was obtained in [14]. For f ∈ S∗, it is proved that |H3,1(f )| ≤ 4

9 by
Kowalczyk et al. [15]. For the bounded turning functions R, the upper bound was calcu-
lated to be 1

4 in [16]. For some subclasses of univalent or non-univalent functions, some
interesting results on bounds on the Hankel determinant were also found in the studies
like [17–22].

The Bieberbach conjecture is based on logarithmic coefficients γs of f , where γs is de-
fined by

log

(
f (z)

z

)
= 2

∞∑

s=1

γszs, log 1 = 0. (4)

These coefficients are well studied in the theory of univalent functions and it has been
proven that

∞∑

s=1

|γs|2 ≤ π2

6
, (5)

the bound is sharp for the Koebe function, see [23]. Recently, many authors have investi-
gated the logarithmic coefficients related problems for various classes of univalent func-
tions, e.g., [24–28]. But the best upper bounds for |γs| (s ≥ 3) of univalent functions and
some of their subfamilies are still open. In 2021, Kowalczyk et al. [29, 30] introduced the
Hankel determinant using logarithmic coefficients for the first time, i.e., it replaces bn as
γn as entry.

According to 1/4-theorem proposed by Koebe, we know that the inverse function F of
f defined in a neighborhood of origin exists with certainty. We may write as

F(w) := f –1(w) = w + B2w2 + B3w3 + · · · , |w| <
1
4

. (6)

Then the logarithmic coefficient �n of F is given by

log

(
F(z)

z

)
= 2

∞∑

s=1

�sws, |w| <
1
4

. (7)

The logarithmic coefficients of the inverses of univalent functions was studied by Pon-
nusamy et al. [31].

Motivated by the above works, it seems natural to consider the Hankel determinant with
�n replacing bn, see [32]. Using this idea, we have

H2,1(Ff –1 /2) = �1�3 – �2
2 (8)

and

H2,2(Ff –1 /2) = �2�4 – �2
3 . (9)
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In [33], it was calculated that

�1 = –
1
2

b2, (10)

�2 = –
1
2

b3 +
3
4

b2
2, (11)

�3 = –
1
2

b4 + 2b2b3 –
5
3

b3
2, (12)

�4 = –
1
2

b5 +
5
2

b2b4 –
15
2

b2
2b3 +

5
4

b2
3 +

35
8

b4
2. (13)

Thus, we have

H2,1(Ff –1 /2) =
1
4

(
b2b4 – b2

2b3 – b2
3 +

13
12

b4
2

)
(14)

and

H2,2(Ff –1 /2) =
145
288

b6
2 –

55
48

b4
2b3 +

5
24

b3
2b4 +

11
16

b2
2b2

3 –
5
8

b2
2b5

+
3
4

b2b3b4 –
1
4

b4
2 +

1
4

b3b5 –
5
8

b3
3. (15)

Let fα = e–iαf (eiαz). It is noted that

H2,1(Ff –1
α

/2) = e4iαH2,1(Ff –1 /2) (16)

and

H2,2(Ff –1
α

/2) = e6iαH2,2(Ff –1 /2). (17)

Hence, the functional φf = |H2,1(Ff –1 /2)| and ϕf = |H2,2(Ff –1 /2)| are all rotation invariant.
Recently, the upper bound of Hankel determinant for the class S∗

e and Ce were studied,
including [34, 35]. On the inverse coefficient problem for the class Re, it was investi-
gated in [36]. In this article, we aim to calculate the sharp bounds on |H2,1(Ff –1 /2)| and
|H2,2(Ff –1 /2)| for the class S∗

e .

2 A set of lemmas
We use the following lemmas to obtain our main results.

Lemma 2.1 ([37]) Assume p ∈P be the form of (2). Then

2μ2 = μ2
1 + κ

(
4 – μ2

1
)
, (18)

4μ3 = μ3
1 + 2

(
4 – μ2

1
)
μ1κ – μ1

(
4 – μ2

1
)
κ2 + 2

(
4 – μ2

1
)(

1 – |κ|2)δ, (19)

8μ4 = μ4
1 +

(
4 – μ2

1
)
κ
[
c2

1
(
κ2 – 3κ + 3

)
+ 4κ

]
– 4

(
4 – μ2

1
)(

1 – |κ|2)

× [
μ1(κ – 1)δ + κδ2 –

(
1 – |δ|2)�]

, (20)

for some κ , δ,� ∈D := {z ∈C : |z| ≤ 1}.
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Lemma 2.2 (See [38]) For given real numbers A, B, C, let

Y (A, B, C) = max
z∈D

{∣∣A + Bz + Cz2∣∣ + 1 – |z|2}.

If A > 0 and C < 0, then

Y (A, B, C) =

⎧
⎪⎪⎨

⎪⎪⎩

1 – A + B2

4(1+C) , if B2 ≥ – 4AC3

1–C2 , |B| < 2(1 + C),

1 + A + B2

4(1–C) , if B2 < min{4(1 – C)2, – 4AC3

1–C2 },
R(A, B, C), otherwise,

where

R(A, B, C) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A + |B| + C, if – C(4A + |B|) ≤ A|B|,
–A + |B| – C, if – C(–4A + |B|) ≥ A|B|,
(A – C)

√
1 – B2

4AC , otherwise.

Lemma 2.3 Define ρ : [0, 4] →R by

ρ(t) := h1(t)
√

h2(t),

where

h1(t) = 23t2 – 96t + 576, h2(t) =
18 – t
12 + t

.

Then ρ is convex on [0, 4].

Proof By observing that

h
3
2
2 (t)ρ ′′(t) = h′′

1(t)
(
h2(t)

)2 + h′
1(t)h2(t)h′

2(t) –
1
4

h1(t)h′′
2(t) +

1
2

h1h2(t)h′′
2(t)(t)

=
46t4 + 138t3 – 19,251t2 – 209,088t + 2,949,696

(t + 12)4 ≥ 0,

we have ρ ′′(t) ≥ 0 on [0, 4]. The assertion in Lemma 2.3 thus follows. �

3 Main results
We first determine the bounds of |H2,1(f –1/2)| for f ∈ S∗

e .

Theorem 3.1 Let f ∈ S∗
e . Then

∣∣H2,1
(
f –1/2

)∣∣ =
∣∣�1�3 – �2

2
∣∣ ≤ 29

428
.

The result is sharp.

Proof Let f ∈ S∗
e . From [35], we know

b2 =
1
4
μ1, (21)
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b3 =
1
3

(
1
2
μ2 –

1
8
μ2

1

)
, (22)

b4 =
1
4

(
1
2
μ3 +

1
48

μ3
1 –

1
4
μ1μ2

)
, (23)

b5 =
1
5

(
1
2
μ4 –

1
8
μ2

2 +
1

384
μ4

1 +
1

16
μ2

1μ2 –
1
4
μ1μ3

)
(24)

for some p ∈P in the form of

p(z) = 1 + μ1z + μ2z2 + μ3z3 + · · · , z ∈ D. (25)

Using (14), we get

H2,1
(
f –1/2

)
=

107
9216

μ4
1 –

7
384

μ2
1μ2 +

1
48

μ1μ3 –
1

64
μ2

2. (26)

By the rotation invariant property for the class S∗
e and the functional |H2,1(f –1/2)|, we can

assume that μ1 = μ ∈ [0, 2]. Using (18) and (19) to express μ2 and μ3, we obtain

∣∣H2,1
(
f –1/2

)∣∣ =
∣∣∣∣

35
9216

μ4 –
5

768
μ2(4 – μ2)κ –

1
768

(
4 – μ2)(12 + μ2)κ2

+
1

96
μ

(
4 – μ2)(1 – |κ|2)δ

∣∣∣∣

for some κ , δ ∈D.
When μ = 0, it is clear that |H2,1(f –1/2)| ≤ 1

16 ≈ 0.0625. If μ = 2, we have |H2,1(f –1/2)| =
35

576 ≈ 0.0608. For the case of μ ∈ (0, 2), using |δ| ≤ 1, we get that

∣∣H2,1
(
f –1/2

)∣∣ ≤ μ(4 – μ2)
96

(∣∣∣∣
35μ3

96(4 – μ2)
–

5
8
μκ –

12 + μ2

8μ
κ2

∣∣∣∣ + 1 – |κ|2
)

=:
μ(4 – μ2)

96
�(A, B, C),

where

�(A, B, C) =
∣∣A + Bκ + Cκ2∣∣ + 1 – |κ|2, (27)

with

A =
35μ3

96(4 – μ2)
, B = –

5
8
μ, C = –

12 + μ2

8μ
. (28)

Obviously, A > 0, C < 0 and we can apply Lemma 2.2 to find the maximum of � .
It is easy to be verified that |B| ≥ 2(1 + C) and B2 ≥ 4(1 – C)2 and thus we only need to

consider the cases of R(A, B, C).
Noting that –C(4A + |B|) ≤ A|B| is equivalent to

5(–19μ4 + 240μ2 + 576)
768(4 – μ2)

≤ 0, (29)
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which is impossible to hold for all μ ∈ (0, 2). Hence, it is left to check the condition
–C(–4A + |B|) ≥ A|B|.

Let μ0 =
√

16
√

39–72
25 ≈ 1.0568 be the only positive root of the equation –25μ4 – 144μ2 +

192 = 0. For μ ∈ (0,μ0], we have

–C
(
–4A + |B|) – A|B| =

5(–25μ4 – 144μ2 + 192)
256(4 – μ2)

≥ 0. (30)

Then �(A, B, C) ≤ (–A + |B| – C) and thus

∣∣H2,1
(
f –1/2

)∣∣ ≤ μ(4 – μ2)
96

(
–A + |B| – C

)

=
–107μ4 + 144μ2 + 576

9216

=: �1(μ).

It is an elementary work to get that �1 attains its maximum value 29
428 at μ1 = 6

√
214

107 ≈
0.8203. Therefore, we obtain |H2,1(f –1/2)| ≤ 29

428 ≈ 0.0678 when μ ∈ (0,μ0].

If μ ∈ (μ0, 2), then �(A, B, C) ≤ (A – C)
√

1 – B2
4AC and we have

∣∣H2,1
(
f –1/2

)∣∣ ≤μ(4 – μ2)
96

(A – C)
√

1 –
B2

4AC

=
23μ4 – 96μ2 + 576

32,256

√
14(18 – μ2)

12 + μ2

= :
1

32,256
�2

(
μ2),

where

�2(t) =
(
23t2 – 96t + 576

)
√

14(18 – t)
12 + t

, t ∈ (
μ2

0, 4
)
. (31)

From Lemma 2.3, we know �2 is convex on [μ2
0, 4]. Hence, we obtain

�2(t) ≤ max
{
�2

(
μ2

0
)
, 4

}
= �2

(
μ2

0
)
. (32)

It follows that

∣∣H2,1
(
f –1/2

)∣∣ ≤ 1
32,256

�2
(
μ2

0
) ≈ 0.0655. (33)

Combining all the above, we conclude that

∣∣H2,1
(
f –1/2

)∣∣ ≤ 29
428

≈ 0.0678.

The equality is achieved by the extremal function given by

f (z) = z exp

(∫ z

0

eω(t) – 1
t

dt
)

, (34)
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with

ω(z) =
q(z) – 1
q(z) + 1

, (35)

and

q(z) =
1 + 6

√
214

107 z + z2

1 – z2 . (36)

This completes the proof of Theorem 3.1. �

Now we will calculate the upper bounds of |H2,2(f –1/2)| for the class S∗
e .

Theorem 3.2 Let f ∈ S∗
e . Then

∣∣H2,2
(
f –1/2

)∣∣ =
∣∣�2�4 – �2

3
∣∣ ≤ 9

192
.

This result is the best possible.

Proof By putting (22), (23), and (24) with μ1 = μ into (15), we obtain

H2,2
(
f –1/2

)
=

1
2,654,208

(
9733μ6 – 31,020μ4μ2 + 20,736μ2μ4

– 25,920μ3
2 + 16,560μ2μ2

2 + 35,712μμ2μ3

– 25,920μ2μ4 + 18,336μ3μ3 – 18,432μ2
3
)
. (37)

Using λ = 4 – μ2 in (18), (19), and (20) of Lemma 2.1, we obtain

H2,2
(
f –1/2

)
=

1
2,654,208

{
1075μ6 – 1944μ4κ3λ – 912μ4κ2λ

+ 144μ2κ4λ2 – 3744μ2κ3λ2 + 2628μ2κ2λ2 – 7776μ2κ2λ

– 3534μ4κλ + 5184κ3λ2 – 3240κ3λ3 + 4896μκλ2(1 – |κ|2)δ
– 576μκ2λ2(1 – |κ|2)δ + 7776μ3κλ

(
1 – |κ|2)δ

+ 5712μ3λ
(
1 – |κ|2)δ – 4608λ2(1 – |κ|2)2

δ2

– 5184λ2|κ|2(1 – |κ|2)δ2 + 7776μ2λκ
(
1 – |κ|2)δ2

+ 5184κλ2(1 – |κ|2)(1 – |δ|2)�
– 7776μ2λ

(
1 – |κ|2)(1 – |δ|2)�}

.

We note that it can be written in the form of

H2,3(f ) =
1

2,654,208
[
ζ1(μ,κ) + ζ2(μ,κ)δ + ζ3(μ,κ)δ2 + �(μ,κ , δ)�

]
.
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Here ρ,κ , δ ∈ D and

ζ1(μ,κ) = 1075μ6 +
(
4 – μ2)[144μ2(4 – μ2)κ4 – 288

(
5μ4 – 20μ2 + 108

)
κ3

+ 12μ2(228 – 295μ2)κ2 – 3534μ4κ
]
,

ζ2(μ,κ) = 48μ
(
4 – μ2)(1 – |κ|2)[–12

(
4 – μ2)κ2 +

(
60μ2 + 408

)
κ + 119μ2],

ζ3(μ,κ) = 576
(
4 – μ2)(1 – |κ|2)

[(
4 – μ2)(–|κ|2 – 8

)
+

27
2

μ2κ

]
,

�(μ,κ , δ) = 2592
(
4 – μ2)(1 – |κ|2)(1 – |δ|2)[3μ2 + 2κ

(
4 – μ2)].

By taking |κ| = x, |δ| = y along with |�| ≤ 1, we obtain

∣∣H2,2
(
f –1/2

)∣∣ ≤ 1
2,654,208

[∣∣ζ1(μ, x)
∣∣ +

∣∣ζ2(μ, x)
∣∣y +

∣∣ζ3(μ, x)
∣∣y2 +

∣∣�(μ, x, δ)
∣∣].

≤ 1
2,654,208

[
�(μ, x, y)

]
, (38)

where we set

�(μ, x, y) = r1(μ, x) + r2(μ, x)y + r3(μ, x)y2 + r4(μ, x)
(
1 – y2),

with

r1(μ, x) = 1075μ6 +
(
4 – μ2)[144μ2(4 – μ2)x4 + 288

(
5μ4 – 20μ2 + 108

)
μ2x3

+ 12μ2∣∣288 – 295μ2∣∣x2 + 3534μ4x
]
,

r2(μ, x) = 48μ
(
4 – μ2)(1 – x2)[12

(
4 – μ2)x2 +

(
60μ2 + 408

)
x + 119μ2],

r3(μ, x) = 576
(
4 – μ2)(1 – x2)

[(
4 – μ2)(x2 + 8

)
+

27
2

μ2x
]

,

r4(μ, x) = 2592
(
4 – μ2)(1 – x2)[3μ2 + 2x

(
4 – μ2)].

Then all that remains for us is to find the maximum value of � in the closed domain
defined by � := [0, 2] × [0, 1] × [0, 1]. In light of �(0, 1, 1) = 124,416, it is seen that

max
(μ,x,y)∈�

{
�(μ, x, y)

} ≥ 124,416. (39)

Now we aim to illustrate that the maximum value of � with (μ, x, y) ∈ � is equal to
1,224,416.

When x = 1, it reduces to

�(μ, 1, y) =1075μ6 +
(
4 – μ2)(4830μ4 – 5184μ2 + 31,104 + 12μ2∣∣288 – 295μ2∣∣)

= : � (μ).

Let ε =
√

295
288 ≈ 0.9881. If μ ≥ ε, then

� (μ) = –7295μ6 + 42,120μ4 – 65,664μ2 + 124,416, (40)



Shi et al. Journal of Inequalities and Applications         (2024) 2024:17 Page 10 of 15

which has a maximum about 110,662.6 at μ ≈ 1.6624 on [ε, 2]. When μ ∈ [0, ε], we obtain

� (μ) = –215μ6 + 6888μ4 – 38,016μ2 + 124,416, (41)

which achieves its maximum 124,416 at μ = 0 on [0, ε]. Taking μ = 2, we have �(2, x, y) ≡
68,800. In these cases, � gains a maximum 124,416 and thus we may assume μ < 2 and
x < 1 in the next discussions.

Let (μ, x, y) ∈ [0, 2) × [0, 1) × (0, 1). Then

∂�

∂y
= r2(μ, x) + 2

[
r3(μ, x) – r4(μ, x)

]
y. (42)

Plugging ∂�
∂y = 0 yields

ŷ =
μ[12(4 – μ2)x2 + (60μ2 + 408)x + 119μ2]

12(1 – x)[2(4 – μ2)x + 43μ2 – 64]
.

If ŷ ∈ (0, 1), then we must have the following inequalities:

12(2 – μ)(μ + 2)2x2 +
(
60μ3 + 540μ2 + 408μ – 864

)
x

+ 119μ3 – 516μ2 + 768 < 0, (43)

μ2 >
8(8 – x)
43 – 2x

=: h(x). (44)

It is not difficult to prove that the inequality in Equation (43) is false for x ∈ [ 1
3 , 1). There-

fore, for the existence of a critical point (μ̂, x̂, ŷ) and ŷ ∈ (0, 1), we must have x̂ < 1
3 . By

observing that h is decreasing on (0, 1), then μ̂2 > 46
31 . As x̂ < 1

3 , we know

r1(μ̂, x̂) ≤ r1

(
μ̂,

1
3

)
=: φ1(μ̂). (45)

Using 1 – x̂2 < 1 and x̂ < 1
3 , we obtain

rj(μ̂, x̂) ≤ 9
8

rj

(
μ̂,

1
3

)
=: φj(μ̂) j = 2, 3, 4. (46)

Therefore, we deduce that

�(μ̂, x̂, ŷ) ≤ φ1(μ̂) + φ4(μ̂) + φ2(μ̂)̂y +
[
φ3(μ̂) – φ4(μ̂)

]
ŷ2 =: �(μ̂, ŷ).

As φ3(μ̂) – φ4(μ̂) = 64(4 – μ̂2)(184 – 127μ̂2) ≤ 0, we see ∂2�

∂ ŷ2 ≤ 0. Then it is found that

∂�

∂̂y
≥ ∂�

∂̂y
|̂y=1 = φ2(μ̂) + 2

[
φ3(μ̂) – φ4(μ̂)

] ≥ 0, μ̂ ∈
(√

46
31

, 2
)

.

This means that

�(μ̂, ŷ) ≤ �(μ̂, 1) = φ1(μ̂) + φ2(μ̂) + φ3(μ̂) =: χ0(μ̂).



Shi et al. Journal of Inequalities and Applications         (2024) 2024:17 Page 11 of 15

Because χ0 takes a maximum value 107,665.6, we have �(μ̂, x̂, ŷ) < 124,416. Therefore, we
have to check the cases of y = 0 and y = 1 to get the maximum point of �.

Suppose that y = 0. As

�(μ, x, 0) = r1(μ, x) + r4(μ, x) (47)

and

�(μ, x, 1) = r1(μ, x) + r2(μ, x) + r3(μ, x), (48)

we have

�(μ, x, 1) – �(μ, x, 0) = r2(μ, x) + r3(μ, x) – r4(μ, x)

= 48
(
4 – c2)(1 – x2)�(μ, x),

where

�(μ, x) = 12(1 + μ)
(
4 – μ2)x2 + 6

(
10μ3 + 45μ2 + 68μ – 72

)
x

+ 119μ3 – 258μ2 + 384. (49)

It is a tedious basic work to show that �(μ, x) ≥ 0 on [0, 2] × [0, 1]. Thus, we know
�(μ, x, 1) ≥ �(μ, x, 0) for all (μ, x) ∈ [0, 2] × [0, 1]. Hence, we can only discuss the max-
imum of � in the case of y = 1.

Now it is time to find to find the maximum value of � on y = 1. Actually, when μ ∈ [ε, 2),
we have

�(μ, x, 1) = 1075μ6 +
(
4 – μ2)(m4x4 + m3x3 + m2x2 + m1x + m0

)

= 1075μ6 +
(
4 – μ2)Q(μ, x)

=: W (μ, x),

where

Q(μ, x) = m4x4 + m3x3 + m2x2 + m1x + m0 (50)

with

m4 = 144
(
4 – μ2)(μ2 – 4μ – 4

)
,

m3 = 288
(
5μ4 – 10μ3 – 47μ2 – 68μ + 108

)
,

m2 = 12
(
295μ4 – 524μ3 + 48μ2 + 192μ – 1344

)
,

m1 = 6μ(
(
589μ3 + 480μ2 + 1296μ + 3264

)
,

m0 = 48
(
119μ3 – 96μ2 + 384

)
.
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In view of [ε, 2) ⊂ [ 9
10 , 2], we next prove that W < 124,416 on the rectangle R1 := [ 9

10 , 2] ×
[0, 1]. When μ = 9

10 , we obtain

W
(

9
10

, x
)

=: ς1(x). (51)

It is calculated that ς1 attains its maximum about 98,883.6 at x ≈ 0.7837. When μ = 2, we
have W (2, x) ≡ 68,800 for all x ∈ [0, 1]. If x = 0, then

W (μ, 0) = 1075μ6 – 5712μ5 + 4608μ4 + 22,848μ3 – 36,864μ2 + 73,728

=: ς2(μ). (52)

It is observed that ς2 achieves its maximum 68,800 at μ = 2 on [ 9
10 , 2]. If x = 1, then

W (μ, 1) = –7295μ6 + 42,120μ4 – 65,664μ2 + 124,416 =: ς3(μ). (53)

We see ς3 obtains its maximum about 110,662.6 at μ ≈ 1.6624 on [ 9
10 , 2]. By numerical

calculation, it is noted that the system of the equations

∂W
∂μ

= 0 and
∂W
∂x

= 0 (54)

has no positive roots in ( 9
10 , 2)× (0, 1). Thus, there are no critical points of W in the interior

of R1. Based on these facts, we conclude that W < 124,416 when μ ∈ [ε, 2).
It remains to consider μ ∈ [0, ε). In this case, we obtain

�(μ, x, 1) = 1075μ6 +
(
4 – μ2)(l4x4 + l3x3 + l2x2 + l1x + l0

)

= 1075μ6 +
(
4 – μ2)L(μ, x)

=: K(μ, x),

where

L(μ, x) = l4x4 + l3x3 + l2x2 + l1x + l0 (55)

with

l4 = 144
(
4 – μ2)(μ2 – 4μ – 4

)
,

l3 = 288
(
5μ4 – 10μ3 – 47μ2 – 68μ + 108

)
,

l2 = 12
(
–295μ4 – 524μ3 + 624μ2 + 192μ – 1344

)
,

l1 = 6μ(
(
589μ3 + 480μ2 + 1296μ + 3264

)
,

l0 = 48
(
119μ3 – 96μ2 + 384

)
.

As [0, ε) ⊂ [0, 1], we next prove that W ≤ 124,416 on the rectangle R2 := [0, 1] × [0, 1].
When μ = 0, we obtain

K(0, x) = –9216x4 + 124,416x3 – 64,512x2 + 73,728 := σ1(x). (56)
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It is calculated that σ1 attains its maximum 124,416 at x = 1. When μ = 2, we have

K(1, x) = –9072x4 – 10,368x3 – 48,492x2 + 101,322x + 59,683 =: σ2(x). (57)

It is noted that σ2 has a maximum about 11,197.1 attained at x ≈ 0.7292. If x = 0, then

K(μ, 0) = 1075μ6 – 5712μ5 + 4608μ4 + 22,848μ3 – 36,864μ2 + 73,728 =: σ3(μ). (58)

It is observed that σ3 achieves its maximum 73,728 at μ = 0 on [0, 1]. If x = 1, then

K(μ, 1) = –215μ6 + 6888μ4 – 38,016μ2 + 124,416 =: σ4(μ). (59)

We see σ4 obtains its maximum about 124,416 at μ = 0 on [0, 1]. By numerical calculation,
we get that the system of the equations

∂K
∂μ

= 0 and
∂K
∂x

= 0 (60)

has two positive roots in (0, 1) × (0, 1), i.e., (0.0903, 0.0721) and (0.9180, 0.7954). The two
critical points of K have the values about 73,686.7 and 100,800.0. From these discus-
sions, we get that K(μ, x) ≤ 124,416 if μ ∈ [0, ε). Therefore, we obtain the inequality that
�(μ, x, y) ≤ 124,416 on the whole domain �, which leads to

∣∣H2,2
(
f –1/2

)∣∣ ≤ 124,416
2,654,208

=
9

192
≈ 0.0469.

The equality is obtained by the extremal function f given by

f (z) = z exp

(∫ z

0

et2 – 1
t

dt
)

= z +
1
2

z3 +
1
4

z5 + · · · , z ∈D. (61)�

4 Conclusion
In this paper, we consider the Hankel determinant by taking coefficients of logarithmic
coefficients of inverse functions for certain subclasses of univalent functions. This is a
natural generalization of the classic concept and may help to understand more proper-
ties of the inverse functions. We have obtained the sharp bounds for the second Hankel
determinant of logarithmic coefficients of inverse functions with respect to the subclass
of starlike functions defined by subordination to the exponential functions. Given the im-
portance of the logarithmic coefficients and inverse coefficients of univalent functions, our
work provides a new basis for the study of the Hankel determinant. It could also inspire
further similar results investigating other subfamilies of univalent functions or taking the
bounds of higher-order Hankel determinants.
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